Anti-Hyperglycemic Effects of Thai Herbal Medicines
Abstract
:1. Introduction
2. Results
2.1. Extraction Yield and Quality Control of Selected Medicinal Plants
2.2. Anti-Oxidant Activities of Crude Ethanolic Extracts
2.3. Effect of Medicinal Plants on Cell Viability in Insulin-Resistant HepG2 Cells
2.4. Anti-Hyperglycemic Activities of Crude Ethanolic Extracts
2.5. Antihyperglycemic Activities of Remedies
2.6. Physical-Chemical Properties of R1 Remedy
2.7. Phytochemical Analysis by Thin-Layer Chromatography (TLC)
3. Discussion
4. Materials and Methods
4.1. Plant Materials
- (1)
- Revealed potent antihyperglycemic potential, especially in clinical trials or in-vivo study.
- (2)
- Indigenous plants or easily found in Thailand.
- (3)
- Nontoxic.
4.2. Preparation of Plant Extracts
4.3. Quality Control of Phytochemicals
4.3.1. Determination of Total Phenolic Content
4.3.2. Determination of Total Flavonoid Content
4.4. Determination of Anti-Oxidant Activities
4.4.1. DPPH (2,2-Diphenyl-1-Picrylhydrazyl) Radical Scavenging Assay
4.4.2. ABTS (2,2-Azinobis-(3-Ethylbenzothiazoline-6-Sulphonate)) Radical Scavenging Assay
4.5. Determination of Anti-Hyperglycemic Activities
4.5.1. The α-Glucosidase Inhibitory Assay
4.5.2. Cell Culture and Insulin-Resistant HepG2 Cell Model (IRM) Cell Culture
4.5.3. Noncytotoxic Evaluation
4.5.4. Glucose Consumption Assay
4.6. Physical-Chemical Properties of Remedy
4.6.1. Determination of Loss on Drying
4.6.2. Determination of Foreign Matter
4.6.3. Determination of Total Ash
4.6.4. Determination of Acid-Insoluble Ash
4.6.5. Determination of Ethanol-Soluble Extractive Value
4.6.6. Determination of Water-Soluble Extractive Value
4.6.7. Determination of Total Crude Saponins
4.6.8. Phytochemical Analysis by TLC
Sample and Standard Preparation
Chemical Fingerprint
Analysis of Chlorogenic Acid by TLC
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium; Available online: https://www.diabetesatlas.org (accessed on 1 February 2024).
- Upadhyay, J.; Polyzos, S.A.; Perakakis, N.; Thakkar, B.; Paschou, S.A.; Katsiki, N.; Underwood, P.; Park, K.H.; Seufert, J.; Kang, E.S.; et al. Pharmacotherapy of type 2 diabetes: An update. Metabolism 2018, 78, 13–42. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, S.; Khan, A. Antioxidants and diabetes. Indian J. Endocrinol. Metab. 2012, 16, S267–S271. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Yen, Y.Y.; Hung, K.C.; Hsu, S.W.; Lan, S.J.; Lin, H.C. Inhibitory effects of pu-erh tea on alpha glucosidase and alpha amylase: A systemic review. Nutr. Diabetes 2019, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Yee, L.D.; Mortimer, J.E.; Natarajan, R.; Dietze, E.C.; Seewaldt, V.L. Metabolic health, insulin, and breast cancer: Why oncologists should care about insulin. Front. Endocrinol. 2020, 11, 58. [Google Scholar] [CrossRef]
- Taylor, S.I.; Yazdi, Z.S.; Beitelshees, A.L. Pharmacological treatment of hyperglycemia in type 2 diabetes. J. Clin. Investig. 2021, 131, e142243. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res. 2018, 130, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Adhi, P.I.M.W.; Nanang, F.; Arief, N.; Subagus, W. Antidiabetic activity of Coccinia grandis (L.) Voigt: Bioactive constituents, mechanisms of action, and synergistic effects. J. Appl. Pharm. Sci. 2021, 12, 041–054. [Google Scholar] [CrossRef]
- Xu, B.; Li, Z.; Zeng, T.; Zhan, J.; Wang, S.; Ho, C.T.; Li, S. Bioactives of Momordica charantia as potential anti-diabetic/hypoglycemic agents. Molecules 2022, 27, 2175. [Google Scholar] [CrossRef]
- Ahn, E.; Lee, J.; Jeon, Y.H.; Choi, S.W.; Kim, E. Anti-diabetic effects of mulberry (Morus alba L.) branches and oxyresveratrol in streptozotocin-induced diabetic mice. Food Sci. Biotechnol. 2017, 26, 1693–1702. [Google Scholar] [CrossRef]
- Nuchuchua, O.; Srinuanchai, W.; Chansriniyom, C.; Suttisansanee, U.; Temviriyanukul, P.; Nuengchamnong, N.; Ruktanonchai, U. Relationship of phytochemicals and antioxidant activities in Gymnema inodorum leaf extracts. Heliyon 2024, 10, e23175. [Google Scholar] [CrossRef]
- Su, C.; Li, N.; Ren, R.; Wang, Y.; Su, X.; Lu, F.; Zong, R.; Yang, L.; Ma, X. Progress in the medicinal value, bioactive compounds, and pharmacological activities of Gynostemma pentaphyllum. Molecules 2021, 26, 6249. [Google Scholar] [CrossRef] [PubMed]
- Jamrozik, D.; Borymska, W.; Kaczmarczyk-Żebrowska, I. Hibiscus sabdariffa in diabetes prevention and treatment—Does it work? An evidence-based review. Foods 2022, 11, 2134. [Google Scholar] [CrossRef]
- Li, Y.; Tran, V.H.; Duke, C.C.; Roufogalis, B.D. Preventive and protective properties of Zingiber officinale (ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: A brief review. Evid. Based Complement. Altern. Med. 2012, 2012, 516870. [Google Scholar] [CrossRef] [PubMed]
- Thai Herbal Pharmacopoeia. Available online: https://bdn.go.th/thp/home (accessed on 31 January 2024).
- Salehi, B.; Ata, A.; Anil Kumar, N.V.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Abdulmajid Ayatollahi, S.; Tsouh Fokou, P.V.; Kobarfard, F.; Amiruddin Zakaria, Z.; et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Tripathi, P.; Pandey, R.; Srivatava, R.; Goswami, S. Alternative therapies useful in the management of diabetes: A systematic review. J. Pharm. Bioallied Sci. 2011, 3, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, H.; Pandey, M.; Hua, C.K.; Mun, C.S.; Jing, J.K.; Kong, L.; Ern, L.Y.; Ashraf, N.A.; Kit, S.W.; Yee, T.S.; et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J. Tradit. Complement. Med. 2018, 8, 361–376. [Google Scholar] [CrossRef]
- Lee, B.W.; Lee, J.H.; Gal, S.W.; Moon, Y.H.; Park, K.H. Selective ABTS radical-scavenging activity of prenylated flavonoids from Cudrania tricuspidata. Biosci. Biotechnol. Biochem. 2006, 70, 427–432. [Google Scholar] [CrossRef]
- Gülçin, İ.; Huyut, Z.; Elmastaş, M.; Aboul-Enein, H.Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010, 3, 43–53. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Pizzolante, L.; Toschi, T.G.; Guzzo, F.; Ceoldo, S.; Marconi, A.M.; Andreetta, F.; Levi, M. Phenol content related to antioxidant and antimicrobial activities of Passiflora spp. extracts. Eur. Food Res. Technol. 2006, 223, 102–109. [Google Scholar] [CrossRef]
- Ozcelik, B.; Lee, J.H.; Min, D.B. Effects of light, oxygen, and pH on the absorbance of 2,2-Diphenyl-1-picrylhydrazyl. J. Food Sci. 2003, 68, 487–490. [Google Scholar] [CrossRef]
- Stoilova, I.; Krastanov, A.; Stoyanova, A.; Denev, P.; Gargova, S. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem. 2007, 102, 764–770. [Google Scholar] [CrossRef]
- Gaurav, S.; Jeyabalan, G.; Anil, A. Antioxidant and skeletal muscle relaxant activity of leaf extract of plant Piper attenuatum (B. HAM). IJPBR 2021, 9, 8–15. [Google Scholar]
- Mošovská, S.; Nováková, D.; Kaliňák, M. Antioxidant activity of ginger extract and identification of its active components. Acta Chim. Slovaca 2015, 8, 115–119. [Google Scholar] [CrossRef]
- Amir, M.; Khan, A.; Mujeeb, M.; Ahmad, A.; Usmani, S.; Akhtar, M. Phytochemical analysis and in vitro antioxidant activity of Zingiber officinale. Free Radic. Antioxid. 2011, 1, 75–81. [Google Scholar] [CrossRef]
- Ghafoor, K.; Al Juhaimi, F.; Özcan, M.M.; Uslu, N.; Babiker, E.E.; Mohamed Ahmed, I.A. Total phenolics, total carotenoids, individual phenolics and antioxidant activity of ginger (Zingiber officinale) rhizome as affected by drying methods. LWT 2020, 126, 109354. [Google Scholar] [CrossRef]
- Lo Scalzo, R. Organic acids influence on DPPH scavenging by ascorbic acid. Food Chem. 2008, 107, 40–43. [Google Scholar] [CrossRef]
- Bellik, Y.; Benabdesselam, F.; Ayad, A.; Dahmani, Z.; Boukraa, L.; Nemmar, A.; Iguer-Ouada, M. Antioxidant activity of the essential oil and oleoresin of Zingiber officinale Roscoe as affected by chemical environment. Int. J. Food Prop. 2013, 16, 1304–1313. [Google Scholar] [CrossRef]
- Orellana, E.A.; Kasinski, A.L. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio Protoc. 2016, 6, e1984. [Google Scholar] [CrossRef]
- Titchenell, P.M.; Lazar, M.A.; Birnbaum, M.J. Unraveling the regulation of hepatic metabolism by insulin. Trends Endocrinol. Metab. 2017, 28, 497–505. [Google Scholar] [CrossRef]
- Molinaro, A.; Becattini, B.; Solinas, G. Insulin signaling and glucose metabolism in different hepatoma cell lines deviate from hepatocyte physiology toward a convergent aberrant phenotype. Sci. Rep. 2020, 10, 12031. [Google Scholar] [CrossRef]
- Ruangnoo, S.; Itharat, A.; Sakpakdeejaroen, I.; Rattarom, R.; Tappayutpijam, P.; Pawa, K.K. In vitro cytotoxic activity of Benjakul herbal preparation and its active compounds against human lung, cervical and liver cancer cells. J. Med. Assoc. Thai 2012, 95 (Suppl. 1), S127–S134. [Google Scholar] [PubMed]
- Thakur, R.S.; Ahirwar, B. Ethnopharmacological evaluation of medicinal plants for cytotoxicity against various cancer cell lines. Int. J. Pharm. Pharm. Sci. 2017, 9, 198–202. [Google Scholar] [CrossRef]
- Hossain, U.; Das, A.K.; Ghosh, S.; Sil, P.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem. Toxicol. 2020, 145, 111738. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, S.; Gözcü, S.; Güvenalp, Z.; Özbek, H.; Yuca, H.; Dursunoğlu, B.; Kazaz, C.; Kılıç, C.S. The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. Pharm. Biol. 2018, 56, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zheng, Y.; Zhang, Z.; Yao, W.; Gao, X. Hypoglycemic, hypolipidemic and antioxidant effects of Sarcandra glabra polysaccharide in type 2 diabetic mice. Food Funct. 2014, 5, 2850–2860. [Google Scholar] [CrossRef]
- Kim, G.N.; Kwon, Y.I.; Jang, H.D. Mulberry leaf extract reduces postprandial hyperglycemia with few side effects by inhibiting α-glucosidase in normal rats. J. Med. Food 2011, 14, 712–717. [Google Scholar] [CrossRef]
- Hwang, S.H.; Li, H.M.; Lim, S.S.; Wang, Z.; Hong, J.S.; Huang, B. Evaluation of a standardized extract from Morus alba against α-glucosidase inhibitory effect and postprandial antihyperglycemic in patients with impaired glucose tolerance: A randomized double-blind clinical trial. Evid. Based Complement. Alternat. Med. 2016, 2016, 8983232. [Google Scholar] [CrossRef]
- Megalli, S.; Davies, N.M.; Roufogalis, B.D. Anti-hyperlipidemic and hypoglycemic effects of Gynostemma pentaphyllum in the zucker fatty rat. J. Pharm. Pharm. Sci. 2006, 9, 281–291. [Google Scholar]
- Li, H.; Rafie, R.; Xu, Z.; Siddiqui, R.A. Phytochemical profile and anti-oxidation activity changes during ginger (Zingiber officinale) harvest: Baby ginger attenuates lipid accumulation and ameliorates glucose uptake in HepG2 cells. Food Sci. Nutr. 2022, 10, 133–144. [Google Scholar] [CrossRef]
- Thariwong, S.; Intharuksa, A.; Sirisa-ard, P.; Charoensup, W.; Chansakaow, S. Specification and DNA barcoding of Thai traditional remedy for chronic kidney disease: Pikad Tri-phol-sa-mut-than. Plants 2021, 10, 2023. [Google Scholar] [CrossRef]
- Ibrahim, I.S.; Mohd Said, M.; Mohammad Zainoor, N.; Jamal, J.A. Authentication of Marantodes pumilum (Blume) Kuntze: A systematic review. Front. Pharmacol. 2022, 13, 855384. [Google Scholar] [CrossRef] [PubMed]
- Gocan, S.; Cimpan, G. Review of the analysis of medicinal plants by TLC: Modern approaches. J. Liq. Chromatogr. Relat. Technol. 2004, 27, 1377–1411. [Google Scholar] [CrossRef]
- Kao, T.H.; Huang, S.C.; Inbaraj, B.S.; Chen, B.H. Determination of flavonoids and saponins in Gynostemma pentaphyllum (Thunb.) Makino by liquid chromatography–mass spectrometry. Anal. Chim. Acta 2008, 626, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xie, Z.; Niu, Y.; Shi, H.; Chen, P.; Yu, L. Chemical compositions, HPLC/MS fingerprinting profiles and radical scavenging properties of commercial Gynostemma pentaphyllum (Thunb.) Makino samples. Food Chem. 2012, 134, 180–188. [Google Scholar] [CrossRef]
- Ling, Y.; Lei, Z.; Xinying, L.; Yan, X.; Siying, W.; Yang, W.; Nie, Q.; Zhang, Q.; Hai’ou, B.; Yu, J.; et al. Characterization and identification of the chemical constituents of Gynostemma pentaphyllum using High Performance Liquid Chromatography–Electrospray Ionization–Quadrupole Time-of-Flight Tandem Mass Spectrometry (HPLC-ESI-QTOF-MS/MS). Anal. Lett. 2020, 53, 760–773. [Google Scholar] [CrossRef]
- Chen, C.; Mohamad Razali, U.H.; Saikim, F.H.; Mahyudin, A.; Mohd Noor, N.Q.I. Morus alba L. plant: Bioactive compounds and potential as a functional food ingredient. Foods 2021, 10, 689. [Google Scholar] [CrossRef]
- Chen, Z.; Du, X.; Yang, Y.; Cui, X.; Zhang, Z.; Li, Y. Comparative study of chemical composition and active components against α-glucosidase of various medicinal parts of Morus alba L. Biomed. Chromatogr. 2018, 32, e4328. [Google Scholar] [CrossRef]
- Polumackanycz, M.; Wesolowski, M.; Viapiana, A. Morus alba L. and Morus nigra L. leaves as a promising food source of phenolic compounds with antioxidant activity. Plant Foods Hum. Nutr. 2021, 76, 458–465. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; An, C.; Liu, C.; Zhang, Q.; Ding, H.; Ma, S.; Xue, W.; Fan, D. Ginsenoside Rg1 alleviates the postprandial blood glucose by inhibiting α-glucosidase. J. Funct. Foods 2023, 107, 105648. [Google Scholar] [CrossRef]
- Gao, Z.; Li, Q.; Wu, X.; Zhao, X.; Zhao, L.; Tong, X. New insights into the mechanisms of chinese herbal products on diabetes: A focus on the “bacteria-mucosal immunity-inflammation-diabetes” Axis. J. Immunol. Res. 2017, 2017, 1813086. [Google Scholar] [CrossRef]
- Ye, X.-P.; Song, C.-Q.; Yuan, P.; Mao, R.-G. α-Glucosidase and α-amylase inhibitory activity of common constituents from traditional Chinese medicine used for diabetes mellitus. Chin. J. Nat. Med. 2010, 8, 349–352. [Google Scholar] [CrossRef]
- Teng, H.; Chen, L.; Fang, T.; Yuan, B.; Lin, Q. Rb2 inhibits α-glucosidase and regulates glucose metabolism by activating AMPK pathways in HepG2 cells. J. Funct. Foods 2017, 28, 306–313. [Google Scholar] [CrossRef]
- Hunyadi, A.; Martins, A.; Hsieh, T.J.; Seres, A.; Zupkó, I. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS ONE 2012, 7, e50619. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, X.; Zhou, B.; Li, H.; Zeng, J.; Gao, W. Anti-diabetic activity in type 2 diabetic mice and α-glucosidase inhibitory, antioxidant and anti-inflammatory potential of chemically profiled pear peel and pulp extracts (Pyrus spp.). J. Funct. Foods 2015, 13, 276–288. [Google Scholar] [CrossRef]
- Lim, S.H.; Yu, J.S.; Lee, H.S.; Choi, C.I.; Kim, K.H. Antidiabetic flavonoids from fruits of Morus alba promoting insulin-stimulated glucose uptake via Akt and AMP-activated protein kinase activation in 3T3-L1 adipocytes. Pharmaceutics 2021, 13, 526. [Google Scholar] [CrossRef]
- Babu, A.R.; Sunny, A.; John, D.B.; Sharma, S. Anti-diabetic activity by in vitro inhibition of α-amylase enzyme and phytochemical screening of Phyllanthus niruri. Curr. Trends Biotechnol. Pharm. 2021, 15, 511–518. [Google Scholar] [CrossRef]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef]
- Pontis, J.A.; Costa, L.A.M.A.d.; Silva, S.J.R.d.; Flach, A. Color, phenolic and flavonoid content, and antioxidant activity of honey from Roraima, Brazil. Food Sci. Technol. 2014, 34, 69–73. [Google Scholar] [CrossRef]
- Budluang, P.; Pitchakarn, P.; Ting, P.; Temviriyanukul, P.; Wongnoppawich, A.; Imsumran, A. Anti-inflammatory and anti-insulin resistance activities of aqueous extract from Anoectochilus burmannicus. Food Sci. Nutr. 2017, 5, 486–496. [Google Scholar] [CrossRef]
- Yang, D.; Chen, X.; Liu, X.; Han, N.; Liu, Z.; Li, S.; Zhai, J.; Yin, J. Antioxidant and α-glucosidase inhibitory activities guided isolation and identification of components from mango seed kernel. Oxid. Med. Cell. Longev. 2020, 2020, 8858578. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, L.; Teng, H.; Song, H.; Wu, X.; Xu, M. Phenolic compounds ameliorate the glucose uptake in HepG2 cells’ insulin resistance via activating AMPK: Anti-diabetic effect of phenolic compounds in HepG2 cells. J. Funct. Foods 2015, 19, 487–494. [Google Scholar] [CrossRef]
- Sadeghi Ekbatan, S.; Li, X.Q.; Ghorbani, M.; Azadi, B.; Kubow, S. Chlorogenic acid and its microbial metabolites exert anti-proliferative effects, S-phase cell-cycle arrest and apoptosis in human colon cancer Caco-2 cells. Int. J. Mol. Sci. 2018, 19, 723. [Google Scholar] [CrossRef] [PubMed]
Sample | Yield (% w/w) |
---|---|
C. grandis | 13.68 |
G. inodorum | 29.52 |
G. pentaphyllum | 15.75 |
H. sabdariffa | 28.32 |
M. charantia | 15.11 |
M. alba | 25.66 |
Z. officinale | 12.05 |
Sample | Total Phenolic Content (mg GAE/g Extract) | Total Flavonoid Content (mg CE/g Extract) |
---|---|---|
C. grandis | 57.60 ± 0.45 | 21.83 ± 0.35 |
G. inodorum | 41.33 ± 0.65 | 11.92 ± 0.15 |
G. pentaphyllum | 20.87 ± 0.07 | 5.07 ± 0.54 |
H. sabdariffa | 48.75 ± 0.73 | 24.63 ± 0.16 |
M. charantia | 29.00 ± 0.50 | 6.88 ± 0.49 |
M. alba | 54.94 ± 0.51 | 35.41 ± 0.41 |
Z. officinale | 167.95 ± 0.11 | 81.70 ± 0.29 |
Sample | DPPH (IC50 (µg/mL)) | ABTS (IC50 (µg/mL)) |
---|---|---|
C. grandis | 122.53 ± 0.21 **** | 62.93 ± 1.02 **** |
G. inodorum | 317.80 ± 1.30 **** | 93.00 ± 1.27 **** |
G. pentaphyllum | 694.37 ± 1.72 **** | 554.00 ± 0.70 **** |
H. sabdariffa | 101.30 ± 0.62 **** | 52.84 ± 0.42 **** |
M. charantia | 680.73 ± 1.37 **** | 165.43 ± 0.46 **** |
M. alba | 89.13 ± 0.18 **** | 56.03 ± 0.41 **** |
Z. officinale | 19.16 ± 0.43 **** | 8.53 ± 0.04 **** |
Ascorbic acid | 3.79 ± 0.05 | - |
Trolox | - | 3.61 ± 0.01 |
Sample | IC20 (µg/mL) |
---|---|
C. grandis | 152.10 ± 14.25 |
G. inodorum | 54.63 ± 29.85 |
G. pentaphyllum | 99.73 ± 0.22 |
H. sabdariffa | 251.57 ± 86.98 |
M. charantia | 49.71 ± 15.59 |
M. alba | 200.77 ± 23.64 |
Z. officinale | 55.68 ± 18.79 |
Sample | α-Glucosidase Inhibitory (IC50 (µg/mL)) |
---|---|
C. grandis | 423.73 ± 2.40 **** |
G. inodorum | 519.23 ± 4.58 **** |
G. pentaphyllum | 329.97 ± 3.70 **** |
H. sabdariffa | >1000 **** |
M. charantia | NI |
M. alba | 134.40 ± 0.26 **** |
Z. officinale | NI |
Acarbose | 571.27 ± 3.33 |
Sample | α-Glucosidase Inhibitory (IC50 (µg/mL)) |
---|---|
R1 remedy | 122.10 ± 0.17 **** |
R3 remedy | NI |
Acarbose | 571.27 ± 3.33 |
Specification | Content (% w/w) |
---|---|
Loss on drying | 7.05 ± 0.02 |
Foreign matter | Not found |
Acid-insoluble ash | 1.41 ± 0.07 |
Total ash | 10.64 ± 0.05 |
Ethanol-soluble extractive value | 13.59 ± 0.08 |
Water-soluble extractive value | 25.11 ± 0.01 |
Total crude saponins | 2.33 ± 0.06 |
No. | Scientific Name | Family | Part Used |
---|---|---|---|
1 | Coccinia grandis (L.) Voigt | Cucurbitaceae | Aerial part |
2 | Gymnema inodorum (Lour.) Decne. | Asclepiadaceae | Leaf |
3 | Gynostemma pentaphyllum (Thunb.) Makino | Cucurbitaceae | Aerial part |
4 | Hibiscus sabdariffa L. | Malvaceae | Calyx |
5 | Momordica charantia L. | Cucurbitaceae | Fruit |
6 | Morus alba L. | Moraceae | Leaf |
7 | Zingiber officinale Roscoe | Zingiberaceae | Rhizome |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunyakitcharoen, A.; Taychaworaditsakul, W.; Sireeratawong, S.; Chansakaow, S. Anti-Hyperglycemic Effects of Thai Herbal Medicines. Plants 2024, 13, 2862. https://doi.org/10.3390/plants13202862
Bunyakitcharoen A, Taychaworaditsakul W, Sireeratawong S, Chansakaow S. Anti-Hyperglycemic Effects of Thai Herbal Medicines. Plants. 2024; 13(20):2862. https://doi.org/10.3390/plants13202862
Chicago/Turabian StyleBunyakitcharoen, Athit, Weerakit Taychaworaditsakul, Seewaboon Sireeratawong, and Sunee Chansakaow. 2024. "Anti-Hyperglycemic Effects of Thai Herbal Medicines" Plants 13, no. 20: 2862. https://doi.org/10.3390/plants13202862
APA StyleBunyakitcharoen, A., Taychaworaditsakul, W., Sireeratawong, S., & Chansakaow, S. (2024). Anti-Hyperglycemic Effects of Thai Herbal Medicines. Plants, 13(20), 2862. https://doi.org/10.3390/plants13202862