A Comprehensive Study on Lathyrus tuberosus L.: Insights into Phytochemical Composition, Antimicrobial Activity, Antioxidant Capacity, Cytotoxic, and Cell Migration Effects
Abstract
:1. Introduction
2. Results
2.1. Qualitative Analysis of Phenolic Compounds in Plant Extracts with UHPLC-DAD-ESI-MS/MS
2.1.1. Flavonoid Derivatives
- Flavonol-O-glycosides
- Flavonol-O-acylglycosides
- Flavanone-, flavone-, and chalcone-glycosides
2.1.2. Hydroxycinnamic Acid Derivatives
2.1.3. Hydroxybenzoic Acid Derivatives
2.1.4. Lignan Derivatives
2.1.5. Monoterpene Derivatives
No. a | Tentative Characterization | Presence of Compounds | tR (min) a | [M−H]− (m/z) | Fragment Ions (m/z) | Ref. | |
---|---|---|---|---|---|---|---|
LtE b | LtW b | ||||||
1 | caffeic acid-O-hexoside | + | - | 0.80 | 341 377 [M+Cl]− | 179, 161, 149, 119 | [26] |
2 | methoxylariciresinol-di-O-hexoside isomer | + | + | 0.94 | 713 | 551, 173, 135 | [49] |
3 | N-caffeoyltryptophan | + | + | 0.97 | 365 | 203, 159 | [40] |
4 | dihydroxybenzoic acid-di-O-pentoside | + | + | 1.00 | 417 | 241, 152 | [34] |
5 | unknown | + | + | 1.21 | 813 | 353 | - |
6 | p-hydroxybenzoic acid-O-hexoside | + | + | 1.27 | 299 | 228, 137 | [46] |
7 | 5-O-caffeoylquinic acid | + | + | 1.27 | 353 707 [2M−H]− | 191 | [39] |
8 | coumaroyl-dimethyl-dihydroxybutanedioic acid-O-hexoside | + | + | 1.36 | 485 | 323, 163, 159 | - |
9 | methoxylariciresinol-di-O-hexoside isomer | + | + | 1.42 | 713 | 551 | [49] |
10 | hydroxybenzyl-O-malic acid (eucomic acid) | + | + | 1.42 | 239 | 179, 149, 133, 107 | [47] |
11 | p-coumaric acid-O-pentosyl-hexoside | + | + | 1.45 | 457 | 163 | [36] |
12 | apigenin-6-C-hexosyl-8-C-hexoside | + | + | 1.62 | 593 | 473, 383, 353 | [21] |
13 | methoxylariciresinol-O-hexoside isomer | + | + | 1.65 | 551 | 389, 371, 341, 285, 193, 165, 149 | [48] |
14 | dihydrosinapic acid-O-pentosyl-hexoside | + | + | 1.79 | 519 | 387, 233, 207, 189, 161 | [38] |
15 | caffeoyl-dimethyl-dihydroxybutanedioic acid | + | + | 2.04 | 339 | 179, 159 | [22] |
16 | sinapic acid-O-hexoside | + | + | 2.05 | 385 | 205, 153, 119 | [37] |
17 | quercetin-3-O-hexosyl-7-O-deoxyhexoside isomer | + | - | 2.08 | 609 | 463, 447, 446, 301, 300, 299 | [21,26] |
18 | dihydrosinapic acid-O-hexoside | + | + | 2.10 | 387 | 207, 189, 153, 119 | [38] |
19 | tetrahydroxyflavanone-O-hexoside | + | + | 2.10 | 449 | 287, 269, 259, 215, 149, 125 | [29,30] |
20 | unknown | + | + | 2.11 | 813 | - | - |
21 | methoxylariciresinol-O-hexoside isomer | + | + | 2.28 | 551 | 389, 341, 285, 193, 165, 149 | [48] |
22 | dihydrosinapic acid-O-pentosyl-hexosyl-hexoside | + | + | 2.34 | 681 | 519, 387, 339, 309, 233, 207, 203, 189, 179, 161, 149, 123, 119, 113 | [38] |
23 | N-caffeoylputrescine-O-pentoside | + | + | 2.34 | 381 | 249, 179, 161, 113, 101 | [41] |
24 | tetrahydroxy-dihydrochalcone-C-glycoside derivative | + | + | 2.38 | 517 | 417, 399, 163, 152 | [34] |
25 | methoxylariciresinol-O-hexoside isomer | + | + | 2.48 | 551 | 193, 165, 151 | [48] |
26 | quercetin-O-deoxyhexosyl-hexosyl-pentoside | + | + | 2.67 | 741 | 300 | [23] |
27 | quercetin-3-O-hexosyl-7-O-deoxyhexoside isomer | + | + | 2.96 | 609 | 463, 301, 300, 299 | [21,26] |
28 | coumaroyl-dimethyl-dihydroxybutanedioic acid isomer | + | + | 3.15 | 323 | 177, 163, 159, 141, 131, 119 | - |
29 | quercetin-3-O-deoxyhexosyl-7-O-deoxyhexoside | + | + | 3.22 | 593 | 447, 446, 301, 300, 299 | [28] |
30 | tetrahydroxy-dihydrochalcone-di-C-pentoside isomer | + | + | 3.25 | 537 | 417, 399, 179, 152, 137 | [34] |
31 | isorhamnetin-O-hexosyl-deoxyhexoside or verbascoside (acteoside) | + | - | 3.45 | 623 | 477, 461, 315 | [21,22] |
32 | tetrahydroxy-dihydrochalcone-C-hexosyl-C-pentoside | + | + | 3.57 | 567 | 549, 417, 399, 357, 209, 195, 167, 165, 153, 152, 137, 119 | [34,35] |
33 | coumaroyl-dimethyl-dihydroxybutanedioic acid isomer | + | + | 3.70 | 323 | 177, 159, 141, 131, 119 | - |
34 | quercetin-O-hexosyl-hexosyl-hexosyl-deoxyhexoside isomer | + | - | 3.70 | 933 | - | [21] |
35 | quercetin-3-O-deoxyhexosyl-hexoside | + | - | 3.75 | 609 | 301, 300, 179, 151 | [21,26] |
36 | kaempferol-3-O-pentosyl-7-O-glucuronide | + | + | 3.99 | 593 | 461, 460, 284, 283, 257, 179, 163 | [23] |
37 | quercetin-3-O-hexoside isomer | + | + | 4.11 | 463 | 300, 271, 151 | [22,26] |
38 | hydroxypinoresinol-O-hexoside | + | - | 4.20 | 535 | 373, 233, 209, 163, 119 | [50,51] |
39 | luteolin-C-hexosyl-C-pentoside | + | + | 4.24 | 579 | 339, 327 | [22,33] |
40 | deacetylasperuloside | + | - | 4.28 | 371 | 233, 209, 165, 125 | [53] |
41 | quercetin-3-O-hexosyl-7-O-hexosyl-hexosyl-deoxyhexoside isomer | + | + | 4.28 | 933 | 609, 463, 301, 300, 299, 271, 179 | [21] |
42 | quercetin-3-O-hexoside isomer | + | + | 4.36 | 463 | 300, 271, 179, 151 | [22,26] |
43 | unknown | + | + | 4.36 | 501 | - | - |
44 | kaempferol-3-O-deoxyhexosyl-7-O-deoxyhexoside | + | + | 4.75 | 577 | 431, 430, 285, 284, 283 | [25] |
45 | 5-O-caffeoylquinic acid derivative | + | + | 4.80 | 503 | 191, 161, 149 | - |
46 | acylated flavonoid-O-oligoglycoside | + | + | 5.03 | 1835 917 [M−2H]2− | - | [23] |
47 | unknown | + | + | 5.11 | 951 | - | - |
48 | verminoside | + | - | 5.23 | 523 | 361, 161, 101 | [52] |
49 | apigenin-7-O-sinapoyl-pentoside | + | - | 5.28 | 607 | 269, 223, 205 | [22] |
50 | quercetin-O-deoxyhexosyl-hexosyl-coumaroyl-hexosyl-caffeoyldihexoside | + | + | 5.28 | 1403 701 [M−2H]2− | 1247, 917, 609, 301, 300, 211, 161, 145 | [23] |
51 | 3,4-di-O-caffeoylquinic acid | + | + | 5.28 | 515 | 353, 335, 191, 179, 173, 161, 135 | [39] |
52 | quercetin-O-coumaroyldihexosyl-coumaroylhexosyl-deoxyhexosyl-hexoside isomer | + | + | 5.45 | 1387 693 [M−2H]2− | 1241, 1175, 1079, 933, 771, 609, 301, 300, 211, 163, 145 | [23] |
53 | quercetin-O-coumaroyldihexosyl-coumaroylhexosyl-deoxyhexosyl-hexoside isomer | + | + | 5.63 | 1387 693 [M−2H]2− | 1233, 1175, 1079, 933, 609, 463, 462, 301, 300, 299, 211, 163, 145 | [23] |
54 | 3,5-di-O-caffeoylquinic acid | + | + | 5.80 | 515 537 [M+Na−2H]− | 353, 191, 179, 173, 135 | [22,39] |
55 | hydroxypinoresinol-O-pentoside | + | + | 6.00 | 505 541 [M+Cl]− | 373, 161, 113 | [50,51] |
56 | quercetin-3-O-deoxyhexosyl-hexosyl-7-O-deoxyhexosyl-hexoside | + | + | 6.28 | 917 | 771, 609, 608, 463, 445, 301, 300, 299 | [21] |
57 | kaempferol-O-sinapoylhexosyl-feruloylpentosyl-dicaffeoyl-hexoside | + | + | 6.30 | 1447 723 [M−2H]2− | 1241, 1079, 771, 593, 285, 284, 283, 223, 205, 193, 179, 175, 161 | [23] |
58 | trihydroxy-dihydrochalcone-di-C-hexoside | + | + | 6.33 | 581 | 399, 381, 167, 152 | [34] |
59 | unknown | + | + | 6.40 | 501 | - | - |
60 | caffeoyl-tetrahydroxyhexanedioic acid-O-pentoside | + | + | 6.70 | 503 | 371, 209, 161, 113 | [45] |
61 | quercetin-O-coumaroyldihexosyl-feruloylpentosyl-deoxyhexosyl-hexoside isomer | + | + | 6.75 | 1387 693 [M−2H]2− | 1241, 1225, 933, 609, 301, 300, 299, 211, 193, 175, 163, 145 | [23] |
62 | unknown | + | + | 6.82 | 459 | 165 | - |
63 | quercetin-3-O-deoxyhexosyl-7-O-hexosyl-hexosyl-glucuronide | + | + | 7.01 | 947 | 771, 625, 463, 447, 301, 300, 299, 271, 255 | [21] |
64 | quercetin-O-di(feruloylhexosyl)-hexosyl-deoxyhexosyl-hexoside | + | + | 7.31 | 1447 723 [M−2H]2− | 1271, 789, 609, 301, 300, 299, 193, 175 | [23] |
65 | 4,5-di-O-caffeoylquinic acid | + | + | 7.33 | 515 | 353, 191, 179, 173, 135 | [22,39] |
66 | dihydroxy-methoxyflavanone-O-hexoside | + | + | 7.45 | 447 | 285, 270, 145 | [30,31] |
67 | quercetin-O-sinapoyldihexosyl-feruloyldeoxyhexosyl-deoxyhexosyl-hexoside formiate adduct | + | + | 7.52 | 1507 753 [M−2H]2− | 1255, 931, 609, 301, 300, 299, 205, 175 | [23] |
68 | kaempferol-O-coumaroylhexosyl-feruloylhexosyl-pentosyl-deoxyhexosyl-hexoside isomer | + | + | 7.57 | 1371 685 [M−2H]2− | 1225, 1093, 931, 593, 285, 284, 227, 193, 175, 145 | [23,24] |
69 | kaempferol-O-caffeoylhexosyl-caffeoyldihexosyl-deoxyhexosyl-hexoside | + | + | 7.59 | 1403 701 [M−2H]2− | 917, 593, 285, 241, 227, 179 | [23] |
70 | quercetin-O-coumaroyldihexosyl-feruloylpentosyl-deoxyhexosyl-hexoside isomer | + | + | 7.63 | 1387 693 [M−2H]2− | 1241, 1225, 1173, 933, 917, 609, 301, 300, 193, 175, 163, 145 | [23] |
71 | quercetin-3-O-acetylhexoside | + | 7.85 | 505 | 301, 300, 151 | [21] | |
72 | quercetin-3-O-dihydrophaseoyl-deoxyhexosyl-feruloylhexosyl-7-O-deoxyhexoside | + | + | 8.05 | 1195 | 1049, 931, 785, 609, 301, 300, 299, 175 | [23] |
73 | trihydroxy-dihydrochalcone-di-C-pentoside | + | + | 8.20 | 521 | 399, 327, 267, 207, 153, 152, 109 | [34] |
74 | kaempferol-O-coumaroylhexosyl-feruloylhexosyl-pentosyl-deoxyhexosyl-hexoside isomer | + | + | 8.33 | 1371 685 [M−2H]2− | 1225, 1093, 593, 285, 284, 175, 163, 145 | [23,24] |
75 | acylated quercetin-O-oligoglycoside | + | + | 8.35 | 1879 939 [M−2H]2− | 609, 300 | - |
76 | trihydroxy-dihydrochalcone-C-glycoside derivative | + | + | 8.42 | 501 | 399, 327, 267, 207, 163, 152 | [34] |
77 | epipinoresinol/pinoresinol-O-hexoside | + | + | 8.50 | 519 | 357, 343, 341, 161 | [50,51] |
78 | trihydroxy-dihydrochalcone-C-glycoside derivative | + | + | 8.75 | 501 | 437, 417, 399, 152 | [34] |
79 | quercetin-O-feruloylhexosyl-coumaroylpentosyl-acetylhexosyl-deoxyhexosyl-hexoside | + | + | 8.87 | 1429 714 [M−2H]2− | 1091, 959, 813, 651, 609, 608, 301, 300, 299, 211, 193, 175, 163, 159, 145 | [23,24] |
80 | tetrahydroxy-dihydrochalcone-di-C-pentoside isomer | + | + | 8.97 | 537 | 417, 399, 267, 152, 137, 108 | [34,35] |
81 | kaempferol-3-O-deoxyhexoside | - | + | 9.00 | 431 | 285, 255 | [21,25,26] |
82 | quercetin-O-di(coumaroylhexosyl)-acetylhexosyl-deoxyhexosyl-hexoside | + | + | 9.00 | 1429 714 [M−2H]2− | 1267, 1217, 651, 609, 463, 301, 300, 299, 211, 163, 145 | [23,24] |
83 | acylated flavonoid-O-oligoglycoside | + | + | 9.43 | 1919 959 [M−2H]2− | - | - |
84 | kaempferol-O-di(coumaroylhexosyl)-acetylhexosyl-deoxyhexosyl-hexoside | + | + | 9.50 | 1413 706 [M−2H]2− | 593, 285, 284, 229, 211, 163, 145 | [23] |
85 | quercetin-O-coumaroyldihexosyl-feruloylpentosyl-deoxyhexosyl-hexoside isomer | + | + | 9.55 | 1387 693 [M−2H]2− | 609, 301, 300, 211, 193, 175, 163, 145 | [23] |
86 | quercetin-O-(coumaroyl-caffeoyl)-deoxyhexosyl-hexosyl-acetylhexosyl-glucuronyl-pentoside isomer | + | + | 9.70 | 1429 714 [M−2H]2− | 1283, 959, 651, 609, 608, 433, 301, 300, 299, 211, 179, 145 | [23] |
87 | kaempferol-O-di(coumaroylhexosyl)-acetylhexosyl-deoxyhexosyl-hexoside isomer | + | + | 9.75 | 1413 706 [M−2H]2− | 635, 593, 285, 284, 283, 229, 211, 163, 145 | [23] |
88 | kaempferol-3-O-dihydrophaseoyl-hexosyl-diferuloylhexosyl-7-O-deoxyhexoside | + | + | 9.85 | 1371 685 [M−2H]2− | 1195, 593, 285, 284, 283 | [23] |
89 | quercetin-O-(coumaroyl-caffeoyl)-deoxyhexosyl-hexosyl-acetylhexosyl-glucuronyl-pentoside isomer | + | + | 10.13 | 1429 714 [M−2H]2− | 1267, 1225, 1093, 975, 651, 609, 608, 433, 301, 300, 299, 211, 179, 145 | [23] |
90 | kaempferol-O-di(coumaroylhexosyl)-acetylhexosyl-deoxyhexosyl-hexoside isomer | + | + | 10.31 | 1413 706 [M−2H]2− | 1267, 635, 593, 285, 284, 283, 211, 163, 145 | [23] |
91 | quercetin-3-O-dihydrophaseoyl-deoxyhexosyl-diferuloylhexosyl-7-O-deoxyhexoside | + | + | 10.50 | 1371 685 [M−2H]2− | 1195, 1107, 609, 301, 300, 299, 195, 193, 175, 145 | [23] |
92 | quercetin-O-di(coumaroylhexosyl)-acetylhexosyl-deoxyhexosyl-hexoside isomer | + | + | 10.66 | 1429 714 [M−2H]2− | 1267, 1121, 651, 609, 608, 301, 300, 299, 211, 145 | [23] |
93 | quercetin-coumaroylpentosyl-(feruloyl-caffeoyl)-deoxyhexosyl-deoxyhexosyl-hexoside | + | + | 11.20 | 1371 685 [M−2H]2− | 1225, 1093, 609, 301, 300, 195, 193, 179, 175, 145 | [23] |
Flavonol-O-glycosides | |||||
No. a | Tentative Characterization | tR (min) a | [M−H]− (m/z) | Fragment Ions (m/z) | Ref. |
17 | quercetin-3-O-hexosyl-7-O-deoxyhexoside isomer | 2.08 | 609 | 463 [M−H−146]−, 447 [M−H−162]−, 446 [M−H−•163]−•, 301 [M−H−146−162]− = Y0−, 300 [M−H−146−•163]−• = [Y0−H]−•, 299 [M−H−•147−•163]− = [Y0−2H]− | [21,26] |
27 | quercetin-3-O-hexosyl-7-O-deoxyhexoside isomer | 2.96 | 609 | 463 [M−H−146]−, 301 [M−H−146−162]− = Y0−, 300 [M−H−146−•163]−• = [Y0−H]−•, 299 [M−H−•147−•163]− = [Y0−2H]− | [21,26] |
29 | quercetin-3-O-deoxyhexosyl-7-O-deoxyhexoside | 3.22 | 593 | 447 [M−H−146]−, 446 [M−H−•147] −•, 301 [M−H−146−146]− = Y0−, 300 [M−H−146−•147]−• = [Y0−H]−•, 299 [M−H−•147−•147]− = [Y0−2H]− | [28] |
31 | isorhamnetin-O-hexosyl-deoxyhexoside | 3.45 | 623 | 477 [M−H−146]−, 461 [M−H−162]−, 315 [M−H−146−162]− = Y0− | [21,22] |
35 | quercetin-3-O-deoxyhexosyl-hexoside | 3.75 | 609 | 301 [M−H−146−162]− = Y0−, 300 [M−H−•147−162]−• or [M−H−146−•163]−• = [Y0−H]− | [21,26] |
36 | kaempferol-3-O-pentosyl-7-O-glucuronide | 3.99 | 593 | 461 [M−H−132]−, 460 [M−H−•133]−•, 284 [M−H−•133−176]−• = [Y0−H]−•, 283 [M−H−•133−•177]− = [Y0−2H]−, 257 [Y0−CO]− | [23] |
37 | quercetin-3-O-hexoside isomer | 4.11 | 463 | 300 [M−H−•163]−• = [Y0−H]−•, 271 [Y0−H−CO−H]− | [22,26] |
41 | quercetin-3-O-hexosyl-7-O-hexosyl-hexosyl-deoxyhexoside isomer | 4.28 | 933 | 609 [M−H−162−162]−, 463 [M−H−162−162−146]−, 301 [M−H−162−162−146−162]− = Y0−, 300 [Y0−H]−•, 299 [Y0−2H]−, 271 [Y0−H−CO−H]− | [21] |
42 | quercetin-3-O-hexoside isomer | 4.36 | 463 | 300 [M−H−•163]−• = [Y0−H]−•, 271 [Y0−H−CO−H]− | [22,26] |
44 | kaempferol-3-O-deoxyhexosyl-7-O-deoxyhexoside | 4.75 | 577 | 431 [M−H−146]−, 430 [M−H−•147]−•, 285 [M−H−146−146]− = Y0−, 284 [M−H−146−•147]−• = [Y0−H]−•, 283 [M−H−•147−•147]− = [Y0−2H]− | [25] |
56 | quercetin-3-O-deoxyhexosyl-hexosyl-7-O-deoxyhexosyl-hexoside | 6.28 | 917 | 771 [M−H−146]−, 609 [M−H−146−162]−, 608 [M−H−146−•163]−•, 463 [M−H−146−162−146]−, 301 [M−H−146−162−146−162]− = Y0−, 300 [M−H−146−162−146−•163]−• = [Y0−H]−•, 299 [Y0−2H]− | [21] |
63 | quercetin-3-O-deoxyhexosyl-7-O-hexosyl-hexosyl-glucuronide | 7.01 | 947 | 771 [M−H−176]−, 625 [M−H−176−146]−, 463 [M−H−176−146−162]−, 447 [M−H−176−162−162]−, 301 [M−H−176−162−162−146]− = Y0−, 300 [Y0−H]−•, 299 [Y0−2H]−, 271 [Y0−H−CO−H]−, 255 [Y0−H−CO2−H]− | [21] |
71 | quercetin-3-O-acetylhexoside | 7.85 | 505 | 301 [M−H−42−162]− = Y0−, 300 [M−H−42−•163]−• = [Y0−H]−• | [21] |
81 | kaempferol-3-O-deoxyhexoside | 9.00 | 431 | 285 [M−H−146]− = Y0−, 255 [Y0−H−CO−H]− | [21,26,27] |
Flavonol-O-coumaroyl- and -caffeoyl-glycosides | |||||
No. a | Tentative Characterization | tR (min) a | [M−H]− (m/z) | Fragment ions (m/z) | Ref. |
50 | quercetin-O-coumaroylhexosyl-caffeoyldihexosyl-deoxyhexosyl-hexoside | 5.28 | 1403 701 [M−2H]2− | 917 [M−H−162−162−162]−, 609 [M−H−162−162−162−146−162]−, 301 [M−H−162−162−162−146−162−146−162]− = Y0−, 300 [Y0−H]−•, 161 [caffeoyl−H]−, 145 [coumaroyl−H]− | [23] |
52 | quercetin-O-coumaroyldihexosyl-coumaroylhexosyl-deoxyhexosyl-hexoside isomer | 5.45 | 1387 693 [M−2H]2− | 1241 [M−H−146]−, 1079 [M−H−146−162]−, 933 [M−H−146−162−146]−, 771 [M−H−146−162−146−162]−, 609 [M−H−146−162−146−162−162]−, 301 [M−H−146−162−146−162−162−146−162]− = Y0−, 300 [Y0−H] •, 163 [coumaric acid−H]−, 145 [coumaroyl−H]− | [23] |
53 | quercetin-O-coumaroyldihexosyl-coumaroylhexosyl-deoxyhexosyl-hexoside isomer | 5.63 | 1387 693 [M−2H]2− | 1079 [M−H−146−162]−, 933 [M−H−146−162−146]−, 609 [M−H−146−162−146−162−162]−, 463 [M−H−146−162−146−162−162−146]−, 462 [M−H−146−162−146−162−162−•147]−•, 301 [M−H−146−162−146−162−162−146−162]− = Y0−, 300 [Y0−H]−•, 299 [Y0−2H]−, 163 [coumaric acid−H]−, 145 [coumaroyl−H]− | [23] |
69 | kaempferol-O-caffeoylhexosyl-caffeoyldihexosyl-deoxyhexosyl-hexoside | 7.59 | 1403 701 [M−2H]2− | 917 [M−H−162−162−162]−, 593 [M−H−162−162−162−162−162]−, 285 [M−H−162−162−162−162−162−162−146]− = Y0−, 241 [Y0−H−CO2]−, 227 [Y0−H−2CO−H]−, 179 [caffeic acid−H]− | [23] |
82 | quercetin-O-di(coumaroylhexosyl)-acetylhexosyl-deoxyhexosyl-hexoside isomer | 9.00 | 1429 714 [M−2H]2− | 1267 [M−H−162]−, 1217, 651 [M−H−162−146−146−162−162]−, 609 [M−H−162−146−146−162−162−42]−, 463 [M−H−162−146−146−162−162−42−146]−, 301 [M−H−162−146−146−162−162−42−146−162]− = Y0−, 300 [Y0−H]−•, 299 [Y0−2H]−, 163 [coumaric acid−H]−, 145 [coumaroyl−H]− | [23,24] |
84 | kaempferol-O-di(coumaroylhexosyl)-acetylhexosyl-deoxyhexosyl-hexoside isomer | 9.50 | 1413 706 [M−2H]2− | 593 [M−H−162−146−146−162−162−42]−, 285 [M−H−162−146−146−162−162−42−162−146]− = Y0−, 284 [Y0−H]−•, 163 [coumaric acid−H]−, 145 [coumaroyl−H]− | [23] |
86 | quercetin-O-(coumaroyl-caffeoyl)-deoxyhexosyl-hexosyl-acetylhexosyl-glucuronyl-pentoside isomer | 9.70 | 1429 714 [M−2H]2− | 1283 [M−H−146]−, 959 [M−H−146−162−162]−, 651 [M−H−146−162−162−146−162]−, 609 [M−H−146−162−162−146−162−42]−, 608 [M−H−146−162−162−146−•163−42]−•, 433 [M−H−146−162−162−146−162−42−176]−, 301 [M−H−146−162−162−146−162−42−176−132]− = Y0−, 300 [Y0−H]−•, 299 [Y0−2H]−, 179 [caffeic acid−H]−, 145 [coumaroyl−H]− | [23] |
87 | kaempferol-O-di(coumaroylhexosyl)-acetylhexosyl-deoxyhexosyl-hexoside isomer | 9.75 | 1413 706 [M−2H]2− | 635 [M−H−162−146−146−162−162]−, 593 [M−H−162−146−146−162−162−42]−, 285 [M−H−162−146−146−162−162−42−162−146]− = Y0−, 284 [Y0−H]−•, 283 [Y0−2H]−, 163 [coumaric acid−H]−, 145 [coumaroyl−H]− | [23] |
89 | quercetin-O-(coumaroyl-caffeoyl)-deoxyhexosyl-hexosyl-acetylhexosyl-glucuronyl-pentoside isomer | 10.13 | 1429 714 [M−2H]2− | 1267 [M−H−162]−, 1225 [M−H−162−42]−, 1093 [M−H−162−42−132]−, 975 [M−H−162−146−146]−, 651 [M−H−162−146−146−162−162]−, 609 [M−H−162−146−146−162−162−42]− or [M−H−162−42−132−176−162−146]−, 433 [M−H−162−146−146−162−162−42−176]−, 301 [M−H−162−146−146−162−162−42−176−132]− = Y0−, 300 [Y0−H]−•, 299 [Y0−2H]−, 179 [caffeic acid−H]−, 145 [coumaroyl−H]− | [23] |
90 | kaempferol-O-di(coumaroylhexosyl)-acetylhexosyl-deoxyhexosyl-hexoside isomer | 10.31 | 1413 706 [M−2H]2− | 1267 [M−H−146]−, 635 [M−H−146−146−162−162−162]−, 593 [M−H−146−146−162−162−162−42]−, 285 [M−H−146−146−162−162−162−42−162−146]− = Y0−, 284 [Y0−H]−•, 283 [Y0−2H]−, 163 [coumaric acid−H]−, 145 [coumaroyl−H]− | [23] |
92 | quercetin-O-di(coumaroylhexosyl)-acetylhexosyl-deoxyhexosyl-hexoside isomer | 10.66 | 1429 714 [M−2H]2− | 1267 [M−H−162]−, 1121 [M−H−162−146]−, 651 [M−H−162−146−162−162−146]−, 609 [M−H−162−146−162−162−146−42]−, 608 [M−H−162−146−162−•163−146−42]−•, 301 [M−H−162−146−162−162−146−42−162−146]− = Y0−, 300 [Y0−H]−•, 299 [Y0−2H]−, 145 [coumaroyl−H]− | [23] |
Flavonol-O-coumaroyl- and -feruloyl-glycosides | |||||
No. a | Tentative Characterization | tR (min) a | [M−H]− (m/z) | Fragment ions (m/z) | Ref. |
61 | quercetin-O-coumaroyldihexosyl-feruloylpentosyl-deoxyhexosyl-hexoside isomer | 6.75 | 1387 693 [M−2H]2− | 1241 [M−H−146]−, 1225 [M−H−162]−, 933 [M−H−146−162−146]−, 609 [M−H−146−162−146−162−162]−, 301 [M−H−146−162−146−162−162−146−162]− = Y0−, 300 [Y0−H]−•, 299 [Y0−2H]−, 193 [ferulic acid−H]−, 175 [feruloyl−H]−, 163 [coumaric acid−H]−, 145 [coumaroyl−H]− | [23] |
64 | quercetin-O-di(feruloylhexosyl)-hexosyl-deoxyhexosyl-hexoside | 7.31 | 1447 723 [M−2H]2− | 1271 [M−H−176]−, 609 [M−H−176−162−162−162−176]−, 301 [M−H−176−162−162−162−176−146−162]− = Y0−, 300 [Y0−H]−•, 299 [Y0−2H]−, 193 [ferulic acid−H]−, 175 [feruloyl−H]− | [23] |
68 | kaempferol-O-coumaroylhexosyl-feruloylhexosyl-pentosyl-deoxyhexosyl-hexoside isomer | 7.57 | 1371 685 [M−2H]2− | 1225 [M−H−146]−, 1093 [M−H−146−132]−, 931 [M−H−146−132−162]−, 593 [M−H−146−132−162−338]−, 285 [M−H−146−132−162−338−162−146]− = Y0−, 284 [Y0−H]−•, 227 [Y0−H−2CO−H]−, 193 [ferulic acid−H]−, 175 [feruloyl−H]−, 145 [coumaroyl−H]− | [23,24] |
70 | quercetin-O-coumaroyldihexosyl-feruloylpentosyl-deoxyhexosyl-hexoside isomer | 7.63 | 1387 693 [M−2H]2− | 1241 [M−H−146]−, 1225 [M−H−162]−, 933 [M−H−162−146−146]− or [M−H−146−176−132]−, 917 [M−H−162−162−146]− or [M−H−162−176−132]−, 609 [M−H−162−162−146−176−132]−, 301 [M−H−162−162−146−176−132−162−146]− = Y0−, 300 [Y0−H]−•, 193 [ferulic acid−H]−, 175 [feruloyl−H]−, 163 [coumaric acid−H]−, 145 [coumaroyl−H]− | [23] |
74 | kaempferol-O-coumaroylhexosyl-feruloylhexosyl-pentosyl-deoxyhexosyl-hexoside isomer | 8.33 | 1371 685 [M−2H]2− | 1225 [M−H−146]−, 1093 [M−H−146−132]−, 593 [M−H−146−132−162−162−176]−, 285 [M−H−146−132−162−162−176−162−146]− = Y0−, 284 [Y0−H]−•, 175 [feruloyl−H]−, 163 [coumaric acid−H]−, 145 [coumaroyl−H]− | [23,24] |
79 | quercetin-O-feruloylhexosyl-coumaroylpentosyl-acetylhexosyl-deoxyhexosyl-hexoside | 8.87 | 1429 714 [M−2H]2− | 1091 [M−H−338]−, 959 [M−H−338−132]−, 813 [M−H−338−132−146]−, 651 [M−H−338−132−146−162]−, 609 [M−H−338−132−146−162−42]−, 301 [M−H−338−132−146−162−42−162−146]− = Y0−, 300 [Y0−H]−•, 299 [Y0−2H]−, 193 [ferulic acid−H]−, 175 [feruloyl−H]−, 163 [coumaric acid−H]−, 145 [coumaroyl−H]− | [23,24] |
85 | quercetin-O-coumaroyldihexosyl-feruloylpentosyl-deoxyhexosyl-hexoside isomer | 9.55 | 1387 693 [M−2H]2− | 609 [M−H−162−162−146−176−132]−, 301 [M−H−162−162−146−176−132−162−146]− = Y0−, 300 [Y0−H]−•, 193 [ferulic acid−H]−, 175 [feruloyl−H]−, 163 [coumaric acid−H]−, 145 [coumaroyl−H]− | [23] |
93 | quercetin-coumaroylpentosyl-(feruloyl-caffeoyl)-deoxyhexosyl-deoxyhexosyl-hexoside | 11.20 | 1371 685 [M−2H]2− | 1225 [M−H−146]−, 1093 [M−H−146−132]−, 609 [M−H−146−132−162−176−146]−, 301 [M−H−146−132−162−176−146−162−146]− = Y0−, 300 [Y0−H]−•, 193 [ferulic acid−H], 179 [caffeic acid−H]−, 175 [feruloyl−H]−, 145 [coumaroyl−H]− | [23] |
Flavonol-O-feruloyl-sinapoyl-glycosides | |||||
No. a | Tentative Characterization | tR (min) a | [M−H]− (m/z) | Fragment ions (m/z) | Ref. |
57 | kaempferol-O-sinapoylhexosyl-feruloylpentosyl-dicaffeoyl-hexoside | 6.30 | 1447 723 [M−2H]2− | 1241 [M−H−206]−, 1079 [M−H−206−162]−, 771 [M−H−206−162−176−132]−, 593 [M−H−206−162−162−162−162]−, 285 [M−H−206−162−176−132−162−162−162]− = Y0−, 284 [Y0−H]−•, 283 [Y0−2H]−, 223 [sinapic acid−H]−, 205 [sinapoyl−H]−, 193 [ferulic acid−H]−, 179 [caffeic acid−H]−, 175 [feruloyl−H]−, 161 [caffeoyl−H]− | [23] |
67 | quercetin-O-sinapoyldihexosyl-feruloyldeoxyhexosyl-deoxyhexosyl-hexoside formiate adduct | 7.52 | 1507 753 [M−2H]2− | 1255 [M−H−46−206]−, 931 [M−H−46−206−162−162]−, 609 [M−H−46−206−162−162−176−146]−, 301 [M−H−46−206−162−162−176−146−162−146]− = Y0−, 300 [Y0−H]−•, 299 [Y0−2H]−, 205 [sinapoyl−H]−, 175 [feruloyl−H]− | [23] |
Flavonol-O-feruloyl-dihydrophaseoyl-glycosides | |||||
No. a | Tentative Characterization | tR (min) a | [M−H]− (m/z) | Fragment ions (m/z) | Ref. |
72 | quercetin-3-O-dihydrophaseoyl-deoxyhexosyl-feruloylhexosyl-7-O-deoxyhexoside | 8.05 | 1195 | 1049 [M−H−146]−, 931 [M−H−264]−, 785 [M−H−146−264]−, 609 [M−H−146−264−176]−, 301 [M−H−146−264−176−162−146]− = Y0−, 300 [Y0−H]−•, 299 [Y0−2H]−, 175 [feruloyl−H]− | [23] |
88 | kaempferol-3-O-dihydrophaseoyl-hexosyl-diferuloylhexosyl-7-O-deoxyhexoside | 9.85 | 1371 685 [M−2H]2− | 1195 [M−H−176]−, 593 [M−H−176−176−162−264]−, 285 [M−H−176−176−162−264−162−146]− = Y0−, 284 [Y0−H]−•, 283 [Y0−2H]−, | [23] |
91 | quercetin-3-O-dihydrophaseoyl-deoxyhexosyl-diferuloylhexosyl-7-O-deoxyhexoside | 10.50 | 1371 685 [M−2H]2− | 1195 [M−H−176]−, 1107 [M−H−264]−, 609 [M−H−176−586]− = [M−H−176−146−264−176]−, 301 [M−H−176−146−264−176−162−146]− = Y0−, 300 [Y0−H]−•, 299 [Y0−2H]−, 193 [ferulic acid−H]−, 175 [feruloyl−H]−, 145 [coumaroyl−H]− | [23] |
2.2. Determination of Minimum Inhibitory Concentration (MIC80)
2.3. Total Antioxidant Capacity (TAC) Assays
2.4. Inhibition of Intracellular ROS Production
2.5. Cytotoxicity Test
2.6. In Vitro Migration Test
3. Discussion
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Studied Plant Taxa and Plant Extraction
4.3. Analyses of Phenolic Compounds by Ultrahigh-Performance Liquid Chromatography (UHPLC) Coupled to Diode-Array Detector (DAD) and Mass Spectrometry (MS)
4.3.1. UHPLC Conditions
4.3.2. MS Conditions
4.4. Determination of Minimum Inhibitory Concentration (MIC80) with Microdilution Method
4.5. Total Antioxidant Capacity (TAC) Assays
4.5.1. Oxygen Radical Absorbance Capacity (ORAC) Assay
4.5.2. Enhanced Chemiluminescence (ECL) Assay
4.5.3. Radical Scavenging Assay for 2,2-Diphenyl-1-picrylhydrazyl (DPPH)
4.5.4. Trolox Equivalent Antioxidant Capacity Assay (TEAC)
4.5.5. Calculation of Total Antioxidant Capacities (TAC)
4.6. Cell Cultures
4.7. Quantification of Intracellular ROS
4.8. Cytotoxicity Test
4.9. In Vitro ‘Wound Healing’ Assay
4.10. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Llorent-Martínez, E.J.; Ortega-Barrales, P.; Zengin, G.; Uysal, S.; Ceylan, R.; Guler, G.O.; Mocan, A.; Aktumsek, A. Lathyrus aureus and Lathyrus pratensis: Characterization of phytochemical profiles by liquid chromatography-mass spectrometry, and evaluation of their enzyme inhibitory and antioxidant activities. RSC Adv. 2016, 6, 88996–89006. [Google Scholar] [CrossRef]
- Rates, S.M. Plants as source of drugs. Toxicon. Off. J. Int. Soc. Toxinology 2001, 39, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Csepregi, R.; Temesfoi, V.; Das, S.; Alberti, A.; Toth, C.A.; Herczeg, R.; Papp, N.; Koszegi, T. Cytotoxic, antimicrobial, antioxidant properties and effects on cell migration of phenolic compounds of selected Transylvanian medicinal plants. Antioxidants 2020, 9, 166. [Google Scholar] [CrossRef]
- Zengin, G.; Sarikurkcu, C.; Aktumsek, A.; Ceylan, R.; Ceylan, O. A comprehensive study on phytochemical characterization of Haplophyllum myrtifolium Boiss. endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases and type II diabetes. Ind. Crops Prod. 2014, 53, 244–251. [Google Scholar] [CrossRef]
- Kondorosy, F. Medicinal plants in Mărtiniș; Ethnopharmacobotanical Overview; University of Pécs: Pécs, Hungary, 2016. [Google Scholar]
- Papp, N. „A Virágok … Mindegyik Orvosság”—Hagyományok és Népi Orvoslás Lövétén; Lövétei Közbirtokossága és Polgármestei Hivatal: Lueta Romania, 2018. [Google Scholar]
- Juhász, S. Ethnomedicinal Data of Călugăreni; Phytochemical and Antimicrobial Study of Lathyrus tuberosus L. Master’s Thesis, University of Pécs, Pécs, Hungary, 2023. [Google Scholar]
- Király, G. Új Magyar Füvészkönyv; Aggteleki Nemzeti Park Igazgatóság: Jósvafő, Hungary, 2009. [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea. Madroño A West Am. J. Bot. 1969, 20, 237. [Google Scholar] [CrossRef]
- Borza, A. Dictionar Etnobotanic; Editura Academiei Republicii Socialiste: Bucharest, Romania, 1968. [Google Scholar]
- Péntek, J.; Szabó, T.A. Ember és Növényvilág. Kalotaszeg Növényzete és Népi Növényismerete; Kriterion: Bucharest, Romania, 1985. [Google Scholar]
- Grynaeus, T.; Szabó, L.G. A Bukovinai Hadikfalvi Székelyek Gyógynövényei; Gyógyszerészet: Budapest, Hungary, 2002; Volume 46. [Google Scholar]
- Halász, P. Növények a Moldvai Magyarok Hagyományában és Mindennapjaiban; General Press: Budapest, Hungary, 2010. [Google Scholar]
- Dal Cero, M.; Saller, R.; Weckerle, C.S. The use of the local flora in Switzerland: A comparison of past and recent medicinal plant knowledge. J. Ethnopharmacol. 2014, 151, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Butura, V. Enciclopedie de Etnobotanică Românească; Editura Ştiinţifică şi Enciclopedică: Bucharest, Romania, 1979. [Google Scholar]
- Gub, J. Adatok a Nagy-Homoród és a Nagy-Küküllő Közötti Terület Népi Növényismeretéhez. Néprajzi Látóhatár 1993, 1–2, 95–110. [Google Scholar]
- Saric-Kundalic, B.; Dobes, C.; Klatte-Asselmeyer, V.; Saukel, J. Ethnobotanical study on medicinal use of wild and cultivated plants in middle, south and west Bosnia and Herzegovina. J. Ethnopharmacol. 2010, 131, 33–55. [Google Scholar] [CrossRef]
- Mustafa, B.; Hajdari, A.; Pulaj, B.; Quave, C.L.; Pieroni, A. Medical and food ethnobotany among Albanians and Serbs living in the Shtërpcë/Štrpce area, South Kosovo. J. Herb. Med. 2020, 22, 100344. [Google Scholar] [CrossRef]
- Altundag, E.; Ozturk, M. Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Soc. Behav. Sci. 2011, 19, 756–777. [Google Scholar] [CrossRef]
- Ranabahu, P.; Harborne, J.B. The flavonoids of the genus Lathyrus and a comparison of flavonoid patterns within the tribe vicieae. Biochem. Syst. Ecol. 1993, 21, 715–722. [Google Scholar] [CrossRef]
- Llorent-Martinez, E.J.; Ortega-Barrales, P.; Zengin, G.; Mocan, A.; Simirgiotis, M.J.; Ceylan, R.; Uysal, S.; Aktumsek, A. Evaluation of antioxidant potential, enzyme inhibition activity and phenolic profile of Lathyrus cicera and Lathyrus digitatus: Potential sources of bioactive compounds for the food industry. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2017, 107, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Llorent-Martinez, E.J.; Zengin, G.; Fernandez-de Cordova, M.L.; Bender, O.; Atalay, A.; Ceylan, R.; Mollica, A.; Mocan, A.; Uysal, S.; Guler, G.O.; et al. Traditionally used Lathyrus Species: Phytochemical composition, antioxidant activity, enzyme inhibitory properties, cytotoxic effects, and in silico studies of L. czeczottianus and L. nissolia. Front. Pharmacol. 2017, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Magalhaes, S.C.Q.; Gil-Izquierdo, A.; Valentao, P.; Cabrita, A.R.J.; Fonseca, A.J.M.; Andrade, P.B. HPLC-DAD-ESI/MS(n) profiling of phenolic compounds from Lathyrus cicera L. seeds. Food Chem. 2017, 214, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Cuyckens, F.; Claeys, M. Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom. JMS 2004, 39, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Alberti, A.; Riethmuller, E.; Beni, S.; Kery, A. Evaluation of radical scavenging activity of Sempervivum tectorum and Corylus avellana extracts with different phenolic composition. Nat. Prod. Commun. 2016, 11, 469–474. [Google Scholar]
- Felegyi-Toth, C.A.; Garadi, Z.; Darcsi, A.; Csernak, O.; Boldizsar, I.; Beni, S.; Alberti, A. Isolation and quantification of diarylheptanoids from European hornbeam (Carpinus betulus L.) and HPLC-ESI-MS/MS characterization of its antioxidative phenolics. J. Pharm. Biomed. Anal. 2022, 210, 114554. [Google Scholar] [CrossRef]
- Riethmuller, E.; Toth, G.; Alberti, A.; Sonati, M.; Kery, A. Antioxidant activity and phenolic composition of Corylus colurna. Nat. Prod. Commun. 2014, 9, 679–682. [Google Scholar]
- Lachowicz-Wisniewska, S.; Kapusta, I.; Stinco, C.M.; Melendez-Martinez, A.J.; Bieniek, A.; Ochmian, I.; Gil, Z. Distribution of polyphenolic and isoprenoid compounds and biological activity differences between in the fruit skin + pulp, seeds, and leaves of new biotypes of Elaeagnus multiflora Thunb. Antioxidants 2021, 10, 849. [Google Scholar] [CrossRef]
- Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MS(n). Food Chem. 2016, 211, 215–226. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; He, Y.Q.; Wang, C.H.; Welbeck, E.W.; Bligh, S.W.; Wang, Z.T. Characterization of fifty-one flavonoids in a Chinese herbal prescription Longdan Xiegan Decoction by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry and photodiode array detection. Rapid Commun. Mass Spectrom. RCM 2008, 22, 1767–1778. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Saleri, F.; Guo, M. Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules 2016, 21, 1275. [Google Scholar] [CrossRef] [PubMed]
- Kachlicki, P.; Piasecka, A.; Stobiecki, M.; Marczak, L. Structural characterization of flavonoid glycoconjugates and their derivatives with mass spectrometric techniques. Molecules 2016, 21, 1494. [Google Scholar] [CrossRef]
- Al-Yousef, H.M.; Hassan, W.H.B.; Abdelaziz, S.; Amina, M.; Adel, R.; El-Sayed, M.A. UPLC-ESI-MS/MS profile and antioxidant, cytotoxic, antidiabetic, and antiobesity activities of the aqueous extracts of three different Hibiscus species. J. Chem. 2020, 2020, 17. [Google Scholar] [CrossRef]
- Beelders, T.; de Beer, D.; Stander, M.A.; Joubert, E. Comprehensive phenolic profiling of Cyclopia genistoides (L.) Vent. by LC-DAD-MS and -MS/MS reveals novel xanthone and benzophenone constituents. Molecules 2014, 19, 11760–11790. [Google Scholar] [CrossRef] [PubMed]
- Kazuno, S.; Yanagida, M.; Shindo, N.; Murayama, K. Mass spectrometric identification and quantification of glycosyl flavonoids, including dihydrochalcones with neutral loss scan mode. Anal. Biochem. 2005, 347, 182–192. [Google Scholar] [CrossRef]
- Li, S.; Lin, Z.; Jiang, H.; Tong, L.; Wang, H.; Chen, S. Rapid identification and assignation of the active ingredients in Fufang Banbianlian injection using HPLC-DAD-ESI-IT-TOF-MS. J. Chromatogr. Sci. 2016, 54, 1225–1237. [Google Scholar] [CrossRef]
- Huang, R.T.; Lu, Y.; Stephen Inbaraj, B.; Chen, B.H. Determination of phenolic acids and flavonoids in Rhinacanthus nasutus (L.) kurz by high-performance-liquid-chromatography with photodiode-array detection and tandem mass spectrometry. J. Funct. Foods 2015, 12, 498–508. [Google Scholar] [CrossRef]
- Emam, M.; Abdel-Haleem, D.R.; Salem, M.M.; Abdel-Hafez, L.J.M.; Latif, R.R.A.; Farag, S.M.; Sobeh, M.; El Raey, M.A. Phytochemical profiling of Lavandula coronopifolia Poir. aerial parts extract and its larvicidal, antibacterial, and antibiofilm activity against Pseudomonas Aeruginosa. Molecules 2021, 26, 1710. [Google Scholar] [CrossRef]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Spínola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crops Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
- Shakya, R.; Navarre, D.A. Rapid screening of ascorbic acid, glycoalkaloids, and phenolics in potato using high-performance liquid chromatography. J. Agric. Food Chem. 2006, 54, 5253–5260. [Google Scholar] [CrossRef] [PubMed]
- Gampe, N.; Ladocsi, L.; Fejos, I.; Boldizsar, I.; Darcsi, A.; Beni, S. Enantioseparation and quantitative determination of two homologous beta amino acids found in Fabaceae plants. J. Chromatogr. A 2022, 1675, 463089. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Liu, F.; Chen, P.; Jez, J.M.; Krishnan, H.B. beta-N-Oxalyl-l-alpha,beta-diaminopropionic Acid (beta-ODAP) Content in Lathyrus sativus: The integration of nitrogen and sulfur metabolism through beta-cyanoalanine synthase. Int. J. Mol. Sci. 2017, 18, 526. [Google Scholar] [CrossRef] [PubMed]
- Ayanlowo, A.G.; Garadi, Z.; Boldizsar, I.; Darcsi, A.; Nedves, A.N.; Varjas, B.; Simon, A.; Alberti, A.; Riethmuller, E. UHPLC-DPPH method reveals antioxidant tyramine and octopamine derivatives in Celtis occidentalis. J. Pharm. Biomed. Anal. 2020, 191, 113612. [Google Scholar] [CrossRef] [PubMed]
- Martucci, M.E.; De Vos, R.C.; Carollo, C.A.; Gobbo-Neto, L. Metabolomics as a potential chemotaxonomical tool: Application in the genus Vernonia Schreb. PLoS ONE 2014, 9, e93149. [Google Scholar] [CrossRef] [PubMed]
- Bystrom, L.M.; Lewis, B.A.; Brown, D.L.; Rodriguez, E.; Obendorf, R.L. Characterization of phenolics by LC-UV/vis, LC-MS/MS and sugars by GC in Melicoccus bijugatus Jacq. ‘Montgomery’ fruits. Food Chem. 2008, 111, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Llorach, R.; Favari, C.; Alonso, D.; Garcia-Aloy, M.; Andres-Lacueva, C.; Urpi-Sarda, M. Comparative metabolite fingerprinting of legumes using LC-MS-based untargeted metabolomics. Food Res. Int. 2019, 126, 108666. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.C.; Liu, L.T.; Bian, J.J.; Yan, C.Q.; Ye, L.; Zhao, M.X.; Huang, Q.S.; Wang, W.; Liang, K.; Shi, Z.F.; et al. Identification of multiple constituents in shuganjieyu capsule and rat plasma after oral administration by ultra-performance liquid chromatography coupled with electrospray ionization and ion trap mass spectrometry. Acta Chromatogr. 2018, 30, 95–102. [Google Scholar] [CrossRef]
- El Gamal, A.A.; Takeya, K.; Itokawa, H.; Halim, A.F.; Amer, M.M.; Saad, H.-E.A. Lignan bis-glucosides from Galium sinaicum. Phytochemistry 1977, 45, 597–600. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Liu, R.; Liu, S.; Zhang, X.; Wang, Z.; Zhang, J.; Lu, J. HPLC-LTQ-Orbitrap MSn profiling method to comprehensively characterize multiple chemical constituents in Xiao-er-qing-jie granules. Anal. Methods 2015, 7, 7511–7526. [Google Scholar] [CrossRef]
- Solyomvary, A.; Alberti, A.; Darcsi, A.; Konye, R.; Toth, G.; Noszal, B.; Molnar-Perl, I.; Lorantfy, L.; Dobos, J.; Orfi, L.; et al. Optimized conversion of antiproliferative lignans pinoresinol and epipinoresinol: Their simultaneous isolation and identification by centrifugal partition chromatography and high performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1052, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Barreira, J.C.; Dias, M.I.; Zivkovic, J.; Stojkovic, D.; Sokovic, M.; Santos-Buelga, C.; Ferreira, I.C. Phenolic profiling of Veronica spp. grown in mountain, urban and sandy soil environments. Food Chem. 2014, 163, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Friscic, M.; Bucar, F.; Hazler Pilepic, K. LC-PDA-ESI-MS(n) analysis of phenolic and iridoid compounds from Globularia spp. J. Mass Spectrom. JMS 2016, 51, 1211–1236. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Pavelescu, L.A. On reactive oxygen species measurement in living systems. J. Med. Life 2015, 8, 38–42. [Google Scholar]
- Vang Mouritzen, M.; Jenssen, H. Optimized scratch assay for in vitro testing of cell migration with an automated optical camera. J. Vis. Exp. JoVE 2018, 138, 57691. [Google Scholar] [CrossRef]
- Scheitza, S.; Bonifas, J.; Blomeke, B. Variable NAT1 enzyme activity in long-term cultured human HaCaT keratinocytes. J. Toxicol. Environ. Health. Part A 2012, 75, 471–477. [Google Scholar] [CrossRef]
- Brooks, R.F.; Riddle, P.N. The 3T3 cell cycle at low proliferation rates. J. Cell Sci. 1988, 90, 601–612. [Google Scholar] [CrossRef]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995, 59, 201–222. [Google Scholar] [CrossRef]
- Heydari, H.; Saltan Iscan, G.; Eryilmaz, M.; Bahadir Acikara, O.; Yilmaz Sarialtin, S.; Tekin, M.; Coban, T. Antimicrobial and anti-inflammatory activity of Ssme Lathyrus, L. (Fabaceae) species growing in Turkey. Turk. J. Pharm. Sci. 2019, 16, 240–245. [Google Scholar] [CrossRef]
- Werner, S.; Krieg, T.; Smola, H. Keratinocyte-fibroblast interactions in wound healing. J. Investig. Dermatol. 2007, 127, 998–1008. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.J.; Moh, S.H.; Son, D.H.; You, S.; Kinyua, A.W.; Ko, C.M.; Song, M.; Yeo, J.; Choi, Y.H.; Kim, K.W. Gallic acid promotes wound healing in normal and hyperglucidic conditions. Molecules 2016, 21, 899. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Gazdag, Z.; Szente, L.; Meggyes, M.; Horvath, G.; Lemli, B.; Kunsagi-Mate, S.; Kuzma, M.; Koszegi, T. Antioxidant and antimicrobial properties of randomly methylated beta cyclodextrin—Captured essential oils. Food Chem. 2019, 278, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Koszegi, T.; Sali, N.; Raknic, M.; Horvath-Szalai, Z.; Csepregi, R.; Koncic, M.Z.; Papp, N.; Poor, M. A novel luminol-based enhanced chemiluminescence antioxidant capacity microplate assay for use in different biological matrices. J. Pharmacol. Toxicol. Methods 2017, 88, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity andcolour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Facino, R.M. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Stratil, P.; Klejdus, B.; Kuban, V. Determination of phenolic compounds and their antioxidant activity in fruits and cereals. Talanta 2007, 71, 1741–1751. [Google Scholar] [CrossRef]
- Wan, H.; Liu, D.; Yu, X.; Sun, H.; Li, Y. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants. Food Chem. 2015, 175, 601–608. [Google Scholar] [CrossRef]
- Balaiya, S.; Chalam, K.V. An in vitro assay to quantify nitrosative component of oxidative stress. J. Mol. Genet. Med. Int. J. Biomed. Res. 2014, 8, 120. [Google Scholar] [CrossRef]
- Kalyanaraman, B.; Darley-Usmar, V.; Davies, K.J.; Dennery, P.A.; Forman, H.J.; Grisham, M.B.; Mann, G.E.; Moore, K.; Roberts, L.J., 2nd; Ischiropoulos, H. Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radic. Biol. Med. 2012, 52, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Csepregi, R.; Temesfoi, V.; Poor, M.; Faust, Z.; Koszegi, T. Green fluorescent protein-based viability assay in a multiparametric configuration. Molecules 2018, 23, 1575. [Google Scholar] [CrossRef] [PubMed]
MIC80 [µg/mL] | |||
---|---|---|---|
Test Bacteria | Ethanolic Extracts of L. tuberosus | Aqueous Extracts of L. tuberosus | Erythromycin a |
Staphylococcus aureus | N.D. | N.D. | 0.16 ± 0.07 |
Bacillus subtilis | 354.37 ± 4.58 | N.D. | 0.13 ± 0.04 |
Streptococcus pyogenes | 488.89 ± 4.75 | N.D. | 0.08 ± 0.01 |
Escherichia coli | N.D. | N.D. | 37.13 ± 4.95 |
Pseudomonas aeruginosa | N.D. | N.D. | 79.85 ± 9.93 |
IC50 [µg/mL] | ||||
---|---|---|---|---|
DCFH-DA | DHR123 | |||
Ethanolic Extr. | Aqueous Extr. | Ethanolic Extr. | Aqueous Extr. | |
L. tuberosus effects on 3T3 cells | 389.78 ± 49.93 | 1664.29 ± 266.96 | 62.37 ± 8.24 | 89.11 ± 14.72 |
L. tuberosus effects on HaCaT cells | 959.60 ± 59.67 | 5160.07 ± 349.51 | 65.70 ± 8.97 | 88.03 ± 11.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakabfi-Csepregi, R.; Alberti, Á.; Felegyi-Tóth, C.A.; Kőszegi, T.; Czigle, S.; Papp, N. A Comprehensive Study on Lathyrus tuberosus L.: Insights into Phytochemical Composition, Antimicrobial Activity, Antioxidant Capacity, Cytotoxic, and Cell Migration Effects. Plants 2024, 13, 232. https://doi.org/10.3390/plants13020232
Jakabfi-Csepregi R, Alberti Á, Felegyi-Tóth CA, Kőszegi T, Czigle S, Papp N. A Comprehensive Study on Lathyrus tuberosus L.: Insights into Phytochemical Composition, Antimicrobial Activity, Antioxidant Capacity, Cytotoxic, and Cell Migration Effects. Plants. 2024; 13(2):232. https://doi.org/10.3390/plants13020232
Chicago/Turabian StyleJakabfi-Csepregi, Rita, Ágnes Alberti, Csenge Anna Felegyi-Tóth, Tamás Kőszegi, Szilvia Czigle, and Nóra Papp. 2024. "A Comprehensive Study on Lathyrus tuberosus L.: Insights into Phytochemical Composition, Antimicrobial Activity, Antioxidant Capacity, Cytotoxic, and Cell Migration Effects" Plants 13, no. 2: 232. https://doi.org/10.3390/plants13020232
APA StyleJakabfi-Csepregi, R., Alberti, Á., Felegyi-Tóth, C. A., Kőszegi, T., Czigle, S., & Papp, N. (2024). A Comprehensive Study on Lathyrus tuberosus L.: Insights into Phytochemical Composition, Antimicrobial Activity, Antioxidant Capacity, Cytotoxic, and Cell Migration Effects. Plants, 13(2), 232. https://doi.org/10.3390/plants13020232