Unraveling the Secrets of Early-Maturity and Short-Duration Bread Wheat in Unpredictable Environments
Abstract
:1. Introduction
2. Early-Maturity and Short-Duration Bread Wheat
3. Characteristics of Early-Maturing Varieties
3.1. Drought Escape (DE)
3.2. Time to Initiation of Flowering
3.3. Cooler Canopy Temperatures
3.4. Grain Filling Duration
3.5. Grain Number and Size
3.6. Thousand-Kernel Weight (TKW)
3.7. Stay Green Trait
4. Biochemical Perspectives of Early-Maturing Wheat Genotypes and Their Effects on Quality Attributes
4.1. Reduced Photoperiod Sensitivity in Early-Maturing Wheat
4.2. Hormonal Regulation in Early-Maturing Wheat
4.3. Carbohydrate Metabolism
4.4. Nutrient Uptake and Transport
4.5. Wheat Quality Attributes and Early Maturity
5. Conventional Breeding Approaches for Enhancing Earliness and Short Duration in Bread Wheat
5.1. Pure-Line Selection
5.2. Mass Selection
5.3. Backcross Breeding
6. Modern Breeding Approaches
6.1. Genomic Selection
6.2. Marker-Assisted Selection
6.3. QTL Mapping
6.4. Field Phenomics
6.5. Speed Breeding
7. Genetic Basis of Earliness in Wheat
8. Perspective of Genetic Modifications for Earliness in Wheat
9. Agronomic Management Practices for Early-Maturing Varieties
10. Evaluating Early-Maturation and Short-Duration Varieties under Unpredictable Environmental Conditions
11. Challenges and Limitations of Earliness in Wheat
11.1. Successful Implementations of Early-Maturation and Short-Duration Wheat
11.2. Early-Maturation and Short-Duration Wheat and Expression of Important Diseases
12. Case Study
13. Future Prospects
14. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. FAO Statistics Home Page. Available online: https://www.fao.org/statistics/en (accessed on 24 May 2024).
- Awika, J.M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; American Chemical Society: Washington, DC, USA, 2011; pp. 1–13. [Google Scholar]
- Dixon, J. The economics of wheat: Research challenges from field to fork. In Wheat Production in Stressed Environments, Proceedings of the 7th International Wheat Conference, Mar del Plata, Argentina, 27 November–2 December 2005; Springer: Dordrecht, The Netherlands, 2007; pp. 9–22. [Google Scholar]
- Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef]
- Leff, B.; Ramankutty, N.; Foley, J.A. Geographic distribution of major crops across the world. Glob. Biogeochem. Cycl. 2004, 18, 1–27. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAO Statistics Home Page. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 12 April 2023).
- Mondal, S.; Singh, R.P.; Mason, E.R.; Huerta-Espino, J.; Autrique, E.; Joshi, A.K. Grain yield, adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia. Field Crops Res. 2016, 192, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Bertholdsson, N. Early vigour and allelopathy—Two useful traits for enhanced barley and wheat competitiveness against weeds. Weed Res. 2005, 45, 94–102. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Nie, Y.; Ji, W.; Ma, S. Assessment of Heterosis Based on Genetic Distance Estimated Using SNP in Common Wheat. Agronomy 2019, 9, 66. [Google Scholar] [CrossRef]
- Abu-Zaitoun, S.Y.; Chandrasekhar, K.; Assili, S.; Shtaya, M.J.; Jamous, R.M.; Mallah, O.B.; Nashef, K.; Sela, H.; Distelfeld, A.; Alhajaj, N.; et al. Unlocking the Genetic Diversity within A Middle-East Panel of Durum Wheat Landraces for Adaptation to Semi-arid Climate. Agronomy 2018, 8, 233. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.J. Global Trends in Wheat Production, Consumption and Trade. In Wheat Improvement; Springer: Berlin/Heidelberg, Germany, 2022; pp. 47–66. [Google Scholar] [CrossRef]
- Mondal, S.; Singh, R.P.; Crossa, J.; Huerta-Espino, J.; Sharma, I.; Chatrath, R.; Singh, G.P.; Sohu, V.S.; Mavi, G.S.; Sukuru, V.S.; et al. Earliness in wheat: A key to adaptation under terminal and continual high temperature stress in South Asia. Field Crop. Res. 2013, 151, 19–26. [Google Scholar] [CrossRef]
- Richards, R.A.; Rebetzke, G.J.; Watt, M.; Condon, A.G.; Spielmeyer, W.; Dolferus, R. Breeding for improved water productivity in temperate cereals: Phenotyping, quantitative trait loci, markers and the selection environment. Funct. Plant Biol. 2010, 37, 85. [Google Scholar] [CrossRef]
- Christopher, J.T.; Veyradier, M.; Borrell, A.K.; Harvey, G.; Fletcher, S.; Chenu, K. Phenotyping novel stay-green traits to capture genetic variation in senescence dynamics. Funct. Plant Biol. 2014, 41, 1035. [Google Scholar] [CrossRef]
- Maydup, M.L.; Graciano, C.; Guiamet, J.J.; Tambussi, E.A. Analysis of early vigour in twenty modern cultivars of bread wheat (Triticum aestivum L.). Crop Pasture Sci. 2012, 63, 987. [Google Scholar] [CrossRef]
- Chen, H.; Moakhar, N.P.; Iqbal, M.; Pozniak, C.; Hucl, P.; Spaner, D. Genetic variation for flowering time and height reducing genes and important traits in western Canadian spring wheat. Euphytica 2016, 208, 377–390. [Google Scholar] [CrossRef]
- Moore, C.; Rebetzke, G. Genomic Regions for Embryo Size and Early Vigour in Multiple Wheat (Triticum aestivum L.) Populations. Agronomy 2015, 5, 152–179. [Google Scholar] [CrossRef]
- Mullan, D.J.; Reynolds, M.P. Quantifying genetic effects of ground cover on soil water evaporation using digital imaging. Funct. Plant Biol. 2010, 37, 703. [Google Scholar] [CrossRef]
- Košner, J.; Pánková, K. The detection of allelic variants at the recessive vrn loci of winter wheat. Euphytica 1998, 101, 9–16. [Google Scholar] [CrossRef]
- Gororo, N.; Flood, R.; Eastwood, R.; Eagles, H. Photoperiod and Vernalization Responses in Triticum turgidum × T. tauschii Synthetic Hexaploid Wheats. Ann Bot. 2001, 88, 947–952. [Google Scholar] [CrossRef]
- Peng, J.; Richards, D.E.; Hartley, N.M.; Murphy, G.P.; Devos, K.M.; Flintham, J.E.; Beales, J.; Fish, L.J.; Worland, A.J.; Pelica, F.; et al. Green revolution’ genes encode mutant gibberellin response modulators. Nature 1999, 400, 256–261. [Google Scholar] [CrossRef]
- Williamson, J.D.; Quatrano, R.S. ABA-Regulation of Two Classes of Embryo-Specific Sequences in Mature Wheat Embryos. Plant Physiol. 1988, 86, 208–215. [Google Scholar] [CrossRef]
- Joshi, A.K.; Mishra, B.; Chatrath, R.; Ortiz Ferrara, G.; Singh, R.P. Wheat improvement in India: Present status, emerging challenges and future prospects. Euphytica 2007, 157, 431–446. [Google Scholar] [CrossRef]
- Joshi, A.K.; Ortiz-Ferrara, G.; Crossa, J.; Singh, G.; Sharma, R.C.; Chand, R.; Parsad, R. Combining superior agronomic performance and terminal heat tolerance with resistance to spot blotch (Bipolaris sorokiniana) of wheat in the warm humid Gangetic Plains of South Asia. Field Crop. Res. 2007, 103, 53–61. [Google Scholar] [CrossRef]
- Mondal, S.; Joshi, A.K.; Huerta-Espino, J.; Singh, R.P. Early Maturity in Wheat for Adaptation to High Temperature Stress. In Advances in Wheat Genetics: From Genome to Field; Springer: Tokyo, Japan, 2015; pp. 239–245. [Google Scholar] [CrossRef]
- Mondal, S.; Mason, R.E.; Huggins, T.; Hays, D.B. QTL on wheat (Triticum aestivum L.) chromosomes 1B, 3D and 5A are associated with constitutive production of leaf cuticular wax and may contribute to lower leaf temperatures under heat stress. Euphytica 2015, 201, 123–130. [Google Scholar] [CrossRef]
- Yang, J.; Sears, R.G.; Gill, B.S.; Paulsen, G.M. Genotypic differences in utilization of assimilate sources during maturation of wheat under chronic heat and heat shock stresses. Euphytica 2002, 125, 179–188. [Google Scholar] [CrossRef]
- Blum, A.; Sinmena, B.; Mayer, J.; Golan, G.; Shpiler, L. Stem Reserve Mobilisation Supports Wheat-Grain Filling Under Heat Stress. Funct. Plant Biol. 1994, 21, 771. [Google Scholar] [CrossRef]
- Shavrukov, Y.; Kurishbayev, A.; Jatayev, S.; Shvidchenko, V.; Zotova, L.; Koekemoer, F.; De-Groot, S.; Soole, K.; Langridge, P. Early Flowering as a Drought Escape Mechanism in Plants: How Can It Aid Wheat Production? Front. Plant Sci. 2017, 8, 1950. [Google Scholar] [CrossRef] [PubMed]
- Dolferus, R. To grow or not to grow: A stressful decision for plants. Plant Sci. 2014, 229, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.; Balota, M.; Delgado, M.; Amani, I.; Fischer, R. Physiological and Morphological Traits Associated with Spring Wheat Yield under Hot, Irrigated Conditions. Funct. Plant Biol. 1994, 21, 717. [Google Scholar] [CrossRef]
- Yashavanthakumar, K.J.; Baviskar, V.S.; Navathe, S.; Patil, R.M.; Bagwan, J.H.; Bankar, D.N.; Gite, V.D.; Gopalareddy, K.; Mishra, C.N.; Mamrutha, H.M.; et al. Impact of heat and drought stress on phenological development and yield in bread wheat. Plant Physiol. Rep. 2021, 26, 357–367. [Google Scholar] [CrossRef]
- Talebi, R. Evaluation of Chlorophyll Content and Canopy Temperature as Indicators for Drought Tolerance in Durum Wheat (Triticum durum Desf.). Aust. J. Basic Appl. Sci. 2011, 5, 1457–1462. [Google Scholar]
- Khare, V.; Shukla, R.S.; Singh, S.K.; Pandey, S. Holistic approach to ascertain genetic variability and responsive trait selection for different heat regimes of central India via field screening of wheat recombinant inbred lines. J. Agron. Crop Sci. 2023, 210, e12674. [Google Scholar] [CrossRef]
- Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H.M. Heat Stress in Wheat during Reproductive and Grain-Filling Phases. Crit. Rev. Plant Sci. 2011, 30, 491–507. [Google Scholar] [CrossRef]
- Sofield, I.; Evans, L.; Cook, M.; Wardlaw, I. Factors Influencing the Rate and Duration of Grain Filling in Wheat. Funct. Plant Biol. 1977, 4, 785. [Google Scholar] [CrossRef]
- Stone, P.J.; Gras, P.W.; Nicolas, M.E. The Influence of Recovery Temperature on the Effects of a Brief Heat Shock on Wheat. III. Grain Protein Composition and Dough Properties. J. Cereal Sci. 1997, 25, 129–141. [Google Scholar] [CrossRef]
- Viswanathan, C.; Khanna-Chopra, R. Effect of Heat Stress on Grain Growth, Starch Synthesis and Protein Synthesis in Grains of Wheat (Triticum aestivum L.) Varieties Differing in Grain Weight Stability. J. Agron. Crop Sci. 2001, 186, 1–7. [Google Scholar] [CrossRef]
- Warrington, I.; Dunstone, R.; Green, L. Temperature effects at three development stages on the yield of the wheat ear. Aust. J. Agric. Res. 1977, 28, 11. [Google Scholar] [CrossRef]
- Streck, N.A. Climate change and agroecosystems: The effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield. Ciênc. Rural 2005, 35, 730–740. [Google Scholar] [CrossRef]
- Dias, A.S.; Bagulho, A.S.; Lidon, F.C. Ultrastructure and biochemical traits of bread and durum wheat grains under heat stress. Braz. J. Plant Physiol. 2008, 20, 323–333. [Google Scholar] [CrossRef]
- Hays, D.B.; Do, J.H.; Mason, R.E.; Morgan, G.; Finlayson, S.A. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci. 2007, 172, 1113–1123. [Google Scholar] [CrossRef]
- Distelfeld, A.; Li, C.; Dubcovsky, J. Regulation of flowering in temperate cereals. Curr. Opin. Plant Biol. 2009, 12, 178–184. [Google Scholar] [CrossRef]
- Beales, J.; Turner, A.; Griffiths, S.; Snape, J.W.; Laurie, D.A. A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 2007, 115, 721–733. [Google Scholar] [CrossRef]
- Laurie, D.A.; Prachett, N.; Bezant, J.H.; Snape, J.W. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 1995, 38, 575–585. [Google Scholar] [CrossRef]
- Kippes, N.; Guedira, M.; Lin, L.; Alvarez, M.A.; Brown-Guedira, G.L.; Dubcovsky, J. Single nucleotide polymorphisms in a regulatory site of VRN-A1 first intron are associated with differences in vernalization requirement in winter wheat. Mol. Genet. Genom. 2018, 293, 1231–1243. [Google Scholar] [CrossRef] [PubMed]
- Shaw, L.M.; Turner, A.S.; Laurie, D.A. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum). Plant J. 2012, 71, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, N.; Miyake, Y.; Noda, K. ABA insensitivity and low ABA levels during seed development of non-dormant wheat mutants. J. Exp. Bot. 1997, 48, 1415–1421. [Google Scholar] [CrossRef]
- King, R.W. Abscisic acid in developing wheat grains and its relationship to grain growth and maturation. Planta 1976, 132, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Ba, Q.; Zhang, L.; Chen, S.; Li, G.; Wang, W. Effects of foliar application of magnesium sulfate on photosynthetic characteristics, dry matter accumulation and its translocation, and carbohydrate metabolism in grain during wheat grain filling. Cereal Res. Commun. 2020, 48, 157–163. [Google Scholar] [CrossRef]
- Zhang, S.; Ghatak, A.; Bazargani, M.M.; Bajaj, P.; Varshney, R.K.; Chaturvedi, P.P.; Jiang, D.; Weckwerth, W. Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process. Plant J. 2021, 107, 669–687. [Google Scholar] [CrossRef]
- Impa, S.M.; Sunoj, V.S.J.; Krassovskaya, I.; Bheemanahalli, R.; Obata, T.; Jagadish, S.V.K. Carbon balance and source-sink metabolic changes in winter wheat exposed to high night-time temperature. Plant Cell Environ. 2019, 42, 1233–1246. [Google Scholar] [CrossRef]
- Kato, K.; Yamagata, H. Method for evaluation of chilling requirement and narrow-sense earliness of wheat cultivars. Jpn. J. Breed. 1988, 38, 172–186. [Google Scholar] [CrossRef]
- Lopes, M.S.; Reynolds, M.P.; Jalal-Kamali, M.R.; Moussa, M.; Feltaous, Y.; Tahir, I.S.; Barma, N.; Vargas, M.; Mannes, Y.; Baum, M. The yield correlations of selectable physiological traits in a population of advanced spring wheat lines grown in warm and drought environments. Field Crop. Res. 2012, 128, 129–136. [Google Scholar] [CrossRef]
- Giroux, M.J.; Morris, C.F. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc. Natl. Acad. Sci. USA 1998, 95, 6262–6266. [Google Scholar] [CrossRef]
- Zhang, Y.; Nagamine, T.; He, Z.H.; Ge, X.X.; Yoshida, H.; Peña, R.J. Variation in quality traits in common wheat as related to Chinese fresh white noodle quality. Euphytica 2005, 141, 113–120. [Google Scholar] [CrossRef]
- Kato, K.; Wada, T. Genetic Analysis and Selection Experiment for Narrow-Sense Earliness in Wheat by Using Segregating Hybrid Progenies. Breed. Sci. 1999, 49, 233–238. [Google Scholar] [CrossRef]
- Iqbal, M.; Navabi, A.; Salmon, D.F.; Yang, R.C.; Spaner, D. A genetic examination of early flowering and maturity in Canadian spring wheat. Can. J. Plant Sci. 2006, 86, 995–1004. [Google Scholar] [CrossRef]
- Michaels, S.D. Flowering time regulation produces much fruit. Curr. Opin. Plant Biol. 2009, 12, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Amasino, R. Seasonal and developmental timing of flowering. Plant J. 2010, 61, 1001–1013. [Google Scholar] [CrossRef]
- Srikanth, A.; Schmid, M. Regulation of flowering time: All roads lead to Rome. Cell. Mol. Life Sci. 2011, 68, 2013–2037. [Google Scholar] [CrossRef]
- Tanio, M.; Kato, K.; Ishikawa, N.; Tabiki, T.; Nishio, Z.; Nakamichi, K.; Tamura, Y.; Sato, M.; Takagi, H.; Matsuoka, M. Effect of Shuttle Breeding with Rapid Generation Advancement on Heading Traits of Japanese Wheat. Breed. Sci. 2006, 56, 311–320. [Google Scholar] [CrossRef]
- Scarth, R.; Law, C.N. The location of the photoperiod gene, Ppd2 and an additional genetic factor for ear-emergence time on chromosome 2B of wheat. Heredity 1983, 51, 607–619. [Google Scholar] [CrossRef]
- Shindo, C.; Sasakuma, T. Early Heading Mutants of T. monococcum and Ae. squarrosa, A- and D-Genome Ancestral Species of Hexaploid Wheat. Breed. Sci. 2001, 51, 95–98. [Google Scholar] [CrossRef]
- Vinod, J.B.; Sharma, J.B.; Tomar, R.S.; Singh, B.; Tomar, S.M.S. Breeding for earliness and thermo-tolerance in wheat suited to early, late and very late sowing in northwestern India. Indian J. Genet. Plant Breed. 2012, 72, 15. [Google Scholar]
- Aglan, M.A.; Farhat, W.Z.E. Genetic Studies on Some Earliness and Agronomic Characters in Advanced Generations in Bread Wheat (Triticum aestivum L.). Int. J. Plant Soil Sci. 2014, 21, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Afridi, K.; Khan, N.U.; Mohammad, F.; Shah, S.J.A.; Gul, S.; Khalil, I.A.; Sajjad, M.; Ali, S.; Ali, I.; Khan, S.M. Inheritance pattern of earliness and yield traits in half diallel crosses of spring wheat. Can. J. Plant Sci. 2017, 3, 865–880. [Google Scholar] [CrossRef]
- Shaban, H.; Ghanim, S.; Qabil, N.; Koumber, R. Combining ability for earliness, grain yield and its components in some bread wheat genotypes under the normal and late sowing dates. Zagazig J. Agric. Res. 2018, 45, 1509–1520. [Google Scholar] [CrossRef]
- Aboshosha, A.; Galal, H.; Youssef, A. Combining Ability and Heterosis Analyses for Earliness and Yield Potential in some Bread Wheat Crosses under Optimum and Late Sowing. J. Plant Prod. 2018, 9, 377–386. [Google Scholar] [CrossRef]
- Rebetzke, G.J.; Richards, R.A. Genetic improvement of early vigour in wheat. Aust. J. Agric. Res. 1999, 50, 291. [Google Scholar] [CrossRef]
- Temesgen, B. Conventional Breeding Methods Widely used to Improve Self-Pollinated Crops. Int. J. Res. Stud. Agric. Sci. 2021, 7, 1–6. [Google Scholar] [CrossRef]
- Vales, M.I.; Srivastava, R.K.; Sultana, R.; Singh, S.; Singh, I.; Singh, G.; Patil, S.B.; Saxena, K.B. Breeding for Earliness in Pigeonpea: Development of New Determinate and Nondeterminate Lines. Crop Sci. 2012, 52, 2507–2516. [Google Scholar] [CrossRef]
- Peter, J.B.; Caligari, D.S. An Introduction to Plant Breeding; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Wolff, F.D. Mass Selection in Maize Composites by Means of Selection Indices; Wageningen University and Research: Wageningen, The Netherlands, 1972. [Google Scholar]
- Zou, C.Y.; Li, L.J.; Yang, K.C.; Pan, G.T.; Rong, T.Z. Effects of Mass Selection on Maize Synthetic Populations. Acta Agron. Sin. 2010, 36, 76–84. [Google Scholar] [CrossRef]
- Vogel, K.E. Backcross Breeding. Transgenic Maize Methods and Protocols and Methods in Molecular Biology; Springer: New York, NY, USA, 2009; pp. 161–169. [Google Scholar]
- Singh, S.P. Alternative Methods to Backcross Breeding; Centro Internacional de Agricultura Tropical (CIAT): Cali, Colombia, 1982; p. 2. [Google Scholar]
- Wang, X.; Xu, Y.; Hu, Z.; Xu, C. Genomic selection methods for crop improvement: Current status and prospects. Crop J. 2018, 6, 330–340. [Google Scholar] [CrossRef]
- Rabier, C.E.; Barre, P.; Asp, T.; Charmet, G.; Mangin, B. On the Accuracy of Genomic Selection. PLoS ONE 2016, 11, e0156086. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Britt, A.B.; Tripathi, L.; Sharma, S.; Upadhyaya, H.D.; Ortiz, R. Haploids: Constraints and opportunities in plant breeding. Biotechnol. Adv. 2015, 33, 812–829. [Google Scholar] [CrossRef] [PubMed]
- Miroshnichenko, D.; Timerbaev, V.; Klementyeva, A.; Pushin, A.; Sidorova, T.; Litvinov, D.; Nazarova, L.; Shulga, O.; Divashuk, M.; Karlov, G.; et al. CRISPR/Cas9-induced modification of the conservative promoter region of VRN-A1 alters the heading time of hexaploid bread wheat. Front Plant Sci. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Patra, J.K.; Baek, K.H. Insight into MAS: A Molecular Tool for Development of Stress Resistant and Quality of Rice through Gene Stacking. Front. Plant Sci. 2017, 8, 985. [Google Scholar] [CrossRef]
- Collard, B.C.Y.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 557–572. [Google Scholar] [CrossRef] [PubMed]
- Madhusudhana, R. Marker-Assisted Breeding in Sorghum. In Breeding Sorghum for Diverse End Uses; Elsevier: Amsterdam, The Netherlands, 2019; pp. 93–114. [Google Scholar] [CrossRef]
- Toth, J.; Pandurangan, S.; Burt, A.; Mitchell Fetch, J.; Kumar, S. Marker-assisted breeding of hexaploid spring wheat in the Canadian prairies. Can. J. Plant Sci. 2019, 99, 111–127. [Google Scholar] [CrossRef]
- Zikhali, M.; Leverington-Waite, M.; Fish, L.; Simmonds, J.; Orford, S.; Wingen, L.U.; Goram, R.; Gosman, N.; Bentley, A.; Griffiths, S. Validation of a 1DL earliness per se (eps) flowering QTL in bread wheat (Triticum aestivum). Mol. Breed. 2014, 34, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, S.; Lopes, M.S.; Dreisigacker, S.; Dixon, L.E.; Zikhali, M.; Griffiths, S.; Zheng, B.; Chapman, S.; Reynolds, M.P. Identification of Earliness Per Se Flowering Time Locus in Spring Wheat through a Genome-Wide Association Study. Crop Sci. 2016, 56, 2672–2962. [Google Scholar] [CrossRef]
- Huang, X.Q.; Cöster, H.; Ganal, M.W.; Röder, M.S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor. Appl. Genet. 2003, 106, 1379–1389. [Google Scholar] [CrossRef]
- Lozada, D.N.; Mason, R.E.; Babar, M.A.; Carver, B.F.; Guedira, G.B.; Merrill, K.; Arguello, M.N.; Acuna, A.; Vieira, L.; Holder, A.; et al. Association mapping reveals loci associated with multiple traits that affect grain yield and adaptation in soft winter wheat. Euphytica 2017, 213, 222. [Google Scholar] [CrossRef]
- Li, F.; Wen, W.; He, Z.; Liu, J.; Jin, H.; Cao, S.; Geng, H.; Yan, J.; Zhang, P.; Wan, Y.; et al. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theor. Appl. Genet. 2018, 131, 1903–1924. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, Y.; Wang, Z.; Guo, Q.; Wu, F.; Yang, X.; Deng, M.; Ma, J.; Chen, G.; Wei, Y.; et al. Identification of QTL for flag leaf length in common wheat and their pleiotropic effects. Mol. Breed. 2018, 38, 11. [Google Scholar] [CrossRef]
- Zhang, J.; Gizaw, S.A.; Bossolini, E.; Hegarty, J.; Howell, T.; Carter, A.H.; Akhunov, E.; Dubcovsky, J. Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats. Theor. Appl. Genet. 2018, 131, 1741–1759. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, S.; Heidari, B.; Pakniyat, H.; McIntyre, C.L. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome 2017, 60, 26–45. [Google Scholar] [CrossRef]
- Fan, X.; Cui, F.; Zhao, C.; Zhang, W.; Yang, L.; Zhao, X.; Han, J.; Su, Q.; Ji, J.; Zhao, Z.; et al. QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Mol. Breed. 2015, 35, 24. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, Y.; Fu, L.; Zhou, S.; Chen, J.; Zhao, X.; Zhang, D.; Ouyang, S.; Wang, Z.; Li, D.; et al. QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica 2016, 208, 337–351. [Google Scholar] [CrossRef]
- Rathan, N.D.; Krishnappa, G.; Singh, A.M.; Govindan, V. Mapping QTL for Phenological and Grain-Related Traits in a Mapping Population Derived from High-Zinc-Biofortified Wheat. Plants 2023, 12, 220. [Google Scholar] [CrossRef]
- Perez-Lara, E.; Semagn, K.; Chen, H.; Iqbal, M.N.; Diaye, A.; Kamran, A.; Navabi, A.; Pozniak, C.; Spaner, D. QTLs Associated with Agronomic Traits in the Cutler × AC Barrie Spring Wheat Mapping Population Using Single Nucleotide Polymorphic Markers. PLoS ONE 2016, 11, e0160623. [Google Scholar] [CrossRef]
- Ogbonnaya, F.C.; Rasheed, A.; Okechukwu, E.C.; Jighly, A.; Makdis, F.; Wuletaw, T.; Hagras, A.; Uguru, M.I.; Agbo, C.U. Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theor. Appl. Genet. 2017, 130, 1819–1835. [Google Scholar] [CrossRef]
- Ehdaie, B.; Mohammadi, S.A.; Nouraein, M. QTLs for root traits at mid-tillering and for root and shoot traits at maturity in a RIL population of spring bread wheat grown under well-watered conditions. Euphytica 2016, 211, 17–38. [Google Scholar] [CrossRef]
- Mason, R.E.; Hays, D.B.; Mondal, S.; Ibrahim, A.M.H.; Basnet, B.R. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica 2013, 194, 243–259. [Google Scholar] [CrossRef]
- Lopes, M.S.; Reynolds, M.P.; McIntyre, C.L.; Mathews, K.L.; Jalal Kamali, M.R.; Mossad, M.; Feltaous, Y.; Tahir, I.S.; Chatrath, R.; Ogbonnaya, F.; et al. QTL for yield and associated traits in the Seri/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions. Theor. Appl. Genet. 2013, 126, 971–984. [Google Scholar] [CrossRef] [PubMed]
- Hanocq, E.; Niarquin, M.; Heumez, E.; Rousset, M.; Le-Gouis, J. Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor. Appl. Genet. 2004, 110, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Bogard, M.; Biddulph, B.; Zheng, B.; Hayden, M.; Kuchel, H.; Mullan, D.; Allard, V.; Gouis, J.L.; Chapman, S.C. Linking genetic maps and simulation to optimize breeding for wheat flowering time in current and future climates. Crop Sci. 2020, 60, 678–699. [Google Scholar] [CrossRef]
- Hanocq, E.; Laperche, A.; Jaminon, O.; Lainé, A.L.; Le-Gouis, J. Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor. Appl. Genet. 2007, 114, 569–584. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Iqbal, M.; Perez-Lara, E.; Yang, R.C.; Pozniak, C.; Spaner, D. Earliness per se quantitative trait loci and their interaction with Vrn-B1 locus in a spring wheat population. Mol. Breed. 2015, 35, 182. [Google Scholar] [CrossRef]
- Gawroński, P.; Schnurbusch, T. High-density mapping of the earliness per se-3Am (Eps-3A m) locus in diploid einkorn wheat and its relation to the syntenic regions in rice and Brachypodium distachyon L. Mol. Breed. 2012, 30, 1097–1108. [Google Scholar] [CrossRef]
- Fahlgren, N.; Gehan, M.A.; Baxter, I. Lights, camera, action: High-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 2015, 24, 93–99. [Google Scholar] [CrossRef]
- Kyratzis, A.C.; Skarlatos, D.P.; Menexes, G.C.; Vamvakousis, V.F.; Katsiotis, A. Assessment of Vegetation Indices Derived by UAV Imagery for Durum Wheat Phenotyping under a Water Limited and Heat Stressed Mediterranean Environment. Front. Plant Sci. 2017, 8, 01114. [Google Scholar] [CrossRef]
- Atkinson, J.A.; Pound, M.P.; Bennett, M.J.; Wells, D.M. Uncovering the hidden half of plants using new advances in root phenotyping. Curr. Opin. Biotechnol. 2019, 55, 1–8. [Google Scholar] [CrossRef]
- Shakoor, N.; Lee, S.; Mockler, T.C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 2017, 38, 184–192. [Google Scholar] [CrossRef]
- Yang, W.; Guo, Z.; Huang, C.; Duan, L.; Chen, G.; Jiang, N.; Fang, W.; Feng, H.; Xie, W.; Lian, X.; et al. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat. Commun. 2014, 5, 5087. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives. Trends Plant Sci. 2018, 23, 883–898. [Google Scholar] [CrossRef] [PubMed]
- Hickey, L.T.; Dieters, M.J.; DeLacy, I.H.; Kravchuk, O.Y.; Mares, D.J.; Banks, P.M. Grain dormancy in fixed lines of white-grained wheat (Triticum aestivum L.) grown under controlled environmental conditions. Euphytica 2009, 168, 303–310. [Google Scholar] [CrossRef]
- Samantara, K.; Bohra, A.; Mohapatra, S.R.; Prihatini, R.; Asibe, F.; Singh, L.; Reyes, V.P.; Tiwari, A.; Maurya, A.K.; Croser, J.S.; et al. Breeding More Crops in Less Time: A Perspective on Speed Breeding. Biology 2022, 11, 275. [Google Scholar] [CrossRef] [PubMed]
- Shendekar, S.; Kute, N.; Madhu, B.; Gadpayale, D.; Meshram, M.; Basavaraj, P.S.; Totre, A.I. Unlocking Crop Potential: Speed Breeding and its Synergies with Modern Breeding Techniques. Biol. Forum—Int. J. 2023, 15, 89–100. [Google Scholar]
- Housley, T.L.; Ohm, H.W. Earliness and duration of grain fill in winter wheat. Can. J. Plant Sci. 1992, 72, 35–48. [Google Scholar] [CrossRef]
- Sharp, P.J.; Soltes-Rak, E. Homoeologous relationships between wheat group 2 chromosome arms as determined by RFLP analysis. In Proceedings of the Seventh International Wheat Genetics Symposium, Cambridge, UK, 13–19 July 1988; Institute of Plant Science Research: Cambridge, UK, 1988; pp. 635–637. [Google Scholar]
- Maystrenko, O.I. Cytogenetic study of growth habit and ear emergence time in wheat (Triicticum aestivum L.). In Well-Being of Mankind and Genetics. Proceedings of the XIV International Congress of Genetics; Pergamon Press: Oxford, UK, 1980; Volume 1, pp. 267–282. [Google Scholar]
- Worland, A.J.; Appendino, M.L.; Sayers, E.J. The distribution, in European winter wheats, of genes that influence ecoclimatic adaptability whilst determining photoperiodic insensitivity and plant height. Euphytica 1994, 80, 219–228. [Google Scholar] [CrossRef]
- Goncharov, N.P. Genetics of growth habit (spring vs winter) in common wheat: Confirmation of the existence of dominant gene Vrn4. Theor. Appl. Genet. 2003, 107, 768–772. [Google Scholar] [CrossRef]
- Yan, L.; Loukoianov, A.; Tranquilli, G.; Helguera, M.; Fahima, T.; Dubcovsky, J. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 2003, 100, 6263–6268. [Google Scholar] [CrossRef]
- Yan, L.; Loukoianov, A.; Blechl, A.; Tranquilli, G.; Ramakrishna, W.; SanMiguel, P.; Bennetzen, J.L.; Echenique, V.; Dubcovsky, J. The Wheat VRN2 Gene Is a Flowering Repressor Down-Regulated by Vernalization. Science 2004, 303, 1640–1644. [Google Scholar] [CrossRef]
- Yan, L.; Fu, D.; Li, C.; Blechl, A.; Tranquilli, G.; Bonafede, M.; Sanchez, A.; Valarik, M.; Yasuda, S.; Dubcovsky, J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 2006, 103, 19581–19586. [Google Scholar] [CrossRef] [PubMed]
- Kippes, N.; Zhu, J.; Chen, A.; Vanzetti, L.; Lukaszewski, A.; Nishida, H.; Kato, K.; Dvorak, J.; Dubcovsky, J. Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat. Mol. Genet. Genom. 2014, 289, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Zikhali, M.; Turner, A.S.; Isaac, P.; Laurie, D.A. Copy Number Variation Affecting the Photoperiod-B1 and Vernalization-A1 Genes Is Associated with Altered Flowering Time in Wheat (Triticum aestivum). PLoS ONE 2012, 7, e33234. [Google Scholar] [CrossRef]
- Law, C.N.; Worland, A.J. Genetic analysis of some flowering time and adaptive traits in wheat. New Phytol. 1997, 137, 19–28. [Google Scholar] [CrossRef]
- Worland, A.J. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 1996, 89, 49–57. [Google Scholar] [CrossRef]
- Fu, D.; Szűcs, P.; Yan, L.; Helguera, M.; Skinner, J.S.; Von-Zitzewitz, J.; Hayes, P.M.; Dubcovsky, J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol. Genet. Genom. 2005, 273, 54–65. [Google Scholar] [CrossRef]
- Tanaka, C.; Itoh, T.; Iwasaki, Y.; Mizuno, N.; Nasuda, S.; Murai, K. Direct interaction between VRN1 protein and the promoter region of the wheat FT gene. Genes. Genet. Syst. 2018, 93, 25–29. [Google Scholar] [CrossRef]
- Chen, A.; Dubcovsky, J. Wheat TILLING Mutants Show That the Vernalization Gene VRN1 Down-Regulates the Flowering Repressor VRN2 in Leaves but Is Not Essential for Flowering. PLoS Genet. 2012, 8, e1003134. [Google Scholar] [CrossRef]
- Trevaskis, B.; Hemming, M.N.; Peacock, W.J.; Dennis, E.S. HvVRN2 Responds to Daylength, whereas HvVRN1 Is Regulated by Vernalization and Developmental Status. Plant Physiol. 2006, 140, 1397–1405. [Google Scholar] [CrossRef]
- Turner, A.; Beales, J.; Faure, S.; Dunford, R.P.; Laurie, D.A. The Pseudo-Response Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley. Science 2005, 310, 1031–1034. [Google Scholar] [CrossRef]
- Wilhelm, E.P.; Turner, A.S.; Laurie, D.A. Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor. Appl. Genet. 2009, 118, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Seki, M.; Chono, M.; Matsunaka, H.; Fujita, M.; Oda, S.; Kubo, K.; Kiribuchi-Otobe, C.; Kojima, H.; Nishida, H.; Kato, K. Distribution of photoperiod-insensitive alleles Ppd-B1a and Ppd-D1a and their effect on heading time in Japanese wheat cultivars. Breed. Sci. 2011, 61, 405–412. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Liu, M.; Li, J.R.; Guan, C.M.; Zhang, X.S. The wheat TaGI1, involved in photoperiodic flowering, encodesan Arabidopsis GI ortholog. Plant Mol. Biol. 2005, 58, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Shimada, S.; Ogawa, T.; Kitagawa, S.; Suzuki, T.; Ikari, C.; Shitsukawa, N.; Abe, T.; Kawahigashi, H.; Kikuchi, R.; Handa, H.; et al. A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T. Plant J. 2009, 58, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, Y.; Kisaka, M.; Fuse, T.; Yano, M.; Ogihara, Y. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J. 2003, 36, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Stelmakh, A.F. Genetics of growth habit and duration of life cycle in common wheat. Sel. Semenovod. 1981, 48, 8–15. [Google Scholar]
- Mizuno, N.; Nitta, M.; Sato, K.; Nasuda, S. A wheat homologue of PHYTOCLOCK 1 is a candidate gene conferring the early heading phenotype to einkorn wheat. Genes Genet. Syst. 2012, 87, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Gawroński, P.; Ariyadasa, R.; Himmelbach, A.; Poursarebani, N.; Kilian, B.; Stein, N.; Steuernagel, B.; Hensel, G.; Kumlehn, J.; Sehgal, S.K.; et al. A Distorted Circadian Clock Causes Early Flowering and Temperature-Dependent Variation in Spike Development in the Eps-3Am Mutant of Einkorn Wheat. Genetics 2014, 196, 1253–1261. [Google Scholar] [CrossRef]
- Lewis, S.; Faricelli, M.E.; Appendino, M.L.; Valarik, M.; Dubcovsky, J. The chromosome region including the earliness per se locus Eps-Am1 affects the duration of early developmental phases and spikelet number in diploid wheat. J. Exp. Bot. 2008, 59, 3595–3607. [Google Scholar] [CrossRef]
- Royo, C.; Dreisigacker, S.; Ammar, K.; Villegas, D. Agronomic performance of durum wheat landraces and modern cultivars and its association with genotypic variation in vernalization response (Vrn-1) and photoperiod sensitivity (Ppd-1) genes. Eur. J. Agron. 2020, 120, 126129. [Google Scholar] [CrossRef]
- Royo, C.; Ammar, K.; Alfaro, C.; Dreisigacker, S.; del Moral, L.F.G.; Villegas, D. Effect of Ppd-1 photoperiod sensitivity genes on dry matter production and allocation in durum wheat. Field Crop. Res. 2018, 221, 358–367. [Google Scholar] [CrossRef]
- Ochagavía, H.; Prieto, P.; Savin, R.; Griffiths, S.; Slafer, G. Dynamics of leaf and spikelet primordia initiation in wheat as affected by Ppd-1a alleles under field conditions. J. Exp. Bot. 2018, 69, 2621–2631. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Chong, K. Remembering winter through vernalisation. Nat. Plants 2018, 4, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Geuten, K.; Giri, B.S.; Varma, A. The molecular mechanism of vernalization in Arabidopsis and cereals: Role of Flowering Locus C and its homologs. Physiol. Plant 2020, 170, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhao, L.; Zhang, X.; Lv, G.; Pan, Y.; Chen, F. Gene regulatory network and abundant genetic variation play critical roles in heading stage of polyploidy wheat. BMC Plant Biol. 2019, 19, 6. [Google Scholar] [CrossRef]
- Kippes, N.; Debernardi, J.M.; Vasquez-Gross, H.A.; Akpinar, B.A.; Budak, H.; Kato, K.; Chao, S.; Akhunov, E.; Dubcovsky, J. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc. Natl. Acad. Sci. USA 2015, 112, E5401–E5410. [Google Scholar] [CrossRef]
- Li, G.; Yu, M.; Fang, T.; Cao, S.; Carver, B.F.; Yan, L. Vernalization requirement duration in winter wheat is controlled by Ta VRN—A1 at the protein level. Plant J. 2013, 76, 742–753. [Google Scholar] [CrossRef]
- Konopatskaia, I.; Vavilova, V.; Kondratenko, E.; Blinov, A.; Goncharov, N.P. VRN1 genes variability in tetraploid wheat species with a spring growth habit. BMC Plant Biol. 2016, 16, 244. [Google Scholar] [CrossRef]
- Muterko, A.; Kalendar, R.; Salina, E. Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region. BMC Plant Biol. 2016, 16, 9. [Google Scholar] [CrossRef]
- Strejčková, B.; Milec, Z.; Holušová, K.; Cápal, P.; Vojtková, T.; Čegan, R.; Šafář, J. In-Depth Sequence Analysis of Bread Wheat VRN1 Genes. Int. J. Mol. Sci. 2021, 22, 12284. [Google Scholar] [CrossRef]
- Kiseleva, A.A.; Salina, E.A. Genetic Regulation of Common Wheat Heading Time. Russ. J. Genet. 2018, 54, 375–388. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Li, J.; Yan, L.; Wang, N.; Xia, L. Present and future prospects for wheat improvement through genome editing and advanced technologies. Plant Commun. 2021, 2, 100211. [Google Scholar] [CrossRef] [PubMed]
- Saini, P.; Gani, M.; Kaur, J.J.; Godara, L.C.; Singh, C.; Chauhan, S.S.; Francies, R.M.; Bhardwaj, A.; Bharat, K.N.; Ghosh, M.K. Reactive Oxygen Species (ROS): A Way to Stress Survival in Plants. In Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective; Springer: Singapore, 2018; pp. 127–153. [Google Scholar] [CrossRef]
- Sendhil, R.; Kumar, A.; Singh, S.; Singh, M.; Pandey, J.K.; Singh, G.P. Annual Wheat Newsletter: India; ICAR—Indian Institute of Wheat and Barley Research: Pampore, India, 2019; pp. 1–27. [Google Scholar]
- Singh, R.; Sharma, C.R.K.; Gill, S.C.; Kumar, R. Influence of tillage, cultivar, seed rate and planting geometry on wheat yield. J. Wheat Res. 2017, 9, 12–20. [Google Scholar]
- Sandhu, B.S.; Dhaliwal, N.S.; Sandhu, G.S. Production potential and economics of wheat, Triticum aestivum as influenced by different planting methods in Punjab, India. J. Appl. Nat. Sci. 2016, 8, 777–781. [Google Scholar] [CrossRef]
- Moreno-Amores, J.; Michel, S.; Löschenberger, F.; Buerstmayr, H. Dissecting the Contribution of Environmental Influences, Plant Phenology, and Disease Resistance to Improving Genomic Predictions for Fusarium Head Blight Resistance in Wheat. Agronomy 2020, 10, 2008. [Google Scholar] [CrossRef]
- Lacey, J.; Bateman, G.L.; Mirocha, C.J. Effects of infection time and moisture on development of ear blight and deoxynivalenol production by Fusarium spp. in wheat. Ann. Appl. Biol. 1999, 134, 277–283. [Google Scholar] [CrossRef]
- Beddow, J.M.; Pardey, P.G.; Chai, Y.; Hurley, T.M.; Kriticos, D.J.; Braun, H.J.; Park, R.F.; Cuddy, W.S.; Yonow, T. Research investment implications of shifts in the global geography of wheat stripe rust. Nat. Plants 2015, 1, 15132. [Google Scholar] [CrossRef]
- Matson, P.A.; Naylor, R.; Ortiz-Monasterio, I. Integration of Environmental, Agronomic, and Economic Aspects of Fertilizer Management. Science 1998, 280, 112–115. [Google Scholar] [CrossRef]
- Ortiz, R.; Sayre, K.D.; Govaerts, B.; Gupta, R.; Subbarao, G.V.; Ban, T.; Hodson, D.; Dixon, J.M.; Ortiz-Monasterio, J.I.; Reynolds, M. Climate change: Can wheat beat the heat? Agric. Ecosyst. Environ. 2008, 126, 46–58. [Google Scholar] [CrossRef]
- Prashanth, B.H.; Kumar, M.; Gaikwad, K.B.; Kumar, R.; Kumar, N.; Palaparthi, D. Rapid Generation Advancement and Fast-Track Breeding Approaches in Wheat Improvement. In Next-Generation Plant Breeding Approaches for Stress Resilience in Cereal Crops; Springer: Singapore, 2022; pp. 241–262. [Google Scholar] [CrossRef]
- Duveiller, E.; Kandel, Y.R.; Sharma, R.C.; Shrestha, S.M. Epidemiology of Foliar Blights (Spot Blotch and Tan Spot) of Wheat in the Plains Bordering the Himalayas. Phytopathology 2005, 95, 248–256. [Google Scholar] [CrossRef]
Trait | QTL Name | Chromosome Location of QTL | References |
---|---|---|---|
Days to heading/ Days to flowering | QDH-2B | 2B | [97] |
QDH-5A.1 | 5A | ||
QDH-5A.2 | 5A | ||
QDH-5B | 5B | ||
QDH-7D | 7D | ||
QDH-5A.3 | 5A | ||
QFlt.dms-2D.2 | 2D | [98] | |
QFlt. dms-5B | 5B | ||
QFlt.dms-2D | 2D | ||
QFlt.dms-7A | 7A | ||
QFlt.dms-6B.2 | 6B | ||
QEps.dms-5B1 | 5B | [18] | |
wPt-741686 | 7A | [99] | |
VRN-D1 | 5D | ||
Days to maturity | QMat.dms-2D | 2D | [18] |
QMat.dms-7A.2 | 7A | ||
QMat.dms-4A.1 | 4A | ||
QEps.dms-5B1 | 5B | [18] | |
QEps.dms-1B1 | 1B | [18] | |
wPt-741686 | 7A | [99] | |
Flowering time | QFt.dms-4A1 | 4A | [18] |
Flag leaf area | gFla-1B.2 | 1B | [95] |
QFLA-5A.1 | 5A | [92] | |
Tiller numbers | QTn.ipk-5D | 5D | [89] |
QTn.ipk-2D | 2D | ||
QTn.ipk-3B | 3B | ||
QTn.ipk-1B | 1B | ||
Biomass | qPBio-6B2 | 6B | [100] |
Cooler canopy | ?? | 1B, 5A | [27] |
QCtdh.tam-3B | 3B | [101] | |
4A-wmc048d | 4 A | [102] | |
C29P13 | 7D | [102] | |
6A-gwm617b | 7D | ||
Photoperiod sensitivity (PS) | 4 QTLs | 2B, 2D, 5A and 7D | [103] |
PS/EPS | Ppd-D1 region | 2D | [104] |
PS | Ppd-D1 region | 5B | |
EPS | Ppd-D1 region | 6B | |
Vernalization requirement (VR) | 5QTLs | 2B, 5A, 5B, 5D and 6 D | [103] |
Vrn-A1 | 5A | [104] | |
Intrinsic earliness (IE) | 4 QTLs | 2B, 2D, 5B and 7A | [103] |
Heading Date (HD)/IE | MQTL1 | 2B | [105] |
FT/PS/IE | MQTL2 | 2B | |
VR | MQTL3 | 2B | |
HD/IE | MQTL4 | 2D | |
HD/PS | MQTL5 | 2D | |
HD/IE | MQTL6 | 2D | |
HD/PS | MQTL7 | 4A | |
HD/PS | MQTL8 | 4B | |
HD/PS | MQTL9 | 5A | |
VR/HD | MQTL10 | 5A | |
HD/IE | MQTL11 | 5B | |
IE/HD-VR | MQTL12 | 5B | |
VR/HD-PS | MQTL13 | 5B | |
VR | MQTL14 | 5D | |
PS/Wh | MQTL15 | 6A | |
HD/IE | MQTL16 | 7A | |
HD/IE | MQTL17 | 7B | |
HD | MQTL18 | 7D | |
Earliness per se (Eps) | QEps.dms-1A | 1A | [106] |
QEps.dms-4A | 4A | ||
Earliness per se | Eps-3Am | 3A | [107] |
Eps-3DL | 3D | [98] | |
Eps-1D | 1D | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, C.; Yadav, S.; Khare, V.; Gupta, V.; Kamble, U.R.; Gupta, O.P.; Kumar, R.; Saini, P.; Bairwa, R.K.; Khobra, R.; et al. Unraveling the Secrets of Early-Maturity and Short-Duration Bread Wheat in Unpredictable Environments. Plants 2024, 13, 2855. https://doi.org/10.3390/plants13202855
Singh C, Yadav S, Khare V, Gupta V, Kamble UR, Gupta OP, Kumar R, Saini P, Bairwa RK, Khobra R, et al. Unraveling the Secrets of Early-Maturity and Short-Duration Bread Wheat in Unpredictable Environments. Plants. 2024; 13(20):2855. https://doi.org/10.3390/plants13202855
Chicago/Turabian StyleSingh, Charan, Sapna Yadav, Vikrant Khare, Vikas Gupta, Umesh R. Kamble, Om P. Gupta, Ravindra Kumar, Pawan Saini, Rakesh K. Bairwa, Rinki Khobra, and et al. 2024. "Unraveling the Secrets of Early-Maturity and Short-Duration Bread Wheat in Unpredictable Environments" Plants 13, no. 20: 2855. https://doi.org/10.3390/plants13202855
APA StyleSingh, C., Yadav, S., Khare, V., Gupta, V., Kamble, U. R., Gupta, O. P., Kumar, R., Saini, P., Bairwa, R. K., Khobra, R., Sheoran, S., Kumar, S., Kurhade, A. K., Mishra, C. N., Gupta, A., Tyagi, B. S., Ahlawat, O. P., Singh, G., & Tiwari, R. (2024). Unraveling the Secrets of Early-Maturity and Short-Duration Bread Wheat in Unpredictable Environments. Plants, 13(20), 2855. https://doi.org/10.3390/plants13202855