Combatting Sugar Beet Root Rot: Streptomyces Strains’ Efficacy against Fusarium oxysporum
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling and Isolation of Actinobacteria
2.2. Source of Fungal Pathogen
2.3. In Vitro Screening of Antagonistic Activity
2.4. Identification of the Most Potent Actinobacteria
2.5. Effect of the Antagonistic Isolates on Sugar Beet Root Diseases in Greenhouse
2.5.1. Preparation of Pathogen Inoculum
2.5.2. Preparation of Microbial Suspensions
2.6. Disease Assessments
2.7. Growth Attributes and Yield Evaluation
2.8. Statistical Analysis
3. Results
3.1. Isolation of Actinobacteria
3.2. Taxonomic Identification of Strains SB3-15 and SB2-23
3.3. Effect of the Antagonistic Isolates on Sugar Beet Root Diseases in Greenhouse Disease Assessment
3.4. Sugar Beet Growth Attributes and Yield Evaluation
3.5. Sugar Beet Quality Traits
3.5.1. Sucrose Percentage
3.5.2. Extractable Sugar Percentage
3.5.3. Impurities and Sugar Losses in Molasses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burlakoti, P.; Rivera, V.; Secor, G.A.; Qi, A.; Del rio-Mendoza, L.E.; Khan, M.F.R. Comparative pathogenicity and virulence of Fusarium species on sugar beet. Plant Dis. 2012, 96, 1291–1296. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, C.M. Changes in root morphology with yield level of sugar beet. Zuckerindustrie 2017, 142, 420–425. [Google Scholar] [CrossRef]
- Kaya, R.; Avan, M.; Aksoy, C.; Demirci, F.; Katircioǧlu, Y.Z.; Maden, S. Occurrence and importance of root rots caused by fungal pathogens on sugar beet grown in Konya province of Turkey. Zuckerindustrie 2020, 145, 674–681. [Google Scholar] [CrossRef]
- Strausbaugh, C.A.; Gillen, A.M. Bacteria and yeast associated with sugar beet root rot at harvest in the intermountain west. Plant Dis. 2008, 92, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Campbell, L.G.; Fugate, K.K.; Niehaus, W.S. Fusarium Yellows Affects Postharvest Respiration Rate; Sucrose Concentration, and Invert Sugar in Sugarbeet. J. Sugarbeet. Res. 2011, 48, 17–39. [Google Scholar] [CrossRef]
- Hanson, L.E.; Hill, A.L. Fusarium Species Causing Fusarium Yellows of Sugarbeet. J. Sugarbeet Res. 2004, 41, 163–178. [Google Scholar] [CrossRef]
- Cao, S.; Yang, N.; Zhao, C.; Liu, J.; Han, C.; Wu, X. Diversity of Fusarium species associated with root rot of sugar beet in China. J. Gen. Plant Pathol. 2018, 84, 321–329. [Google Scholar] [CrossRef]
- Hanson, L.; De Lucchi, C.; Stevanato, P.; McGrath, M.; Panella, L.; Sella, L.; De Biaggi, M.; Concheri, G. Root rot symptoms in sugar beet lines caused by Fusarium oxysporum f. sp. betae. Eur. J. Plant Pathol. 2018, 150, 589–593. [Google Scholar] [CrossRef]
- Hanson, L.E.; Lewellen, R.T. Stalk rot of sugar beet caused by Fusarium solani on the pacific coast. Plant Dis. 2007, 91, 1204. [Google Scholar] [CrossRef]
- Christ, D.S.; Märländer, B.; Varrelmann, M. Characterization and mycotoxigenic potential of Fusarium species in freshly harvested and stored sugar beet in Europe. Phytopathology 2011, 101, 1330–1337. [Google Scholar] [CrossRef]
- Webb, K.M.; Covey, P.A.; Hanson, L.E. Pathogenic and Phylogenetic Analysis of Fusarium oxysporum from Sugarbeet in Michigan and Minnesota. J. Sugarbeet Res. 2012, 49, 38–56. [Google Scholar] [CrossRef]
- Burlakoti, P.; Khan, M.F.R.; Rivera, V.; Qi, A. Evaluating Responses of Sugar Beet Cultivars to Fusarium Species in Greenhouse and Field Conditions. Agric. Res. Technol. Open Access J. 2018, 16, 85–89. [Google Scholar]
- Suárez-Moreno, Z.R.; Vinchira-Villarraga, D.M.; Vergara-Morales, D.I.; Castellanos, L.; Ramos, F.A.; Guarnaccia, C.; Degrassi, G.; Venturi, V.; Moreno-Sarmiento, N. Plant-growth promotion and biocontrol properties of three Streptomyces spp. isolates to control bacterial rice pathogens. Front. Microbiol. 2019, 10, 290. [Google Scholar] [CrossRef] [PubMed]
- Ammar, N.; Nefzi, A.; Jabnoun-Khiareddine, H.; Daami-Remadi, M. Control of Fusarium Dry Rot Incited by Fusarium oxysporum f. sp. tuberosi Using Sargassum vulgare Aqueous and Organic Extracts. J. Microb. Biochem. Technol. 2017, 9, 200–208. [Google Scholar]
- Zou, N.; Zhou, D.; Chen, Y.; Lin, P.; Chen, Y.; Wang, W.; Xie, J.; Wang, M. A Novel Antifungal Actinomycete Streptomyces sp. Strain H3-2 Effectively Controls Banana Fusarium Wilt. Front. Microbiol. 2021, 12, 706647. [Google Scholar] [CrossRef]
- Bojórquez-Armenta, Y.D.J.; Mora-Romero, G.A.; López-Meyer, M.; Maldonado-Mendoza, I.E.; Castro-Martínez, C.; de los A. Romero-Urίas, C.; Cordero-Ramίrez, J.D.; Martínez-Álvarez, J.C. Evaluation of Bacillus spp. isolates as potential biocontrol agents against charcoal rot caused by Macrophomina phaseolina on common bean. J. Gen. Plant Pathol. 2021, 87, 377–386. [Google Scholar]
- Singh, V.; Haque, S.; Khare, S.; Tiwari, A.K.; Katiyar, D.; Banerjee, B.; Kumari, K.; Tripathi, C.K.M. Isolation and purification of antibacterial compound from Streptomyces levis collected from soil sample of north India. PLoS ONE 2018, 13, e0200500. [Google Scholar] [CrossRef]
- El-Tarabily, K.A.; AlKhajeh, A.S.; Ayyash, M.M.; Alnuaimi, L.H.; Sham, A.; ElBaghdady, K.Z.; Tariq, S.; AbuQamar, S.F. Growth promotion of Salicornia bigelovii by Micromonospora chalcea UAE1; an endophytic 1-aminocyclopropane-1-carboxylic acid deaminase-producing actinobacterial isolate. Front. Microbiol. 2019, 10, 1694. [Google Scholar] [CrossRef]
- Le, K.D.; Yu, N.H.; Park, A.R.; Park, D.J.; Kim, C.J.; Kim, J.C. Streptomyces sp. AN090126 as a Biocontrol Agent against Bacterial and Fungal Plant Diseases. Microorganisms 2022, 10, 791. [Google Scholar] [CrossRef]
- Usha Nandhini, S.; Sudha, S.; Anusha Jeslin, V.; Manisha, S. Isolation, identification and extraction of antimicrobial compounds produced by Streptomyces sps from terrestrial soil. Biocatal. Agric. Biotechnol. 2018, 15, 317–321. [Google Scholar] [CrossRef]
- Pacios-Michelena, S.; Aguilar González, C.N.; Alvarez-Perez, O.B.; Rodriguez-Herrera, R.; Chávez-González, M.; Arredondo Valdés, R.; Ascacio Valdés, J.A.; Govea Salas, M.; Ilyina, A. Application of Streptomyces Antimicrobial Compounds for the Control of Phytopathogens. Front. Sustain. Food Syst. 2021, 5, 696518. [Google Scholar] [CrossRef]
- Soltanzadeh, M.; Soltani Nejad, M.; Shahidi Bonjar, G.H. Application of Soil-borne Actinomycetes for Biological Control against Fusarium Wilt of Chickpea (Cicer arietinum) caused by Fusarium solani fsp pisi. J. Phytopathol. 2016, 164, 967–978. [Google Scholar] [CrossRef]
- Vurukonda, S.S.K.P.; Giovanardi, D.; Stefani, E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 2018, 19, 952. [Google Scholar] [CrossRef] [PubMed]
- Abdelgawad, H.; Abuelsoud, W.; Madany, M.M.Y.; Selim, S.; Zinta, G.; Mousa, A.S.M.; Hozzein, W.N. Actinomycetes enrich soil rhizosphere and improve seed quality as well as productivity of legumes by boosting nitrogen availability and metabolism. Biomolecules 2020, 10, 1675. [Google Scholar] [CrossRef] [PubMed]
- Nasr-Eldin, M.; Messiha, N.; Othman, B.; Megahed, A.; Elhalag, K. Induction of potato systemic resistance against the potato virus Y (PVYNTN), using crude filtrates of Streptomyces spp. under greenhouse conditions. Egypt. J. Biol. Pest. Control. 2019, 29, 62. [Google Scholar] [CrossRef]
- Fahmy, Z.M.; Yasser, M.M.; Mousa, A.S.M.; Taha, E.M.; Rabie, W. Fusarium species infecting sugar beet in Egypt. Egypt. J. Appl. Sci. 2015, 30, 346–356. [Google Scholar]
- Haritha, R.; Siva Kumar, K.; Jagan Mohan, Y.S.Y.V.; Ramana, T. Amylolytic and protelytic actinobacterial isolated from marine sediments of Bay of Bengal. Int. J. Microbiol. Res. 2010, 1, 37–44. [Google Scholar]
- Williams, S.T.; Goodfellow, M.; Alderson, G.; Wellington, E.M.; Sneath, P.H.; Sackin, M.J. Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 1983, 129, 1743–1813. [Google Scholar] [CrossRef]
- Gupta, P.; Samant, K.; Sahu, A. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int. J. Microbiol. 2012, 2012, 578925. [Google Scholar] [CrossRef]
- Kolla, J.P.; Narayana, M.V. Chitinase Production by Streptomyces sp. ANU 6277. Braz. J. Microbiol. 2009, 40, 725–733. [Google Scholar]
- Qi, D.; Zou, L.; Zhou, D.; Chen, Y.; Gao, Z.; Feng, R.; Zhang, M.; Li, K.; Xie, J.; Wang, W. Taxonomy and broad-spectrum antifungal activity of Streptomyces sp. SCA3-4 isolated from rhizosphere soil of opuntia stricta. Front. Microbiol. 2019, 10, 1390. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Errakhi, R.; Lebrihi, A.; Barakate, M. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: A causal agent of root rot on sugar beet (Beta vulgaris L.). J. Appl. Microbiol. 2009, 10, 672–681. [Google Scholar] [CrossRef] [PubMed]
- El-Argawy, E.; Rahhal, M.M.H.; El-Korany, A.; Elshabrawy, E.M.; Eltahan, R.M. Efficacy of Some Nanoparticles to Control Damping-off and Root Rot of Sugar Beet in El-Behiera Governorate. Asian J. Plant Pathol. 2016, 15, 35–47. [Google Scholar] [CrossRef]
- Elwakil, M.A.R.; El-Metwall, M.A.; El-Emam, N.F. Green Chemicals and Bio-agents for Controlling Damping-off Diseases of Sugar Beet and Scaling up the Yield and Quality. Plant Pathol. J. 2018, 15, 1–10. [Google Scholar] [CrossRef]
- Webb, K.M.; Shrestha, S.; Trippe, R.; Rivera-Varas, V.; Covey, P.A.; Freeman, C.; de Jonge, R.; Secor, G.A.; Bolton, M. Phylogenetic relationships and virulence assays of Fusarium secorum from sugar beet suggest a new look at species designations. Plant Pathol. 2019, 68, 1654–1662. [Google Scholar] [CrossRef]
- Sönmez, C.; Mamay, M. Biological Control in Sustainable Agriculture. In Proceedings of the International GAP Agriculture &Livestock Congress, Sanliurfa, Turkey, 25–27 April 2018; p. 362. [Google Scholar]
- Shanthi, V. Actinomycetes: Implications and Prospects in Sustainable Agriculture. Biofertil. Study Impact. 2021, 335–370. [Google Scholar]
- Sapkota, A.; Thapa, A.; Budhathoki, A.; Sainju, M.; Shrestha, P.; Aryal, S. Isolation, characterization, and screening of Antimicrobial-Producing Actinomycetes from Soil Samples. Inter J. Microbiol. 2020, 2020, 2716584. [Google Scholar] [CrossRef]
- Kaari, M.; Joseph, J.; Manikkam, R.; Sreenivasan, A.; Venugopal, G. Biological control of Streptomyces sp. UT4A49 to suppress tomato bacterial wilt disease and its metabolite profiling. J. King Saud. Univ. Sci. 2022, 34, 101688. [Google Scholar] [CrossRef]
- Hei, Y.; Zhang, H.; Tan, N.; Zhou, Y.; Wei, X.; Hu, C.; Liu, Y.; Wang, L.; Qi, J.; Gao, J.M. Antimicrobial activity and biosynthetic potential of cultivable actinomycetes associated with Lichen symbiosis from Qinghai-Tibet Plateau. Microbiol. Res. 2021, 244, 1–14. [Google Scholar] [CrossRef]
- Karimi, E.; Sadeghi, A.; Dehaji, P.A.; Dalvand, Y.; Omidvari, M.; Nezhad, M.K. Biocontrol activity of salt tolerant Streptomyces isolates against phytopathogens causing root rot of sugar beet. Biocontrol Sci Technol. 2012, 22, 333–349. [Google Scholar] [CrossRef]
- Naziha, M.H.; Adel, A.E.; Hend, M.K.; El-Zahraa, A.K.E.; Youssef, A.Y. The potential of selected rhizosphere actinomycetes and yeast fungi for the biological control of late wilt disease of maize caused by Cephalosporium maydis. Afr. J. Mycol. Biotechnol. 2003, 11, 1–5. [Google Scholar]
- Zhang, L.; Zhang, H.; Huang, Y.; Peng, J.; Xie, J.; Wang, W. Isolation and Evaluation of Rhizosphere Actinomycetes With Potential Application for Biocontrolling Fusarium Wilt of Banana Caused by Fusarium oxysporum f. sp. cubense Tropical Race 4. Front Microbiol. 2021, 12, 763038. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Song, Y.S.; Seo, D.J.; Kim, K.Y.; Jung, W.J. Antifungal activity and expression patterns of extracellular chitinase and β-1;3-glucanase in Wickerhamomyces anomalus EG2 treated with chitin and glucan. Microb. Pathog. 2017, 110, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Bubici, G. Streptomyces spp. as biocontrol agents against Fusarium species. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2018, 13, 50. [Google Scholar] [CrossRef]
- Colombo, E.M.; Kunova, A.; Cortesi, P.; Saracchi, M.; Pasquali, M. Critical assessment of Streptomyces spp. Able to control toxigenic fusaria in cereals: A literature and patent review. Int. J. Mol. Sci. 2019, 20, 6119. [Google Scholar] [CrossRef] [PubMed]
- Amini, J.; Agapoor, Z.; Ashengroph, M. Evaluation of Streptomyces spp. against Fusarium oxysporum f. sp. ciceris for the management of chickpea wilt. J. Plant Prot. Res. 2016, 56, 257–264. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Pande, S.; Sharma, M.; Humayun, P.; Kiran, B.K.; Sandeep, D.; Sree Vidya, M.; Deepthi, K.; Rupela, O. Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot. 2011, 30, 1070–1078. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.S.; Ghareeb, M.A.; Hamed, A.A.; Rashad, E.M.; El-Sawy, E.R.; Saad, I.M.; Ghoneem, K.M. Ethyl acetate extract of Streptomyces spp. isolated from Egyptian soil for management of Fusarium oxysporum: The causing agent of wilt disease of tomato. Biocatal. Agric. Biotechnol. 2021, 37, 102185. [Google Scholar] [CrossRef]
- Díaz-Díaz, M.; Bernal-Cabrera, A.; Trapero, A.; González, A.J.; Medina-Marrero, R.; Cupull-Santana, R.D.; Águila-Jiménez, E.; Agustí-Brisach, C. Biocontrol of root rot complex disease of Phaseolus vulgaris by Streptomyces sp. strains in the field. Crop Prot. 2023, 165, 106164. [Google Scholar] [CrossRef]
- Law, J.W.F.; Ser, H.L.; Khan, T.M.; Chuah, L.H.; Pusparajah, P.; Chan, K.G.; Goh, B.H.; Lee, L.H. The potential of Streptomyces as biocontrol agents against the rice blast fungus; Magnaporthe oryzae (Pyricularia oryzae). Front. Microbiol. 2017, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, A.; Koobaz, P.; Azimi, H.; Karimi, E.; Akbari, A.R. Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces. BioControl 2017, 62, 805–819. [Google Scholar] [CrossRef]
- Salwan, R.; Sharma, V. Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiol. Res. 2020, 231, 126374. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jiang, Y.; Ning, P.; Zheng, L.; Huang, J.; Li, G.; Jiang, D.; Hsiang, T. Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporus JK-1. Biol. Control 2011, 58, 139–148. [Google Scholar] [CrossRef]
- Kanini, G.S.; Katsifas, E.A.; Savvides, A.L.; Karagouni, A.D. Streptomyces rochei ACTA1551; an indigenous greek isolate studied as a potential biocontrol agent against Fusarium oxysporum f. sp. lycopersici. Biomed. Res. Int. 2013, 2013, 387230. [Google Scholar] [CrossRef] [PubMed]
- Aallam, Y.; El Maliki, B.; Dhiba, D.; Lemriss, S.; Souiri, A.; Haddioui, A.; Tarkka, M.; Hamdali, H. Multiple potential plant growth promotion activities of endemic Streptomyces spp. From Moroccan sugar beet fields with their inhibitory activities against Fusarium spp. Microorganisms 2021, 9, 1429. [Google Scholar] [CrossRef]
- Devi, S.; Sharma, M.; Manhas, R.K. Investigating the plant growth promoting and biocontrol potentiality of endophytic Streptomyces SP. SP5 against early blight in Solanum lycopersicum seedlings. BMC Microbiol. 2022, 22, 1–16. [Google Scholar] [CrossRef]
- Kaur, T.; Rani, R.; Manhas, R.K. Biocontrol and plant growth promoting potential of phylogenetically new Streptomyces sp. MR14 of rhizospheric origin. AMB Express 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Aallam, Y.; Dhiba, D.; El Rasafi, T.; Lemriss, S.; Haddioui, A.; Tarkka, M.; Hamdali, H. Growth promotion and protection against root rot of sugar beet (Beta vulgaris L.) by two rock phosphate and potassium solubilizing Streptomyces spp. under greenhouse conditions. Plant Soil. 2022, 472, 407–420. [Google Scholar] [CrossRef]
- Farhaoui, A.; Adadi, A.; Tahiri, A.; El Alami, N.; Khayi, S.; Mentag, R.; Ezrari, S.; Radouane, N.; Mokrini, F.; Belabess, Z.; et al. Biocontrol potential of plant growth-promoting rhizobacteria (PGPR) against Sclerotiorum rolfsii diseases on sugar beet (Beta vulgaris L.). Physiol. Mol. Plant Pathol. 2022, 119, 1–13. [Google Scholar] [CrossRef]
- Abdelwahab, N.; Rabie, W.; Mohamed, F. Fabrication and characterization of novel biocomposite based on Sargassum vulgare for controlling sugar beet root diseases. Chem. Biol. Technol. Agric. 2023, 3, 1–13. [Google Scholar] [CrossRef]
- Tran, T.M.; Ameye, M.; Devlieghere, F.; De Saeger, S.; Eeckhout, M.; Audenaert, K. Streptomyces Strains Promote Plant Growth and Induce Resistance Against Fusarium verticillioides via Transient Regulation of Auxin Signaling and Archetypal Defense Pathways in Maize Plants. Front. Plant Sci. 2021, 12, 755733. [Google Scholar] [CrossRef] [PubMed]
- Nonthakaew, N.; Panbangred, W.; Songnuan, W.; Intra, B. Plant growth-promoting properties of Streptomyces spp. isolates and their impact on mung bean plantlets’ rhizosphere microbiome. Front. Microbiol. 2022, 13, 967415. [Google Scholar] [CrossRef] [PubMed]
- Boubekri, K.; Soumare, A.; Mardad, I.; Lyamlouli, K.; Hafidi, M.; Ouhdouch, Y.; Kouisni, L. The Screening of Potassium- and Phosphate-Solubilizing Actinobacteria and the Assessment of Their Ability to Promote Wheat Growth Parameters. Microorganisms 2021, 25, 470. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Safaie, N.; Sadeghi, A.; Shamsbakhsh, M. Streptomyces Strains Induce Resistance to Fusarium oxysporum f. sp. Lycopersici Race 3 in Tomato through Different Molecular Mechanisms. Front. Microbiol. 2019, 10, 1505. [Google Scholar] [CrossRef]
- Worsley, S.F.; Newitt, J.; Rassbach, J.; Batey, S.F.D.; Holmes, N.A.; Murrell, J.C.; Wilkinson, B.; Hutchings, M.I. Streptomyces endophytes promote host health and enhance growth across plant species. Appl. Environ. Microbiol. 2020, 86, e01053-20. [Google Scholar] [CrossRef] [PubMed]
- Raymond, N.S.; Gómez-Muñoz, B.; van der Bom, F.J.T.; Nybroe, O.; Jensen, L.S.; Müller-Stöver, D.S.; Oberson, A.; Richardson, A.E. Phosphate-solubilising microorganisms for improved crop productivity: A critical assessment. New Phytol. 2021, 229, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, C.M.; Kenter, C. Yield potential of sugar beet—Have we hit the ceiling? Front. Plant Sci. 2018, 9, 289. [Google Scholar] [CrossRef]
- Abu-Ellail, F.F.B.; Sadek, K.A.; El-Laboudy, E.H.S. Yield and Quality of some Sugar Beet Varieties as Affected by Humic Acid Application Rates under Sandy Soil Condition. J. Plant Prod. 2020, 11, 791–796. [Google Scholar] [CrossRef]
- Ramadan, B.S.H.; Nassar, A.M. Effect of nitrogen fertilization on yield and quality of some beet varieties. Egypt. J. Agric. Res. 2004, 82, 1253–1268. [Google Scholar] [CrossRef]
- Abd El-Razek, A.M. Response of Sugar Beet To Nitrogen and Potassium Fertilization Under Two Different Locations. Egypt. J. Agric. Res. 2012, 90, 155–172. [Google Scholar] [CrossRef]
- Al-Labbody, A.H.S.A.; Aly, M.S.M.; Abo El-Ghait, R.A. Response of some Sugar Beet Genotypes to Nitrogen Fertilization Levels Under Newly Reclaimed Soil Conditions. Fayoum J. Agric. Res. Dev. 2012, 26, 78–85. [Google Scholar] [CrossRef]
- Thalooth, A.T.; Tawfik, M.M.; Badre, E.A.; Mohamed, M.H. Yield and quality response of some sugar beet Beta vulgaris L. varieties to humic acid and yeast application in newly reclaimed soil. Middle East. J. Agric. Res. 2019, 8, 56–65. [Google Scholar]
- Halvorson, A.D.; Hartman, G.P. Response of Several Sugarbeet Cultivars to N Fertilization: Yield and Crown Tissue Production. Agron. J. 1980, 72, 665–669. [Google Scholar] [CrossRef]
- Stevanato, P.; Chiodi, C.; Broccanello, C.; Concheri, G.; Biancardi, E.; Pavli, O.; Skaracis, G. Sustainability of the Sugar Beet Crop. Sugar Tech. 2019, 21, 703–716. [Google Scholar] [CrossRef]
- Wolfgang, A.; Temme, N.; Tilcher, R.; Berg, G. Understanding the sugar beet holobiont for sustainable agriculture. Front. Microbiol. 2023, 14, 1151052. [Google Scholar] [CrossRef]
Characteristics | SB3-15 | SB2-23 |
---|---|---|
Tryptone yeast extract agar (ISP1) | ||
Proliferation | Abundant | Abundant |
Above mycelium color | Grayish brown | Grayish white |
Basal mycelium color | Grayish white | Yellowish white |
Soluble Pigmentation | None | Lemon yellow |
Malt extract yeast extract dextrose agar (ISP2) | ||
Proliferation | Abundant | Abundant |
Above mycelium color | Grey | Grayish white |
Basal mycelium color | Dark brown | Yellowish white |
Soluble Pigmentation | None | Light yellow |
Inorganic salts starch agar (ISP4) | ||
Proliferation | Good | Abundant |
Above mycelium color | Grayish white | Dark grey |
Basal mycelium color | Grayish brown | Grayish white |
Soluble Pigmentation | None | None |
Peptone yeast extract iron agar (ISP6) | ||
Proliferation | Moderate | Good |
Above mycelium color | Grayish yellow | Light grey |
Basal mycelium color | Yellowish brown | Grayish white |
Soluble Pigmentation | None | None |
Potato dextrose agar (PDA) | ||
Proliferation | Abundant | Abundant |
Above mycelium color | Grayish white | Dark grey |
Basal mycelium color | Grayish brown | Pale yellow |
Soluble Pigmentation | None | None |
Actinobacteria Isolate | CMC | Casein | Amylase | Gelatinase | Chitinase | Catalase |
---|---|---|---|---|---|---|
SB3-15 | + | + | + | + | + | + |
SB2-23 | + | + | − | + | + | + |
Treatment | Pre-Emergence % | Post-Emergence % | ||||||
---|---|---|---|---|---|---|---|---|
V1 | V2 | V3 | Mean | V1 | V2 | V3 | Mean | |
SB3-15+F | 16.67 | 6.67 | 20.00 | 14.45 b | 26.67 | 20.00 | 16.67 | 21.11 b |
SB2-23+F | 13.33 | 6.67 | 0.00 | 6.67 c | 13.33 | 6.67 | 6.67 | 8.89 c |
SB3-15 | 0.00 | 0.00 | 0.00 | 0.00 d | 0.00 | 0.00 | 0.00 | 0.00 d |
SB2-23 | 0.00 | 0.00 | 0.00 | 0.00 d | 0.00 | 0.00 | 0.00 | 0.00 d |
Fungicide | 13.33 | 20.00 | 6.67 | 13.33 b | 33.33 | 20.00 | 20.00 | 24.44 b |
Infected control | 43.33 | 46.67 | 43.33 | 44.44 a | 40.00 | 33.33 | 46.67 | 40.00 a |
Negative control | 0.00 | 6.67 | 0.00 | 2.22 c | 0.00 | 0.00 | 0.00 | 0.00 d |
Mean | 12.38 | 12.38 | 10.00 | 16.19 | 11.43 | 12.86 |
Treatment | Disease Severity % | Efficacy% | ||||||
---|---|---|---|---|---|---|---|---|
V1 | V2 | V3 | Mean | V1 | V2 | V3 | Mean | |
SB3-15+F | 6.94 | 9.72 | 5.55 | 7.40 b | 80.93 | 79.17 | 82.62 | 80.91 |
SB2-23+F | 2.08 | 4.17 | 1.67 | 2.64 b | 94.28 | 91.06 | 94.77 | 93.37 |
SB3-15 | 0.00 | 0.00 | 0.00 | 0.00 c | - | - | - | - |
SB2-23 | 0.00 | 0.00 | 0.00 | 0.00 c | - | - | - | - |
Fungicide | 2.78 | 6.33 | 3.33 | 4.15 b | 92.36 | 86.44 | 89.57 | 89.46 |
Infected control | 36.39 | 46.67 | 31.94 | 38.33 a | 0 | 0 | 0 | 0 |
Negative control | 0.00 | 0.00 | 0.00 | 0.00 c | - | - | - | - |
Mean | 6.88 | 9.56 | 6.07 | 89.19 | 85.56 | 88.99 |
Treatments | Sucrose % | Extractable Sugar % | ||||||
---|---|---|---|---|---|---|---|---|
V1 | V2 | V3 | Mean | V1 | V2 | V3 | Mean | |
Negative control | 14.4 | 13.8 | 14.4 | 14.2 | 11.8 | 11.2 | 11.5 | 11.5 |
Infected control | 12.4 | 11.8 | 12.2 | 12.1 | 10.2 | 10.8 | 10.1 | 10.4 |
SB3-15+F | 15.8 | 14.7 | 15.1 | 15.2 | 12.4 | 12.2 | 12.3 | 12.3 |
SB2-23+F | 14.8 | 15.9 | 14.8 | 15.2 | 12.3 | 12.1 | 11.9 | 12.1 |
SB3-15 | 16.5 | 16.8 | 16.5 | 16.6 | 13.6 | 12.9 | 12.7 | 13.1 |
SB2-23 | 17.7 | 17.3 | 17.1 | 17.4 | 13.5 | 12.7 | 13.3 | 13.2 |
Fungicide + F | 15.4 | 15.6 | 14 | 15 | 12.2 | 12.2 | 12.1 | 12.2 |
Mean | 15.3 | 15.1 | 14.9 | 12.3 | 12 | 12 | ||
LSD at 0.05 | ||||||||
Treatments (T) | 1.02 | 0.019 | ||||||
Varieties (V) | 0.31 | 0.037 | ||||||
T × V | 0.055 | 0.269 |
Treatments | SLM% | Na | K | α- Amino N | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V1 | V2 | V3 | Mean | V1 | V2 | V3 | Mean | V1 | V2 | V3 | Mean | V1 | V2 | V3 | Mean | |
Negative control | 1.7 | 2.1 | 2 | 1.9 | 4 | 4.5 | 4.6 | 4.4 | 2.2 | 2 | 2 | 2.1 | 2.3 | 2.6 | 2.2 | 2.3 |
Infected control | 2 | 2.1 | 2.1 | 2.1 | 4.4 | 4.8 | 4.5 | 4.6 | 2.1 | 2.3 | 1.8 | 2.1 | 2.5 | 2.3 | 2.9 | 2.6 |
SB3-15+F | 2 | 1.9 | 2.1 | 2 | 3.7 | 4.4 | 4.6 | 4.2 | 2.9 | 2.3 | 2.2 | 2.5 | 2.1 | 1.8 | 2.6 | 2.2 |
SB2-23+F | 2 | 1.9 | 1.9 | 1.9 | 4.2 | 3.7 | 4.2 | 4.1 | 2 | 2.6 | 2.2 | 2.3 | 2.4 | 2 | 2.1 | 2.2 |
SB3-15 | 1.9 | 2 | 1.9 | 1.9 | 4.2 | 4.2 | 4 | 4.1 | 2.2 | 3 | 2.4 | 2.5 | 2.1 | 1.8 | 2.2 | 2 |
SB2-23 | 2.1 | 2 | 2 | 2 | 4.6 | 4.2 | 4.3 | 4.3 | 2 | 2.6 | 2.6 | 2.4 | 2.8 | 2.1 | 2.1 | 2.3 |
Fungicide + F | 2.2 | 1.7 | 2 | 2 | 4 | 3.5 | 3.9 | 3.8 | 2.3 | 2 | 2.6 | 2.3 | 2.5 | 2.4 | 2.2 | 2.4 |
Mean | 2 | 1.9 | 2 | 4.1 | 4.2 | 4.3 | 2.3 | 2.4 | 2.3 | 2 | 1.8 | 2 | ||||
LSD at 0.05 | ||||||||||||||||
Treatments (T) | 0.021 | NS | NS | NS | ||||||||||||
Varieties (V) | 0.029 | 0.16 | 0.09 | 0.21 | ||||||||||||
T × V | 0.078 | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelghany, W.R.; Yassin, A.S.; Abu-Ellail, F.F.B.; Al-Khalaf, A.A.; Omara, R.I.; Hozzein, W.N. Combatting Sugar Beet Root Rot: Streptomyces Strains’ Efficacy against Fusarium oxysporum. Plants 2024, 13, 311. https://doi.org/10.3390/plants13020311
Abdelghany WR, Yassin AS, Abu-Ellail FFB, Al-Khalaf AA, Omara RI, Hozzein WN. Combatting Sugar Beet Root Rot: Streptomyces Strains’ Efficacy against Fusarium oxysporum. Plants. 2024; 13(2):311. https://doi.org/10.3390/plants13020311
Chicago/Turabian StyleAbdelghany, Walaa R., Abeer S. Yassin, Farrag F. B. Abu-Ellail, Areej A. Al-Khalaf, Reda I. Omara, and Wael N. Hozzein. 2024. "Combatting Sugar Beet Root Rot: Streptomyces Strains’ Efficacy against Fusarium oxysporum" Plants 13, no. 2: 311. https://doi.org/10.3390/plants13020311
APA StyleAbdelghany, W. R., Yassin, A. S., Abu-Ellail, F. F. B., Al-Khalaf, A. A., Omara, R. I., & Hozzein, W. N. (2024). Combatting Sugar Beet Root Rot: Streptomyces Strains’ Efficacy against Fusarium oxysporum. Plants, 13(2), 311. https://doi.org/10.3390/plants13020311