The Optimum Mixed Cropping Ratio of Oat and Alfalfa Enhanced Plant Growth, Forage Yield, and Forage Quality in Saline Soil
Abstract
:1. Introduction
2. Results
2.1. Growth Characteristics and Forage Yield
2.1.1. Plant Height
2.1.2. Relative Growth Rate (RGR)
2.1.3. Forage Yield (Fresh Weight and Dry Weight)
2.2. Photosynthetic Pigment and Assimilates
2.2.1. Chlorophyll Content
2.2.2. Soluble Sugar, Sucrose and Starch
2.3. Membrane Lipid Peroxidation and Osmoregulation Substances
2.4. Antioxidant Enzyme Activity
2.5. Nutrient Accumulation
2.6. Forage Quality
3. Discussion
3.1. Effect of Mixed Cropping Treatment on Growth Traits of Oat and Alfalfa
3.2. Effect of Mixed Cropping Treatment on Physiological Characteristics of Oat and Alfalfa
3.3. Effect of Mixed Sowing on Forage Quality of Oat and Alfalfa
4. Materials and Methods
4.1. Experimental Design and Site
4.2. Observations and Measurements
4.2.1. Growth Traits and Forage Yield
4.2.2. Physiological Parameters
- (1)
- Photosynthetic pigment and assimilates accumulation
- (2)
- Membrane lipid peroxidation and osmoregulation substances
- (3)
- Antioxidant enzymes
- (4)
- Nutrient accumulation—nitrogen, phosphorus, and potassium
- (5)
- Forage quality—crude fat, crude protein, and crude fiber
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.K.; Shao, T.Y.; Lv, Z.X.; Yue, Y.; Liu, A.H.; Long, X.H.; Zhou, Z.S.; Gao, X.M.; Rengel, Z. The mechanisms of improving coastal saline soils by planting rice. Sci. Total Environ. 2020, 703, 135529. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.L.; Fan, G.C. Effects of salinity stress on rice grain yield at different growth stages. J. Zhejiang Agric. Sci. 2021, 62, 1299–1300, 1303. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, G.L.; Lu, H.T.; Shi, X.X.; Wang, Y.; Zhi, W.F.; Chen, X.B.; Liu, J.W.; Ren, Z.; Shi, Y.; Ji, Z.Y.; et al. Nitrogen Management enhanced plant growth, antioxidant ability, and grain yield of rice under salinity stress. Agron. J. 2020, 112, 550–563. [Google Scholar] [CrossRef]
- Spandl, E.; Kells, J.J.; Hesterman, O.B. Weed invasion in new stands of alfalfa seeded with perennial forage grasses and an oat companion crop. Crop Sci. 1999, 39, 1120–1124. [Google Scholar] [CrossRef]
- Kutasy, E.; Diósi, G.; Buday-Bódi, E.; Nagy, P.T.; Melash, A.A.; Forgács, F.Z.; Virág, I.C.; Vad, A.M.; Bytyqi, B.; Buday, T.; et al. Changes in Plant and Grain Quality of Winter Oat (Avena sativa L.) Varieties in Response to Silicon and Sulphur Foliar Fertilisation under Abiotic Stress Conditions. Plants 2023, 12, 969. [Google Scholar] [CrossRef]
- Li, Y.; Qin, C.; Dong, L.Z.; Zhang, X.; Wu, Z.F.; Liu, L.Y.; Yang, J.S.; Liu, L.L. Whole grain benefit: Synergistic effect of oat phenolic compounds and β-glucan on hyperlipidemia via gut microbiota in high-fat-diet mice. Food Funct. 2022, 13, 12686–12696. [Google Scholar] [CrossRef]
- Gao, R.; Luo, Y.; Xu, S.Y.; Wang, M.S.; Sun, Z.Q.; Wang, L. Effects of Replacing Ensiled-Alfalfa with Fresh-Alfalfa on Dynamic Fermentation Characteristics, Chemical Compositions, and Protein Fractions in Fermented Total Mixed Ration with Different Additives. Animal 2021, 11, 572. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Goyal, M.; Kaur, M.; Mahal, A.K. Interactive effect of planting dates and development stages on digestibility, qualitative traits and yield of forage oat (Avena sativa L.) genotypes). Cereal Res. Commun. 2021, 50, 1237–1247. [Google Scholar] [CrossRef]
- Peel, M.D.; Anower, M.R.; Wu, Y.J. Breeding Efficiency for Salt Tolerance in Alfalfa. Life 2023, 13, 2188. [Google Scholar] [CrossRef]
- Richman, S.E.; Leafloor, J.O.; Karasov, W.H.; McWilliams, S. Ecological implications of reduced forage quality on growth and survival of sympatric geese. J. Anim. Ecol. 2015, 84, 284–298. [Google Scholar] [CrossRef]
- Cinar, S.; Hatipoglu, R. Forage yield and botanical composition of mixtures of some perennial warm season grasses with Alfalfa (Medicago sativa L.) under mediterranean conditions. Turk. J. Field Crops 2014, 19, 13–18. [Google Scholar] [CrossRef]
- Tang, Y.M.; Qiu, S.N.; Li, Q.Y.; Di, G.L.; Wang, J.L.; Sun, H.X. Simulated global climate change benefits the nutritive value of oat grass. Plant Biol. 2022, 24, 846–853. [Google Scholar] [CrossRef]
- He, K.; He, G.; Wang, C.P.; Zhang, H.P.; Xu, Y.; Wang, S.M.; Kong, Y.Z.; Zhou, G.K.; Hu, R.B. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Appl. Soil. Ecol. 2020, 155, 103674. [Google Scholar] [CrossRef]
- Zaman, M.S.; Moyer, J.R.; Boswall, A.L. Nutritional quality and yield of seedling alfalfa established with a barley companion crop and weeds. Anim. Feed. Sci. Technol. 2003, 103, 163–169. [Google Scholar] [CrossRef]
- Carpici, E.B. Determination of forage yield and quality of mixtures of hairy vetch with some cereals (oat, barley and wheat) grown as catch crop. Legume Res. 2017, 40, 1088–1092. [Google Scholar] [CrossRef]
- Caballero, R.; Goicoechea, E.L.; Hernaiz, P.J. Forage yields and quality of common vetch and oat sown at varying seeding ratios and seeding rates of vetch. Field Crops Res. 1995, 41, 135–140. [Google Scholar] [CrossRef]
- Zou, Y.; Zou, X.P.; Li, X.Z.; Guo, G.; Ji, P.; Wang, Y.; Li, S.L.; Wang, Y.J.; Cao, Z.J. Substituting oat hay or maize silage for portion of alfalfa hay affects growth performance, ruminal fermentation, and nutrient digestibility of weaned calves. Asian Austral. J. Anim. 2018, 31, 369–378. [Google Scholar] [CrossRef]
- Zhu, G.L.; Xu, Y.M.; Xu, Z.R.; Ahmad, I.; Nimir, N.E.A.; Zhou, G.S. Improving productivity of Sesbania pea in saline soils by enhancing antioxidant capacity with optimum application of nitrogen and phosphate combination. Front. Plant Sci. 2022, 13, 1027227. [Google Scholar] [CrossRef]
- Zhu, G.; Xu, Z.; Xu, Y.; Lu, H.; Ji, Z.; Zhou, G. Different Types of Fertilizers Enhanced Salt Resistance of Oat and Associated Physiological Mechanisms in Saline Soils. Agronomy 2022, 12, 317. [Google Scholar] [CrossRef]
- Chen, Y.F.; Yun, L.; Ai, Q.; Li, N.; Yao, N.; Ren, X.M.; Shi, F.L. Effect of Alfalfa-grass Mixed Pasture On the Remediation of Soil in Saline Area of Hailiutu. Acta Agrestia Sin. 2023, 31, 3203–3211. (In Chinese) [Google Scholar] [CrossRef]
- Farooq, T.H.; Rafay, M.; Basit, H.; Shakoor, A.; Shabbir, R.; Riaz, M.U.; Ali, B.; Kumar, U.; Qureshi, K.A.; Jaremko, M. Morpho-physiological growth performance and phytoremediation capabilities of selected xerophyte grass species toward Cr and Pb stress. Front. Plant Sci. 2022, 13, 997120. [Google Scholar] [CrossRef] [PubMed]
- Aloba, T.A.; Corea, E.E.; Mendoza, M.; Dickhoefer, U.; Castro-Montoya, J. Effects of ensiling length and storage temperature on the nutritive value and fibre-bound protein of three tropical legumes ensiled alone or combined with sorghum. Anim. Feed. Sci. Technol. 2022, 283, 115172. [Google Scholar] [CrossRef]
- Salama, H.S.A. Mixture cropping of berseem clover with cereals to improve forage yield and quality under irrigated conditions of the Mediterranean basin. Ann. Agri. Sci. 2021, 65, 159–167. [Google Scholar] [CrossRef]
- Gecaite, V.; Arlauskiene, A.; Ceseviciene, J. Competition Effects and Productivity in Oat-Forage Legume Relay Intercropping Systems under Organic Farming Conditions. Agriculture 2021, 11, 99. [Google Scholar] [CrossRef]
- Carr, P.M.; Horsley, R.D.; Poland, W.W. Barley, oat, and cereal-pea mixtures as dryland forages in the Northern Great Plains. Agron. J. 2004, 96, 677–684. [Google Scholar] [CrossRef]
- Sun, C.L.; Liu, G.B.; Xue, S. Interaction between plant competition and rhizosphericbacterial community influence secondary succession of abandoned farmland on the Loess Plateau of China. Front. Plant Sci. 2018, 9, 898. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, Y.Q.; Dong, G.C.; Zhu, G.L.; Zhou, G.S. Progress of Research on the Physiology and Molecular Regulation of Sorghum Growth under Salt Stress by Gibberellin. Int. J. Mol. Sci. 2023, 24, 6777. [Google Scholar] [CrossRef]
- Klaus, V.H.; Whittingham, M.J.; Báldi, A.; Eggers, S.; Francksen, R.M.; Hiron, M.; Lellei-Kovács, E.; Rhymer, C.M.; Buchmann, N. Do biodiversity-ecosystem functioning experiments inform stakeholders how to simultaneously conserve biodiversity and increase ecosystem service provisioning in grasslands? Biol. Conserv. 2020, 245, 108552. [Google Scholar] [CrossRef]
- Xiong, D.L. Perspectives of improving rice photosynthesis for higher grain yield. Crop Environ. 2024, 3, 123–137. [Google Scholar] [CrossRef]
- Liu, J.H.; Zhang, K.K.; Bi, J.G.; Yu, X.Q.; Luo, L.J.; Hu, L.Y. Mesophyll conductance and N allocation co-explained the variation in photosynthesis in two canola genotypes under contrasting nitrogen supply. Front. Plant Sci. 2023, 14, 1171331. [Google Scholar] [CrossRef]
- Iqbal, A.; Akbar, N.; Khan, H.Z.; Abbas, R.N.; Ahmad, J. Productivity of summer legume forages intercropped with maize as affected by mixed cropping in different sowing techniques. J. Anim. Plant Sci. 2012, 22, 758–763. [Google Scholar]
- Zeng, T.R.; Li, X.L.; Guan, H.; Yang, W.Y.; Liu, W.G.; Liu, J.; Du, Z.C.; Li, X.M.; Xiao, Q.Y.; Wang, X.C.; et al. Dynamic microbial diversity and fermentation quality of the mixed silage of corn and soybean grown in strip intercropping system. Bioresour. Technol. 2020, 313, 123655. [Google Scholar] [CrossRef] [PubMed]
- Ram, S.N.; Singh, B. Physiological growth parameters, forage yield and nitrogen uptake of sorghum (Sorghum bicolor) as influenced with legume intercropping, harvesting time and nitrogen level. Indian J. Agron. 2003, 48, 38–41. [Google Scholar]
- Lazare, N.N.; Kremin, E.V.; Vinogradov, E.S. Meadowlands’ productivity depending on composition of both sown mixed grass crops and fertilizers. Izv. Timiryazevskoi Sel’skokhozyaistvennoi Akad. 2010, 5, 31–38. [Google Scholar]
- Moura, R.L.; Oliveira, M.E.; Carvalho, W.F.; Carvalho, W.F.; Rodrigues, M.M.; Santos, M.S.; Edvan, R.L.; Abdalla, A.L.; Moreira, M.Z.; Silva, E.M. Evaluation of grass and legume tropical mixtures and performance of grazed sheep. S. Afr. J. Anim. Sci. 2022, 52, 23–33. [Google Scholar] [CrossRef]
- Pasley, H.; Williams, A.; Bell, L.; Collins, M. Achieving stable and sustainable Mungbean yields in Australia via optimal sowing dates. Field Crops Res. 2021, 313, 109431. [Google Scholar] [CrossRef]
- Stojanovic, B.; Dordevic, N.; Simic, A.; Bozickovic, A.; Davidovic, V.; Ivetic, A. The in vitro protein degradability of legume and sudan grass forage types and ensiled mixtures. Ank. Univ. Vet. Fak. 2020, 67, 419–425. [Google Scholar] [CrossRef]
- Li, G.H.; Zhou, C.Y.; Yang, Z.J.; Zhang, C.H.; Dai, Q.G.; Huo, Z.Y.; Xu, K. Low nitrogen enhances apoplastic phloem loading and improves the translocation of photoassimilates in rice leaves and stems. Plant Cell Physiol. 2022, 63, 991–1007. [Google Scholar] [CrossRef]
- He, J.L.; Ma, C.F.; Ma, Y.L.; Li, H.; Kang, J.Q.; Liu, T.X.; Polle, A.; Peng, C.H.; Luo, Z.B. Cadmium tolerance in six poplar species. Environ. Sci. Pollut. R. 2013, 20, 163–174. [Google Scholar] [CrossRef]
- Assaha, D.V.M.; Mekawy, A.M.M.; Liu, L.; Noori, M.S.; Kokulan, K.S.; Ueda, A.; Nagaoka, T.; Saneoka, H. Na+ retention in the root is a key adaptive mechanism to low and high salinity in the glycophyte, talinum paniculatum (Jacq.) gaertn. (Portulacaceae). J. Agron. Crop Sci. 2017, 203, 56–67. [Google Scholar] [CrossRef]
- Fimognari, L.; Dölker, R.; Kaselyte, G.; Jensen, C.N.G.; Akhtar, S.S.; Grosskinsky, D.K.; Roitsch, T. Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping. Plant Methods 2020, 16, 42. [Google Scholar] [CrossRef] [PubMed]
- Run, Y.Z. Determination of Nitrogen Phosphorus and Potassium in Plant Sample with Soldium Sulphate-Copper Sulphate as Catalyst. Guangzhou Chem. 1994, 2, 42–46. (In Chinese) [Google Scholar]
- Zhao, Z. Comparison and Analysis of Two Pretreatment Methods for Determination of Nitrogen, Phosphorus and Potassium in Crops. Fujian Anal. Test. 2013, 32, 45–49. (In Chinese) [Google Scholar]
- Glasser, F.; Doreau, M.; Maxin, G.; Baumont, R. Fat and fatty acid content and composition of forages: A meta-analysis. Anim. Feed. Sci. Technol. 2013, 185, 19–34. [Google Scholar] [CrossRef]
Oat Seeding Rate (kg ha−1) | Alfalfa Seeding Rate (kg ha−1) | Mixed Seeding Ratio | |
---|---|---|---|
T1 | 180.0 | 0 | 100% oat + 0% alfalfa |
T2 | 135.0 | 7.5 | 75% oat + 25% alfalfa |
T3 | 90.0 | 15.0 | 50% oat + 50% alfalfa |
T4 | 45.0 | 22.5 | 25% oat + 75% alfalfa |
T5 | 0 | 30.0 | 0% oat + 100% alfalfa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, G.; Liu, J.; Wu, H.; Zhu, Y.; Nimir, N.E.A.; Zhou, G. The Optimum Mixed Cropping Ratio of Oat and Alfalfa Enhanced Plant Growth, Forage Yield, and Forage Quality in Saline Soil. Plants 2024, 13, 3103. https://doi.org/10.3390/plants13213103
Zhu G, Liu J, Wu H, Zhu Y, Nimir NEA, Zhou G. The Optimum Mixed Cropping Ratio of Oat and Alfalfa Enhanced Plant Growth, Forage Yield, and Forage Quality in Saline Soil. Plants. 2024; 13(21):3103. https://doi.org/10.3390/plants13213103
Chicago/Turabian StyleZhu, Guanglong, Jiao Liu, Hao Wu, Yiming Zhu, Nimir Eltyb Ahmed Nimir, and Guisheng Zhou. 2024. "The Optimum Mixed Cropping Ratio of Oat and Alfalfa Enhanced Plant Growth, Forage Yield, and Forage Quality in Saline Soil" Plants 13, no. 21: 3103. https://doi.org/10.3390/plants13213103
APA StyleZhu, G., Liu, J., Wu, H., Zhu, Y., Nimir, N. E. A., & Zhou, G. (2024). The Optimum Mixed Cropping Ratio of Oat and Alfalfa Enhanced Plant Growth, Forage Yield, and Forage Quality in Saline Soil. Plants, 13(21), 3103. https://doi.org/10.3390/plants13213103