Phosphogypsum with Rice Cultivation Driven Saline-Alkali Soil Remediation Alters the Microbial Community Structure
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Properties and Enzyme Activity
2.2. Bacterial Community Composition and Diversity
2.3. Influences of Environmental Parameters on Bacterial Diversity and Community Structure
3. Discussion
4. Materials and Methods
4.1. Study Sites and Environmental Conditions
4.2. Experimental Treatments and Sampling
4.3. Soil Physicochemical Properties and Enzyme Analysis
4.4. Microbial Diversity Analysis
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Wang, Z.M.; Mao, D.H.; Jia, M.M.; Chang, S.Z.; Li, X.Y. Spatiotemporal variations of soil salinization in China’s West Songnen Plain. Land Degrad. Dev. 2023, 34, 2366–2378. [Google Scholar] [CrossRef]
- Wicke, B.; Smeets, E.; Dornburg, V.; Vashey, B.; Gaiser, T.; Turkenburg, W.; Faaij, A. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ. Sci. 2011, 4, 2669–2681. [Google Scholar] [CrossRef]
- Singh, A. Salinization of agricultural lands due to poor drainage: A viewpoint. Ecol. Indic. 2018, 95, 127–130. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, H.; Shutes, B.; Yan, B.; Jiao, L.; Zhang, F.M. Nutrient runoff loss from saline-alkali paddy fields in Songnen Plain of Northeast China via different runoff pathways: Effects of nitrogen fertilizer types. Environ. Sci. Pollut. Res. 2023, 30, 97977–97989. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Q.; Tian, Z.; Cui, Y.T.; Liang, Y.; Wang, H.Y. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci. Total Environ. 2020, 722, 137428. [Google Scholar] [CrossRef]
- Afshar, K.; Hashemi, M.; DaCosta, M.; Spargo, J.; Sadeghpour, A. Biochar application and drought stress effects on physiological characteristics of Silybum marianum. Commun. Soil Sci. Plant Anal. 2016, 47, 743–752. [Google Scholar] [CrossRef]
- Heng, T.; He, X.L.; Yang, L.L.; Xu, X.; Feng, Y. Mechanism of Saline-Alkali land improvement using subsurface pipe and vertical well drainage measures and its response to agricultural soil ecosystem. Environ. Pollut. 2022, 293, 118583. [Google Scholar] [CrossRef]
- Wang, Z.; Heng, T.; Li, W.; Zhang, J.; Zhang, L. Effects of subsurface pipe drainage on soil salinity in saline-sodic soil under mulched drip irrigation. Irrig. Drain. 2020, 69, 95–106. [Google Scholar] [CrossRef]
- Wang, N.; Zang, J.; Guo, X.; Wang, H.B.; Huang, N.; Zhao, Y.; Zhao, X.M.; Liu, J.H. Role of rice cultivation on fluorine distribution behavior in soda saline-alkali land. Sci. Total Environ. 2022, 835, 155543. [Google Scholar] [CrossRef]
- Tang, H.; Zhong, Z.; Hou, J.; You, L.; Zhao, Z.; Kwok, L.Y.; Bilige, M. Metagenomic analysis revealed the potential of lactic acid bacteria in improving natural saline-alkali land. Int. Microbiol. 2024, 27, 311–324. [Google Scholar] [CrossRef]
- Du, Y.; Liu, X.; Zhang, L.; Zhou, W. Drip irrigation in agricultural saline-alkali land controls soil salinity and improves crop yield: Evidence from a global meta–analysis. Sci. Total Environ. 2023, 880, 163226. [Google Scholar] [CrossRef]
- Mahmoodabadi, M.; Yazdanpanah, N.; Rodríguez Sinobas, L.R.; Pazira, E.; Neshat, A. Reclamation of calcareous saline sodic soil with different amendments (I): Redistribution of soluble cations within the soil profile. Agr. Water. Manag. 2013, 120, 30–38. [Google Scholar] [CrossRef]
- Sun, W.; Xiao, E.; Pu, Z.; Krumins, V.; Dong, Y.; Li, B.; Hu, M. Paddy soil microbial communities driven by environment-and microbe-microbe interactions: A case study of elevation–resolved microbial communities in a rice terrace. Sci. Total. Environ. 2018, 612, 884–893. [Google Scholar] [CrossRef]
- Tian, T.; Zhang, C.L.; Zhu, F.; Yuan, S.X.; Guo, Y.; Xue, S.G. Effect of phosphogypsum on saline-alkalinity and aggregate stability of bauxite residue. Trans. Nonferrous Met. Soc. China 2021, 31, 1484–1495. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, M.; Chen, H.; Chen, Y.; Wang, L.; Wang, R. Organic amendments promote saline-alkali soil desalinization and enhance maize growth. Front. Plant Sci. 2023, 14, 1177209. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Cao, X.; Li, Y.; Sun, Q.; Dai, L.; Li, J.; Guo, Z.; Zhang, L.; Ci, L. Functional carbon nanodots improve soil quality and tomato tolerance in saline–alkali soils. Sci. Total Environ. 2022, 830, 154817. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, G. Mechanisms of straw biochar’s improvement of phosphorus bioavailability in soda saline-alkali soil. Environ. Sci. Pollut. Res. Int. 2022, 29, 47867–47872. [Google Scholar] [CrossRef]
- Liang, J.; Li, Y.; Si, B.; Wang, Y.; Chen, X.; Wang, X.; Chen, H.; Wang, H.; Zhang, F.; Bai, Y.; et al. Optimizing biochar application to improve soil physical and hydraulic properties in saline–alkali soils. Sci. Total Environ. 2021, 771, 144802. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Jiang, M.; Wang, J.; Xia, F.; Shi, L.; Xia, Y.; Chen, C.; Shen, Z.; Chen, Y. Cyclic and safety utilisation of Cu polluted biogas residue in saline-alkali soil. Sci. Total Environ. 2020, 704, 135410. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, X.; Wang, X.; Tang, Y.; Zhang, H.; Yuan, Z.; Zhou, J.; Han, Y.; Li, T. Bioremediation of a saline-alkali soil polluted with Zn using ryegrass associated with Fusariumincarnatum. Environ. Pollut. 2022, 312, 119929. [Google Scholar] [CrossRef]
- Rao, P.S.; Mishra, B.; Gupta, S.R. Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant and sensitive rice genotypes. Rice Sci. 2013, 20, 284–291. [Google Scholar] [CrossRef]
- Rath, K.M.; Fierer, N.; Murphy, D.V.; Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 2019, 13, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Tang, L.; Cui, Y.; Chen, J.; Liu, L.; Guo, C. Saline-alkali stress reduces soil bacterial community diversity and soil enzyme activities. Ecotoxicology 2022, 31, 1356–1368. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Tang, J.; Liu, B.; Lyu, H.; Duan, Y.; Yang, Y.; Wang, S.; Li, Z. Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline-alkali soil region. Sci. Rep. 2022, 12, 1314. [Google Scholar] [CrossRef]
- Rietz, D.N.; Haynes, R.J. Effects of irrigation–induced salinity and sodicity on soil microbial activity. Soil Biol. Biohem. 2003, 35, 845–854. [Google Scholar] [CrossRef]
- Zhou, L.L.; Meng, Y.L.; Wang, Y.H.; Lu, H.L.; Zhang, G.W.; Zhang, L.; Zhou, Z.G. Effects of salinity stress on cotton field soil microbe quantity and soil enzyme activity. J. Soil Water Conserv. 2010, 24, 241–246. [Google Scholar] [CrossRef]
- Guan, B.; Yu, J.; Cao, D.; Li, Y.; Han, G.; Mao, P. The ecological restoration of heavily degraded saline wetland in the Yellow River Delta. Clean-Soil Air Water 2013, 41, 690–696. [Google Scholar] [CrossRef]
- López-Aizpún, M.; Arango–Mora, C.; Santamaría, C.; Lasheras, E.; Santamaría, J.M.; Ciganda, V.S.; Cárdenas, L.M.; Elustondo, D. Atmospheric ammonia concentration modulates soil enzyme and microbial activity in an oak forest affecting soil microbial biomass. Soil Biol. Biochem. 2017, 116, 378–387. [Google Scholar] [CrossRef]
- Margalef, O.; Sardans, J.; Maspons, J.; Molowny-Horas, R.; Fernández-Martínez, M.; Janssens, I.A.; Richter, A.; Ciais, P.; Obersteiner, M.; Peñuelas, J. The effect of global change on soil phosphatase activity. Glob. Change Biol. 2011, 27, 5989–6003. [Google Scholar] [CrossRef]
- Kızılkaya, R.; Bayraklı, B. Effects of N–enriched sewage sludge on soil enzyme activities. Appl. Soil Ecol. 2005, 30, 192–202. [Google Scholar] [CrossRef]
- Marklein, A.R.; Houlton, B.Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 2012, 193, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Xie, B.; Yang, S.; Hou, A.; Chen, M.; Han, G. Effects of five years’ nitrogen deposition on soil properties and plant growth in a salinized reed wetland of the Yellow River Delta. Ecol. Eng. 2019, 136, 160–166. [Google Scholar] [CrossRef]
- Luan, L.; Jiang, Y.; Dini-Andreote, F.; Crowther, T.W.; Li, P.; Bahram, M.; Zheng, J.; Xu, Q.; Zhang, X.X.; Sun, B. Integrating pH into the metabolic theory of ecology to predict bacterial diversity in soil. Proc. Natl. Acad. Sci. USA 2023, 120, e2207832120. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, C.; Zuo, S.; Ji, Y.; Liu, W.; Huang, D. Heavy grazing reduces soil bacterial diversity by increasing soil pH in a semi–arid steppe. PeerJ 2024, 12, e17031. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Liu, X.; Qin, Y.; Feng, G.; Zhou, Y.; Zhu, H.; Yao, Q. Cooperation of arbuscular mycorrhizal fungi and bacteria to facilitate the host plant growth dependent on soil pH. Front. Microbiol. 2018, 14, 1116943. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.X.; Zhang, D.P.; Wang, Y.; Hao, X.L.; Wadaan, M.A.M.; Hozzein, W.N.; Peñuelas, J.; Zhu, Y.G.; Yang, X.R. Responses to soil pH gradients of inorganic phosphate solubilizing bacteria community. Sci. Rep. 2019, 9, 25. [Google Scholar] [CrossRef]
- Shen, C.; Shi, Y.; Fan, K.; He, J.S.; Adams, J.M.; Ge, Y.; Chu, H. Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan Plateau. FEMS Microbiol. Ecol. 2019, 95. [Google Scholar] [CrossRef] [PubMed]
- Brenzinger, K.; Dörsch, P.; Braker, G. pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil. Front. Microbiol. 2015, 6, 961. [Google Scholar] [CrossRef]
- Tripathi, B.M.; Stegen, J.C.; Kim, M.; Dong, K.; Adams, J.M.; Lee, Y.K. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J. 2018, 12, 1072–1083. [Google Scholar] [CrossRef]
- Nicol, G.W.; Leininger, S.; Schleper, C.; Prosser, J.I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 2008, 10, 2966–2978. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Li, J.H.; Ross Friedman, C.; Wang, H.F. Variation of Soil Bacterial Communities in a Chronosequence of Rubber Tree (Hevea brasiliensis) Plantations. Front. Plant Sci. 2017, 8, 849. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Kong, K.; Zhang, Y.; Yang, W.; Wu, L.; Munir, M.Z.; Ji, B.; Muneer, M.A. Differential response of bacterial diversity and community composition to different tree ages of pomelo under red and paddy soils. Front. Microbiol. 2022, 13, 958788. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, H.; Xu, C.; Yuan, J.; Xu, X.; Wang, J.; Zhang, Y. Long-term nitrogen fertilization and sweetpotato cultivation in the wheat-sweetpotato rotation system decrease alkaline phosphomonoesterase activity by regulating soil phoD-harboring bacteria communities. Sci. Total Environ. 2023, 900, 165916. [Google Scholar] [CrossRef]
- Xu, S.; Luo, S.; Ma, L.; Zhou, J.; Huang, Y.; Zhang, J.; Wang, L.; Guo, L.; Tian, C. Community assembly processes of soil bacteria and fungi along a chronosequence of rice paddies cultivated on saline–sodic land. Land Deg. Dev. 2023, 34, 3648–3662. [Google Scholar] [CrossRef]
- Li, Z.R.; Luo, S.Q.; Peng, Y.J.; Jin, C.Z.; Liu, D.C. Effect of long-term application of bioorganic fertilizer on the soil property and bacteria in rice paddy. AMB Express 2023, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Xie, B.; Cagle, G.A.; Wang, X.; Han, G.; Wang, X.; Hou, A.; Guan, B. Effects of simulated nitrogen deposition on soil microbial community diversity in coastal wetland of the Yellow River Delta. Sci. Total Environ. 2021, 757, 143825. [Google Scholar] [CrossRef]
- Canfora, L.; Bacci, G.; Pinzari, F.; Lo Papa, G.; Dazzi, C.; Benedetti, A. Salinity and bacterial diversity:to what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS ONE 2014, 9, e106662. [Google Scholar] [CrossRef] [PubMed]
- Cornforth, D.M.; Foster, K.R. Competition sensing: The social side of bacterial stress responses. Nat. Rev. Microbiol. 2013, 11, 285–293. [Google Scholar] [CrossRef]
- Ratzke, C.; Barrere, J.; Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 2020, 4, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Kirkby, C.A.; Schmutter, D.; Bissett, A.; Kirkegaard, J.A.; Richardson, A.E. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 2016, 97, 188–198. [Google Scholar] [CrossRef]
- Feng, Y.Z.; Guo, Z.Y.; Zhong, L.H.; Zhao, F.; Zhang, J.B.; Lin, X.G. Balanced fertilization decreases environmental filtering on soil bacterial community assemblage in north China. Front. Microbiol. 2017, 8, 2376. [Google Scholar] [CrossRef] [PubMed]
- Leadbeater, D.R.; Oates, N.C.; Bennett, J.P.; Li, Y.; Dowle, A.A.; Taylor, J.D.; Alponti, J.S.; Setchfield, A.T.; Alessi, A.M.; Helgason, T.; et al. Mechanistic strategies of microbial communities regulating lignocellulose deconstruction in a UK salt marsh. Microbiome 2021, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, S.J.; Thrash, J.C.; Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 2014, 8, 1553–1565. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, C.; Ma, W.; Wu, Z.; Liu, W.; Wu, W. Exploitation alters microbial community and its co-occurrence patterns in ionic rare earth mining sites. Sci.Total Environ. 2023, 898, 165532. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Dong, Y.; Yi, Y.; Tian, J.; Xuan, C.; Wang, Y.; Wen, Y.; Cao, J. Effects of phosphogypsum on enzyme activity and microbial community in acid soil. Sci. Rep. 2023, 13, 6189. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ 2018, 6, e27295v2. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. Fast Tree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Boylen, E.; Knight, R.; Huttley, G.A.; Caporaso, J.G. Optimizing taxonomic classification of marker–gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.3-0. 2015. Available online: https://www.researchgate.net/publication/311493644_Vegan_commity_ecology_package_R_package_version_23-0 (accessed on 13 September 2024).
CK | P4 | P5 | P6 | |
---|---|---|---|---|
SWC (%) | 15.44 ± 0.44 b | 20.43 ± 1.40 a | 19.96 ± 1.35 a | 20.11 ± 1.65 a |
pH | 10.14 ± 0.10 a | 8.47 ± 0.10 b | 9.01 ± 0.37 b | 9.02 ± 0.21 b |
EC (μS·cm−1) | 1092.75 ± 437.97 a | 642.75 ± 75.25 b | 667.75 ± 248.15 b | 343.00 ± 16.25 c |
TOC (%) | 0.31 ± 0.03 b | 0.50 ± 0.04 a | 0.51 ± 0.10 a | 0.63 ± 0.04 a |
TN (mg·kg−1) | 315.05 ± 30.12 b | 513.35 ± 37.23 ab | 543.76 ± 95.45 ab | 692.39 ± 104.14 a |
TP (mg·kg−1) | 334.53 ± 30.74 b | 460.52 ± 34.52 a | 448.40 ± 21.30 a | 474.92 ± 50.89 a |
AP (mg·kg−1) | 8.01 ± 0.99 b | 37.13 ± 5.99 a | 23.78 ± 3.22 a | 25.07 ± 5.35 a |
NH4-N (mg·kg−1) | 2.20 ± 0.21 b | 3.74 ± 0.26 a | 3.84 ± 0.42 a | 4.03 ± 0.42 a |
NO3-N (mg·kg−1) | 13.75 ± 8.25 a | 3.82 ± 2.31 a | 3.07 ± 1.21 a | 9.15 ± 2.49 a |
ENa (cmol·kg−1) | 5.73 ± 1.33 a | 1.98 ± 0.33 b | 2.60 ± 0.82 b | 1.02 ± 0.22 b |
ESP (%) | 39.37 ± 4.11 a | 11.09 ± 1.65 b | 13.88 ± 4.38 b | 6.43 ± 1.83 b |
CK | P4 | P5 | P6 | |
---|---|---|---|---|
CO32− (mg·kg−1) | 401.40 ± 137.76 | nd | nd | nd |
HCO3 (mg·kg−1) | 8368.96 ± 1580.67 a | 558.15 ± 181.39 b | 1720.20 ± 711.95 b | 861.93 ± 188.30 b |
Cl− (mg·kg−1) | 628.35 ± 320.32 a | 114.49 ± 3.66 b | 119.81 ± 9.54 b | 129.58 ± 12.17 b |
SO42− (mg·kg−1) | 423.64 ± 291.41 b | 1982.52 ± 472.99 a | 1302.62 ± 547.86 ab | 384.78 ± 46.78 b |
Na+ (mg·kg−1) | 1962.41 ± 379.77 a | 899.66 ± 79.29 b | 869.54 ± 274.02 b | 433.79 ± 41.65 b |
Mg2+ (mg·kg−1) | 330.99 ± 125.55 a | 49.59 ± 27.71 b | 71.01 ± 27.59 b | 26.23 ± 9.10 b |
K+ (mg·kg−1) | 44.34 ± 12.11 a | 10.64 ± 1.68 b | 13.44 ± 3.94 b | 8.58 ± 0.98 b |
Ca2+ (mg·kg−1) | 1885.96 ± 361.70 a | 219.17 ± 73.79 b | 405.43 ± 156.89 b | 134.43 ± 33.17 b |
Simpson | Shannon | Faith_pd | Pielou_e | |
---|---|---|---|---|
SWC (%) | −0.131 | 0.030 | 0.596 * | −0.147 |
pH | 0.146 | 0.137 | −0.424 | 0.263 |
EC (μS·cm−1) | −0.102 | −0.326 | −0.579 * | −0.211 |
TOC (%) | 0.012 | 0.264 | 0.732 ** | 0.066 |
TN (mg·kg−1) | 0.109 | 0.322 | 0.685 * | 0.160 |
TP (mg·kg−1) | −0.038 | 0.123 | 0.552 * | −0.029 |
AP (mg·kg−1) | −0.371 | −0.249 | 0.362 | −0.405 |
NH4-N (mg·kg−1) | −0.042 | 0.038 | 0.500 * | −0.089 |
NO3-N (mg·kg−1) | 0.118 | 0.052 | −0.155 | 0.074 |
ENa (cmol·kg−1) | 0.167 | −0.070 | −0.701 ** | 0.146 |
ESP (%) | 0.164 | −0.044 | −0.696 ** | 0.150 |
CO32− (mg·kg−1) | 0.322 | 0.106 | −0.617 * | 0.328 |
HCO3− (mg·kg−1) | 0.265 | 0.097 | −0.632 ** | 0.304 |
Cl− (mg·kg−1) | 0.036 | −0.073 | −0.435 | 0.010 |
SO42− (mg·kg−1) | −0.395 | −0.605 * | −0.274 | −0.583 * |
Na+ (mg·kg−1) | 0.047 | −0.237 | −0.794 ** | −0.036 |
Mg2+ (mg·kg−1) | 0.222 | 0.010 | −0.636 ** | 0.233 |
K+ (mg·kg−1) | 0.271 | 0.139 | −0.515 * | 0.335 |
Ca2+ (mg·kg−1) | 0.235 | 0.044 | −0.677 ** | 0.263 |
Urease (mg·g−1) | 0.281 | 0.385 | 0.669 ** | 0.257 |
Invertase (mg·g−1) | −0.067 | 0.159 | 0.382 | −0.015 |
Phosphatase (mg·g−1) | 0.176 | 0.389 | 0.572 * | 0.261 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Feng, Z.; Xu, Y.; Guan, F.; Jin, Y.; Zhang, G.; Hu, J.; Yu, T.; Wang, M.; Liu, M.; et al. Phosphogypsum with Rice Cultivation Driven Saline-Alkali Soil Remediation Alters the Microbial Community Structure. Plants 2024, 13, 2818. https://doi.org/10.3390/plants13192818
Lu G, Feng Z, Xu Y, Guan F, Jin Y, Zhang G, Hu J, Yu T, Wang M, Liu M, et al. Phosphogypsum with Rice Cultivation Driven Saline-Alkali Soil Remediation Alters the Microbial Community Structure. Plants. 2024; 13(19):2818. https://doi.org/10.3390/plants13192818
Chicago/Turabian StyleLu, Guanru, Zhonghui Feng, Yang Xu, Fachun Guan, Yangyang Jin, Guohui Zhang, Jiafeng Hu, Tianhe Yu, Mingming Wang, Miao Liu, and et al. 2024. "Phosphogypsum with Rice Cultivation Driven Saline-Alkali Soil Remediation Alters the Microbial Community Structure" Plants 13, no. 19: 2818. https://doi.org/10.3390/plants13192818
APA StyleLu, G., Feng, Z., Xu, Y., Guan, F., Jin, Y., Zhang, G., Hu, J., Yu, T., Wang, M., Liu, M., Yang, H., Li, W., & Liang, Z. (2024). Phosphogypsum with Rice Cultivation Driven Saline-Alkali Soil Remediation Alters the Microbial Community Structure. Plants, 13(19), 2818. https://doi.org/10.3390/plants13192818