Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata
Abstract
:1. Introduction
2. Material and Methods
2.1. Collection and Preparation of Plant Material
2.2. Synthesis of Silver Nanoparticles (AgNPs)
2.3. Characterization of Biosynthesized E. ruminata AgNPs
2.3.1. UV-Visible Absorbance Spectroscopy
2.3.2. High-Resolution Transmission-Electron Microscopy (HR-TEM) Analysis
2.3.3. Determination of Zeta Potential
2.3.4. Fourier-Transformed Infrared Analysis (FTIR)
2.4. Antibacterial-Susceptibility Tests
2.5. Qualitative Evaluation of Quorum-Sensing Inhibition
2.6. Quantitative Quorum Sensing Inhibition
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, L.; Li, M.; Yi, G.; Liao, L.; Cheng, Q.; Zhu, J.; Zhang, B.; Wang, Y.; Chen, Y.; Zeng, M. Screening strategies for quorum sensing inhibitors in combating bacterial infections. J. Pharm. Anal. 2022, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jemilugba, O.T.; Sakho, E.H.M.; Parani, S.; Mavumengwana, V.; Oluwafemi, O.S. Green synthesis of silver nanoparticles using Combretum erythrophyllum leaves and its antibacterial activities. Colloids Interface Sci. Commun. 2019, 31, 100191. [Google Scholar] [CrossRef]
- Ghotekar, S.; Dabhane, H.; Pansambal, S.; Oza, R.; Tambade, P.; Medhane, V. Review on biomimetic synthesis of Ag2O nanoparticles using plant extract, characterization and its recent applications. Adv. J. Chem. B. 2020, 2, 102–111. [Google Scholar] [CrossRef]
- Gul, M.Z.; Bhat, M.Y.; Velpula, S.; Rupula, K.; Beedu, S.R. Phytomedicine and phytonanocomposites—An expanding horizon. In Phytomedicine: A Treasure of Pharmacologically Active Products; Bhat, R.A., Hakeem, K.R., Dervash, M.A., Eds.; Academic Press: London, UK, 2021; pp. 95–147. [Google Scholar]
- Jarzębski, M.; Kościński, M.; Białopiotrowicz, T. Determining the size of nanoparticles in the example of magnetic iron oxide core-shell systems. In Proceedings of the 6th International Conference on Manufacturing Engineering and Process, Lisbon, Portugal, 27–29 May 2017. [Google Scholar]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Vijayaraghavana, K.; Ashokkumar, T. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J. Environ. Chem. Eng. 2017, 5, 4866–4883. [Google Scholar] [CrossRef]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef]
- Xiao, Y.; Zou, H.; Li, J.; Song, T.; Lv, W.; Wang, W.; Wang, Z.; Tao, S. Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: Current understanding and future perspectives. Gut Microbes 2022, 14, 2039048. [Google Scholar] [CrossRef]
- Moradi, F.; Hadi, N.; Bazargani, A. Evaluation of quorum-sensing inhibitory effects of extracts of three traditional medicine plants with known antibacterial properties. New Microbes New Infect. 2020, 38, 100769. [Google Scholar] [CrossRef] [PubMed]
- Mion, S.; Carriot, N.; Lopez, J.; Plener, L.; Ortalo-Magne, A.; Chabriere, E.; Culioli, G.; Daude, D. Disrupting quorum sensing alters social interactions in Chromobacterium violaceum. NPJ Biofilms Microbiomes 2021, 7, 40. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, X.; Zheng, J.; Zou, Y.; Qiu, S.; Dai, Y. AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: A review. Microbiol Res. 2022, 262, 127102. [Google Scholar] [CrossRef]
- Fleitas Martinez, O.; Cardoso, M.H.; Ribeiro, S.M.; Franco, O.L. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front. Cell. Infect. Microbiol. 2019, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Mulat, M.; Pandita, A.; Khan, F. Medicinal plant compounds for combating the multi-drug resistant pathogenic bacteria: A review. Curr. Pharm. Biotechnol. 2019, 20, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Al-Shabib, N.A.; Husain, F.M.; Ahmed, F.; Khan, R.A.; Ahmad, I.; Alsharaeh, E.; Khan, M.S.; Hussain, A.; Rehman, M.T.; Yusuf, M.; et al. Biogenic synthesis of zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci. Rep. 2016, 6, 36761. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Simoes, M. Quorum sensing inhibition by marine bacteria. Mar. Drugs 2019, 17, 427. [Google Scholar] [CrossRef] [PubMed]
- Qais, F.A.; Shafiq, A.; Ahmad, I.; Husain, F.M.; Khan, R.A.; Hassan, I. Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens. Microb. Pathog. 2020, 144, 104172. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Gaikwad, S.; Nagar, S.; Kulshrestha, S.; Vaidya, V.; Nawani, N.; Pawar, S. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling 2019, 35, 34–49. [Google Scholar] [CrossRef] [PubMed]
- Dyer, R.A. Flora of Southern Africa: The Republic of South Africa, Basutoland, Swaziland and South West Africa; Department of Agriculture Technical Services: Pretoria, South Africa, 1966.
- Vijayan, K.P.R.; Raghu, A.V. Embelin: An HPTLC method for quantitative estimation in five species of genus Embelia Burm. f. Future J. Pharm. Sci. 2021, 7, 55. [Google Scholar] [CrossRef]
- Sivasankar, C.; Gayathri, S.; Bhaskar, J.P.; Krishnan, V.; Pandian, S.K. Evaluation of selected Indian medicinal plants for antagonistic potential against Malassezia spp. and the synergistic effect of embelin in combination with ketoconazole. Microb. Pathog. 2017, 110, 66–72. [Google Scholar] [CrossRef]
- Ko, J.H.; Lee, S.G.; Yang, W.M.; Um, J.Y.; Sethi, G.; Mishra, S.; Shanmugam, M.K.; Ahn, K.S. The application of embelin for cancer prevention and therapy. Molecules 2018, 23, 621. [Google Scholar] [CrossRef]
- Nuthakki, V.K.; Sharma, A.; Kumar, A.; Bharate, S.B. Identification of embelin, a 3-undecyl-1,4-benzoquinone from Embelia ribes as a multitargeted anti-Alzheimer agent. Drug Dev. Res. 2019, 80, 655–665. [Google Scholar] [CrossRef]
- Bansal, P.; Bhandari, U.; Ahmad, S. Embelin from Embelia ribes f. ameliorates oxidative stress and inflammation in high-fat diet-fed obese C57BL/6 mice. Pharmacogn. Mag. 2020, 16, 443–449. [Google Scholar] [CrossRef]
- Caruso, F.; Rossi, M.; Kaur, S.; Garcia-Villar, E.; Molasky, N.; Belli, S.; Sitek, J.D.; Gionfra, F.; Pedersen, J.Z.; Incerpi, S. Antioxidant properties of embelin in cell culture, electrochemistry and theoretical mechanism of scavenging, potential scavenging of superoxide radical through the cell membrane. Antioxidants 2020, 9, 382. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gao, M.; Jian, R.; Hong, W.D.; Tang, X.; Li, Y.; Zhao, D.; Zhang, K.; Chen, W.; Zheng, X.; et al. Design, synthesis and alpha-glucosidase inhibition study of novel embelin derivatives. J. Enzyme Inhib. Med. Chem. 2020, 35, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.P.; Sharma, N.; Kalivendi, S.V. Embelin averts MPTP-induced dysfunction in mitochondrial bioenergetics and biogenesis via activation of SIRT1. Biochim. Biophys. Acta Bioenerg. 2020, 1861, 148157. [Google Scholar] [CrossRef] [PubMed]
- Elias, T.; Lee, L.H.; Rossi, M.; Caruso, F.; Adams, S.D. In vitro analysis of the antioxidant and antiviral activity of embelin against Herpes simplex virus-1. Microorganisms 2021, 9, 434. [Google Scholar] [CrossRef] [PubMed]
- Sachu, A.; Antony, S.; Mathew, P.; Sunny, S.; Koshy, J.; Kumar, V.; Mathew, R. Chromobacterium violaceum causing deadly sepsis. Iran J. Microbiol. 2020, 12, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Aliyu, A.B.; Ibrahim, M.A.; Mohammed, A.; Isah, M.B.; Gangas, P.; Oyewale, A.O. Quorum sensing inhibition in Chromobacterium violaceum, antibacterial activity and GC-MS analysis of Centaurea praecox (Oliv. & Hiern) extracts. Lett. Appl. NanoBioSci. 2020, 9, 1569–1577. [Google Scholar] [CrossRef]
- Chernin, L.S.; Winson, M.K.; Thompson, J.M.; Haran, S.; Bycroft, B.W.; Chet, I.; Williams, P.; Stewart, G.S. Chitinolytic activity in Chromobacterium violaceum: Substrate analysis and regulation by quorum sensing. J. Bacteriol. 1998, 180, 4435–4441. [Google Scholar] [CrossRef]
- Morohoshi, T.; Kato, M.; Fukamachi, K.; Kato, N.; Ikeda, T. N-acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472. FEMS Microbiol. Lett. 2008, 279, 124–130. [Google Scholar] [CrossRef]
- Qais, F.A.; Khan, M.S.; Ahmad, I. Broad-spectrum quorum sensing and biofilm inhibition by green tea against gram-negative pathogenic bacteria: Deciphering the role of phytocompounds through molecular modelling. Microb. Pathog. 2019, 126, 379–392. [Google Scholar] [CrossRef]
- Rambaran, N.; Naidoo, Y.; Mohamed, F.; Chenia, H.Y.; Baijnath, H. Antibacterial and anti-quorum sensing activities of the different solvent extracts of Embelia ruminata. S. Afr. J. Bot. 2022, 151, 996–1007. [Google Scholar] [CrossRef]
- Singh, K.; Naidoo, Y.; Mocktar, C.; Baijnath, H. Biosynthesis of silver nanoparticles using Plumbago auriculata leaf and calyx extracts and evaluation of their antimicrobial activities. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 035004. [Google Scholar] [CrossRef]
- Verma, A.; Tyagi, S.; Verma, A.; Singh, J.; Joshi, P. Optimization of different reaction conditions for the bio-inspired synthesis of silver nanoparticles using aqueous extract of Solanum nigrum leaves. J. Nanomater. Mol. Nanotechnol. 2017, 6, 2–8. [Google Scholar] [CrossRef]
- Guilger-Casagrande, M.; Germano-Costa, T.; Pasquoto-Stigliani, T.; Fraceto, L.F.; Lima, R. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Sci. Rep. 2019, 9, 14351. [Google Scholar] [CrossRef]
- Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; et al. Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. Int. J. Nanomed. 2019, 14, 5087–5107. [Google Scholar] [CrossRef] [PubMed]
- Chenia, H.Y. Anti-quorum sensing potential of crude Kigelia africana fruit extracts. Sensors 2013, 13, 2802–2817. [Google Scholar] [CrossRef] [PubMed]
- Truchado, P.; Gimenez-Bastida, J.A.; Larrosa, M.; Castro-Ibanez, I.; Espin, J.C.; Tomas-Barberan, F.A.; Garcia-Conesa, M.T.; Allende, A. Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. J. Agric. Food Chem. 2012, 60, 8885–8894. [Google Scholar] [CrossRef] [PubMed]
- Packiavathy, I.S.V.; Agilandeswari, P.; Babu, R.R.; Karutha, P.S.; Ravi, A.V. Antiquorum sensing and antibiofilm potential of Capparis spinosa. Arch. Med. Res. 2011, 42, 658–668. [Google Scholar] [CrossRef]
- Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostruct. Chem. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Rao, B.; Tang, R.C. Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 015014. [Google Scholar] [CrossRef]
- Velgosová, O.; Mražíková, A. Limitations and possibilities of green synthesis and long-term stability of colloidal Ag nanoparticles. In Proceedings of the Recent Advances on Environment, Chemical Engineering and Materials, Brasov, Romania, 27–29 June 2017. [Google Scholar]
- Osibe, D.A.; Chiejina, N.V.; Ogawa, K.; Aoyagi, H. Stable antibacterial silver nanoparticles produced with seed-derived callus extract of Catharanthus roseus. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Elemike, E.E.; Onwudiwe, D.C.; Arijeh, O.; Nwankwo, H.U. Plant-mediated biosynthesis of silver nanoparticles by leaf extracts of Lasienthra africanum and a study of the influence of kinetic parameters. Bull. Mater. Sci. 2017, 40, 129–137. [Google Scholar] [CrossRef]
- Varghese, A.K.; Tamil Pavai, P.; Rugmini, R.; Shiva Prasad, M.; Kamakshi, K.; Sekhar, K.C. Green synthesized Ag nanoparticles for bio-sensing and photocatalytic applications. ACS Omega 2020, 5, 13123–13129. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, H.; Wang, J.; Wei, J. Effect of temperature on the size of biosynthesized silver nanoparticle: Deep insight into microscopic kinetics analysis. Arab. J. Chem. 2020, 13, 1011–1019. [Google Scholar] [CrossRef]
- Majeed, M.; Hakeem, K.R.; Rehman, R.U. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications-present insights and bottlenecks. Chemosphere 2022, 288, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Anbu, P.; Gopinath, S.C.B.; Yun, H.S.; Lee, C.G. Temperature-dependent green biosynthesis and characterization of silver nanoparticles using balloon flower plants and their antibacterial potential. J. Mol. Struct. 2019, 1177, 302–309. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Zare-Hoseinabadi, A.; Sarmah, A.K.; Taghizadeh, S.; Ghasemi, Y.; Berenjian, A. Plant-mediated synthesis and applications of iron nanoparticles. Mol. Biotechnol. 2018, 60, 154–168. [Google Scholar] [CrossRef]
- Hemlata, M.P.R.; Singh, A.P.; Tejavath, K.K. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 2020, 5, 5520–5528. [Google Scholar] [CrossRef]
- Singh, V.; Shrivastava, A.; Wahi, N. Biosynthesis of silver nanoparticles by plants crude extracts and their characterization using UV, XRD, TEM and EDX. Afr. J. Biotechnol. 2015, 14, 2554–2567. [Google Scholar] [CrossRef]
- Theivasanthi, T.; Alagar, M. Electrolytic synthesis and characterizations of silver nanopowder. Nano Biomed. Eng. 2012, 4, 58–65. [Google Scholar] [CrossRef]
- Siakavella, I.K.; Lamari, F.; Papoulis, D.; Orkoula, M.; Gkolfi, P.; Lykouras, M.; Avgoustakis, K.; Hatziantoniou, S. Effect of plant extracts on the characteristics of silver nanoparticles for topical application. Pharmaceutics 2020, 12, 1244. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, D.; Gnana Prakash, D.; Arun, J.; Nagendra Gandhi, N.; Mani, U.; Kathirvan, K. Antibacterial and anticancer activities of silver nanoparticles biosynthesized using Embelia ribes Burm.f. berries extract. Indian J. Exp. Biol. 2019, 57, 175–180. [Google Scholar]
- Raval, N.; Maheshwari, R.; Kalyane, D.; Youngren-Ortiz, S.R.; Chougule, M.B.; Tekade, R.K. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In Basic Fundamentals of Drug Delivery; Tekade, R.K., Ed.; Academic Press: Londonn, UK, 2019; pp. 369–400. [Google Scholar]
- Joseph, E.; Singhvi, G. Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. In Nanomaterials for Drug Delivery and Therapy; Grumezescu, A.M., Ed.; William Andrew Publishing: Amsterdam, The Netherlands, 2019; pp. 91–116. [Google Scholar]
- Zhu, G.; Yang, W.; Lv, W.; He, J.; Wen, K.; Huo, W.; Hu, J.; Waqas, M.; Dickerson, J.H.; He, W. Facile electrophoretic deposition of functionalized Bi2O3 nanoparticles. Mater. Des. 2017, 116, 359–364. [Google Scholar] [CrossRef]
- Samimi, S.; Maghsoudnia, N.; Eftekhari, R.B.; Dorkoosh, F. Lipid-based nanoparticles for drug delivery systems. In Characterization and Biology of Nanomaterials for Drug Delivery; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 47–76. [Google Scholar]
- Stuart, B. Infrared Spectroscopy Fundamentals and Applications; John Wiley & Sons Ltd.: Chichester, UK, 2004. [Google Scholar]
- Hamouda, R.A.; Hussein, M.H.; Abo-Elmagd, R.A.; Bawazir, S.S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci. Rep. 2019, 9, 13071. [Google Scholar] [CrossRef] [PubMed]
- Talari, A.C.S.; Martinez, M.A.G.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2016, 52, 456–506. [Google Scholar] [CrossRef]
- Nouri, A.; Tavakkoli Yaraki, M.; Lajevardi, A.; Rezaei, Z.; Ghorbanpour, M.; Tanzifi, M. Ultrasonic-assisted green synthesis of silver nanoparticles using Mentha aquatica leaf extract for enhanced antibacterial properties and catalytic activity. Colloids Interface Sci. Commun. 2020, 35, 100252. [Google Scholar] [CrossRef]
- Swamy, K.H.M.; Krishna, V.; Shankarmurthy, K.; Abdul Rahiman, B.; Mankani, K.L.; Mahadevan, K.M.; Harish, B.G.; Raja, H.N. Wound healing activity of embelin isolated from the ethanol extract of leaves of Embelia ribes Burm.f. J. Ethnopharmacol. 2007, 109, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.C.; Yelne, M.B.; Dennis, T.J.; Sharma, P.C.; Yelne, M.B.; Dennis, T.J.; Joshi, A.; Billore, K.V. Database on Medicinal Plants Used in Ayurveda; Central Council for Research in Ayurveda and Siddha: New Delhi, India, 2002. [Google Scholar]
- Stefanović, O.D. Synergistic activity of antibiotics and bioactive plant extracts: A study against Gram-positive and Gram-negative bacteria. In Bacterial Pathogenesis and Antibacterial Control; Kırmusaoğlu, S., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Bouarab-Chibane, L.; Forquet, V.; Lanteri, P.; Clement, Y.; Leonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Rajkumari, J.; Meena, H.; Gangatharan, M.; Busi, S. Green synthesis of anisotropic gold nanoparticles using hordenine and their antibiofilm efficacy against Pseudomonas aeruginosa. IET Nanobiotechnol. 2017, 11, 987–994. [Google Scholar] [CrossRef]
- Lu, L.; Hu, W.; Tian, Z.; Yuan, D.; Yi, G.; Zhou, Y.; Cheng, Q.; Zhu, J.; Li, M. Developing natural products as potential anti-biofilm agents. Chin. Med. 2019, 14, 11. [Google Scholar] [CrossRef]
- Zaid, O.I.; Majid, R.A.; Hasidah, M.S.; Sabariah, M.N.; Al-Zihiry, K.; Rahi, S.; Basir, R. Anti-plasmodial and chloroquine resistance suppressive effects of embelin. Pharmacogn. Mag. 2017, 13, S48–S55. [Google Scholar] [CrossRef] [PubMed]
- Kundap, U.P.; Choo, B.K.M.; Kumari, Y.; Ahmed, N.; Othman, I.B.; Shaikh, M.F. Embelin protects against acute pentylenetetrazole-induced seizures and positively modulates cognitive function in adult zebrafish. Front. Pharmacol. 2019, 10, 1249. [Google Scholar] [CrossRef] [PubMed]
- Dandekar, S.S.; George, I.A. An accurate embelin extraction method for limited biomass of Embelia species. Biosci. Biotechnol. Res. Commun. 2022, 15, 200–207. [Google Scholar] [CrossRef]
- Dwivedi, D.; Singh, V. Effects of the natural compounds embelin and piperine on the biofilm-producing property of Streptococcus mutans. J. Tradit. Complement. Med. 2016, 6, 57–61. [Google Scholar] [CrossRef]
- Leema, M.; Sreekumar, G.; Sivan, A.; Pillai, Z.S. Synthesis of silver nanoparticles from a bioactive precursor. Mater. Today Proc. 2019, 18, 4724–4728. [Google Scholar] [CrossRef]
Samples | HR-TEM | NTA | |
---|---|---|---|
Nanoparticle Size (nm) ± SD | Nanoparticle Size (nm) ± SD | ζ-Potential (mV) ± SD | |
Leaf Rt | 21.06 ± 11.38 | 46.9 ± 1.4 | −0.2 ± 0.2 |
80 °C | 21.25 ± 8.14 | 102.0 ± 4.7 | 1.8 ± 0.7 |
Stem-Rt | 32.15 ± 8.27 | 58.3 ± 16.1 | −12.8 ± 1.4 |
80 °C | 28.56 ± 13.69 | 65.9 ± 9.4 | 7.3 ± 0.2 |
Fruit Rt | 29.75 ± 8.51 | 160 ± 19.5 | −8.4 ± 1.0 |
80 °C | 25.20 ± 11.13 | 198 ± 12.9 | −0.2 ± 1.7 |
Gram-Negative Pacteria | Gram-Positive Bacteria | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | E. coli ATCC 25922 | E. coli ATCC 35218 | K. pneumoniae ATCC 700603 | P. aeruginosa ATCC 27853 | E. faecalis ATCC 29212 | E. faecalis ATCC 51299 | S. aureus ATCC 29213 | S. aureus ATCC 33591 | S. aureus ATCC 43300 | S. aureus ATCC 700698 | S. epidermidis ATCC 12228 | |||||||||||
Concentration (µg) | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 |
NPs | ||||||||||||||||||||||
Leaf Rt | 0 | 9 | 0 | 8 | 0 | 7 | 0 | 8 | 7 | 9 | 7 | 10 | 7 | 9 | 7 | 8 | 7 | 9 | 7 | 7 | 10 | 12 |
Leaf 80 °C | 0 | 0 | 0 | 8 | 7 | 7 | 0 | 8 | 7 | 9 | 7 | 10 | 7 | 7 | 8 | 8 | 7 | 7 | 8 | 10 | 0 | 9 |
Stem-bark Rt | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 8 | 8 | 0 | 0 | 0 | 0 |
Stem-bark 80 °C | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 9 |
Fruit Rt | 9 | 12 | 8 | 10 | 0 | 8 | 9 | 11 | 7 | 8 | 7 | 8 | 8 | 9 | 8 | 9 | 8 | 9 | 7 | 9 | 11 | 13 |
Fruit 80 °C | 0 | 0 | 0 | 10 | 0 | 8 | 8 | 10 | 8 | 9 | 7 | 9 | 8 | 9 | 10 | 12 | 8 | 8 | 9 | 12 | 13 | 13 |
Controls | ||||||||||||||||||||||
Ciprofloxacin (CIP5) | 30 | 37 | 26 | 32 | 33 | 38 | 23 | 22 | 23 | 6 | 28 | |||||||||||
Gentamicin (GN10) | 19 | 20 | 17 | 19 | 18 | 0 | 19 | 16 | 9 | 11 | 20 |
C. subtsugae CV017 | C. violaceum ATCC 12472 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 μg | 200 μg | 100 μg | 200 μg | |||||||||
Extracts | Total Zone Diameter (mm) | Clear Zone Diameter (mm) | QSI Halo (mm) | Total Zone Diameter (mm) | Clear Zone Diameter (mm) | QSI Halo (mm) | Total Zone Diameter (mm) | Clear Zone Diameter (mm) | QSI Halo (mm) | Total Zone Diameter (mm) | Clear Zone Diameter (mm) | QSI Halo (mm) |
Leaf RT | 11 | 11 | 0 | 12 | 10 | 2 | 16 | 10 | 6 | 18 | 10 | 8 |
Leaf 80 °C | 13 | 13 | 0 | 9 | 9 | 0 | 17 | 10 | 7 | 18 | 12 | 6 |
Stem-bark RT | 14 | 9 | 5 | 16 | 9 | 7 | 12 | 8 | 4 | 13 | 8 | 5 |
Stem-bark 80 °C | 0 | 0 | 0 | 8 | 0 | 8 | 13 | 8 | 5 | 13 | 9 | 4 |
Fruit RT | 13 | 10 | 3 | 12 | 10 | 2 | 13 | 10 | 3 | 13 | 9 | 4 |
Fruit 80 °C | 13 | 11 | 2 | 13 | 11 | 2 | 12 | 9 | 3 | 13 | 11 | 2 |
Control | ||||||||||||
Vanillin | 11 | 0 | 11 | 11 | 0 | 11 | 9 | 0 | 9 | 9 | 0 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rambaran, N.; Naidoo, Y.; Mohamed, F.; Chenia, H.Y.; Baijnath, H. Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata. Plants 2024, 13, 168. https://doi.org/10.3390/plants13020168
Rambaran N, Naidoo Y, Mohamed F, Chenia HY, Baijnath H. Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata. Plants. 2024; 13(2):168. https://doi.org/10.3390/plants13020168
Chicago/Turabian StyleRambaran, Neervana, Yougasphree Naidoo, Farzana Mohamed, Hafizah Y. Chenia, and Himansu Baijnath. 2024. "Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata" Plants 13, no. 2: 168. https://doi.org/10.3390/plants13020168
APA StyleRambaran, N., Naidoo, Y., Mohamed, F., Chenia, H. Y., & Baijnath, H. (2024). Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata. Plants, 13(2), 168. https://doi.org/10.3390/plants13020168