Morphophysiological Adaptations of Aquatic Macrophytes in Wetland-Based Sewage Treatment Systems: Strategies for Resilience and Efficiency under Environmental Stress
Abstract
:1. Introduction
2. Aquatic Macrophytes in the Treatment System
Macrophyte Species | Geographical Distribution | Growth and Reproduction | Required Maintenance | Source |
---|---|---|---|---|
Acorus calamus | Tropical and subtropical | Moderate, reproduces by rhizomes and seeds | Low | Hua et al. [23] |
Arundo donax | Mediterranean and subtropical | Rapid, reproduces by rhizomes | Moderate | Du and Song [28] |
Canna indica | Tropical and subtropical | Rapid, reproduces by rhizomes and seeds | Low | Yadav et al. [29] |
Canna x generalis | Tropical and subtropical | Rapid, reproduces by rhizomes and seeds | Low | Chaves et al. [30] |
Chrysopogon zizanioides | Tropical and subtropical | Rapid, reproduces by rhizomes | Minimal | Waqkene et al. [21] |
Coix lacryma-jobi | Tropical and subtropical | Moderate, reproduces by seeds | Minimal | Chaves et al. [30] |
Cyperus alternifolius | Tropical and subtropical | Rapid, reproduces by rhizomes | Minimal | Corzo and Sanabria [24] |
Cyperus articulatus | Tropical and subtropical | Moderate, reproduces by rhizomes | Low | Caselles-Osorio et al. [31] |
Cyperus haspan | Tropical and subtropical | Rapid, reproduces by rhizomes | Minimal | Henry et al. [32] |
Cyperus papyrus | Tropical and subtropical | Rapid, reproduces by rhizomes | Low | García-Ávila et al. [33] |
Dioscorea spp. | Tropical and subtropical | Rapid, reproduces by rhizomes | Minimal | Chaves et al. [30] |
Eichhornia crassipes | Global | Rapid reproduction by fragmentation | High | Kumari et al. [34] |
Erianthus arundinaceus | Tropical and subtropical | Rapid, reproduces by rhizomes | Minimal | Arivoli et al. [35] |
Heliconia burleana | Tropical and subtropical | Rapid, reproduces by rhizomes | Minimal | Corzo and Sanabria [24] |
Heliconia zingiberales | Tropical and subtropical | Rapid, reproduces by rhizomes and seeds | Minimal | Trejo-Téllez [36] |
Imperata cylindrica | Tropical and subtropical | Rapid, reproduces by rhizomes | Minimal | Khajah and Ahmed [37] |
Iris pseudacorus | Europe, Asia, and North America | Moderate, reproduces by rhizomes and seeds | Low | Huang et al. [38]; Yao et al. [39] |
Juncus acutus | North and Central America | Moderate, reproduces by rhizomes and seeds | Minimal | Zahran et al. [40] |
Leptochloa fusca | Tropical and subtropical | Rapid, reproduces by rhizomes | Minimal | Snow et al. [41] |
Lolium multiflorum | Temperate | Rapid, reproduces by seeds | Moderate | Vila-Aiub et al. [42] |
Melaleuca quinquenervia | Australia and Pacific | Rapid, reproduces by seeds and rhizomes | Moderate | Bolton et al. [43] |
Phalaris arundinacea | Temperate and subtropical | Rapid, reproduces by rhizomes | Low | Sochacki et al. [44] |
Phragmites australis | Global | Rapid, reproduces by rhizomes | Low | Hussain et al. [45]; Malyan et al. [46]; Jain et al. [47]; Arivoli et al. [35] |
Phragmites spp. | Global | Rapid, reproduces by rhizomes | Low | Redder et al. [48] |
Pontederia cordata | North and Central America | Rapid, reproduces by seeds and rhizomes | Low | Chang et al. [49] |
Scirpus alternifolius | Tropical and subtropical | Rapid, reproduces by rhizomes | Low | Villar et al. [50] |
Scirpus grossus | Tropical and subtropical | Rapid, reproduces by rhizomes | Low | Sun et al. [51] |
Thalia geniculata | Tropical and subtropical | Rapid, reproduces by seeds and rhizomes | Minimal | Obeng et al. [22] |
Typha angustata | Asia and Africa | Rapid, reproduces by rhizomes | Low | Nguru and Sabo [52] |
Typha angustifolia | Tropical and subtropical | Rapid, reproduces by rhizomes | Low | Malyan et al. [46]; Arivoli et al. [35]; Arliyani et al. [53] |
Typha latifolia | Global | Rapid, reproduces by rhizomes | Minimal | Malyan et al. [46] |
Vetiveria zizanioides | Tropical and subtropical | Rapid, reproduces by rhizomes | Minimal | Almeida et al. [54] |
Zantedeschia aethiopica | Tropical and subtropical | Rapid, reproduces by seeds and rhizomes | Minimal | Corzo and Sanabria [24] |
Zingiber officinale | Tropical and subtropical | Rapid, reproduces by rhizomes | Minimal | Chaves et al. [30] |
2.1. Function of Macrophytes in Treatment Systems
2.1.1. Nutrient Removal
2.1.2. Organic Pollutant Removal
Mechanism | Description | Key Structures/Processes | References |
---|---|---|---|
Root Uptake | Nutrients are absorbed from the soil or sediment through root systems |
| Palaicos et al. [63] Kalengo et al. [64] |
Nutrient Assimilation | Absorbed nutrients are incorporated into plant biomass or stored in vacuoles |
| Reddy and DeLaune [48]; Beilby et al. [65] |
Storage Mechanisms | Nutrients are sequestered in various plant tissues to prevent their release into the water column. |
| Vymazal [66]; Nikilakipoulou et al. [67] |
2.1.3. Heavy Metals Removal
2.1.4. Oxygenation
2.1.5. Stabilization of Sediments
2.1.6. Habitat Provision
2.1.7. Light and Temperature Regulation
2.1.8. Enhancement of Microbial Activity
2.1.9. Filtration Sediment Reduction
3. Morphophysiological Adaptations of Aquatic Macrophytes to Sewage Treatment Systems
3.1. Structural Adaptations
3.2. Physiological Adaptations
3.3. Morphological and Anatomical Adaptations
3.4. Reproductive Strategies and Population Dynamics
4. Selection Criteria and Examples of Macrophyte Species for Wetland-Based Treatment Systems
5. Challenges
6. Practical Implications
7. Addressing Key Questions of the Review
7.1. How Do Morphophysiological Adaptations of Macrophytes Contribute to Their Survival and Efficiency in Sewage Treatment Systems?
7.2. How Can These Adaptations Optimize the Design and Maintenance of Wetland-Based Treatment Systems?
7.3. What Is the Significance of These Adaptations in Managing the Complex Composition of WWTP Effluents?
7.4. How Do These Findings Influence Environmental Management and Policy?
7.5. What Are the Broader Ecological Benefits of Using Macrophytes in Wetland-Based Treatment Systems?
8. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Mai, C.; Mojiri, A.; Palanisami, S.; Altaee, A.; Huang, Y.; Zhou, J.L. Wastewater Hydroponics for Pollutant Removal and Food Production: Principles, Progress and Future Outlook. Water 2023, 15, 2614. [Google Scholar] [CrossRef]
- Kochi, L.Y.; Freitas, P.L.; Maranho, L.T.; Juneau, P.; Gomes, M.P. Aquatic Macrophytes in Constructed Wetlands: A Fight against Water Pollution. Sustainability 2020, 12, 9202. [Google Scholar] [CrossRef]
- Marques, R.Z.; Oliveira, P.G.D.; Barbato, M.L.; Kitamura, R.S.A.; Maranho, L.T.; Brito, J.C.M.; Nogueira, K.d.S.; Juneau, P.; Gomes, M.P. Green Solutions for Antibiotic Pollution: Assessing the Phytoremediation Potential of Aquatic Macrophytes in Wastewater Treatment Plants. Environ. Pollut. 2024, 357, 124376. [Google Scholar] [CrossRef]
- Kochi, L.Y.; Kitamura, R.S.A.; Rocha, C.S.; Brito, J.C.M.; Juneau, P.; Gomes, M.P. Synergistic Removal of Ciprofloxacin and Sulfamethoxazole by Lemna minor and Salvinia molesta in Mixed Culture: Implications for Phytoremediation of Antibiotic-Contaminated Water. Water 2023, 15, 1899. [Google Scholar] [CrossRef]
- Kitamura, R.S.A.; Vicentini, M.; Bitencourt, V.; Vicari, T.; Motta, W.; Brito, J.C.M.; Cestari, M.M.; Prodocimo, M.M.; de Assis, H.C.S.; Gomes, M.P. Salvinia Molesta Phytoremediation Capacity as a Nature-Based Solution to Prevent Harmful Effects and Accumulation of Ciprofloxacin in Neotropical Catfish. Environ. Sci. Pollut. Res. 2023, 30, 41848–41863. [Google Scholar] [CrossRef]
- Kitamura, R.S.A.; Brito, J.C.M.; Silva de Assis, H.C.; Gomes, M.P. Physiological Responses and Phytoremediation Capacity of Floating and Submerged Aquatic Macrophytes Exposed to Ciprofloxacin. Environ. Sci. Pollut. Res. 2022, 30, 622–639. [Google Scholar] [CrossRef]
- Wu, L.; Weston, L.A.; Zhu, S.; Zhou, X. Editorial: Rhizosphere Interactions: Root Exudates and the Rhizosphere Microbiome. Front. Plant Sci. 2023, 14, 1281010. [Google Scholar] [CrossRef]
- Pandey, D.; Chhimwal, M.; Srivastava, R.K. A Review on the Application of Macrophytes in Phytoremediation of Heavy Metal Polluted Water. Res. J. Chem. Environ. 2022, 26, 116–125. [Google Scholar] [CrossRef]
- Chaurasia, S. Role of Macrophytes: A Review. Adv. Zool. Bot. 2022, 10, 75–81. [Google Scholar] [CrossRef]
- Jones, J.I.; Collins, A.L.; Naden, P.S.; Sear, D.A. The Relationship Between Fine Sediment and Macrophytes in Rivers. River Res. Appl. 2012, 28, 1006–1018. [Google Scholar] [CrossRef]
- Han, Z.; Cui, B. Performance of Macrophyte Indicators to Eutrophication Pressure in Ponds. Ecol. Eng. 2016, 96, 8–19. [Google Scholar] [CrossRef]
- Antoniadis, V.; Shaheen, S.M.; Stärk, H.-J.; Wennrich, R.; Levizou, E.; Merbach, I.; Rinklebe, J. Phytoremediation Potential of Twelve Wild Plant Species for Toxic Elements in a Contaminated Soil. Environ. Int. 2021, 146, 106233. [Google Scholar] [CrossRef]
- Selvaraj, D.; Velvizhi, G. Sustainable Ecological Engineering Systems for the Treatment of Domestic Wastewater Using Emerging, Floating and Submerged Macrophytes. J. Environ. Manag. 2021, 286, 112253. [Google Scholar] [CrossRef]
- Pellizzaro, A.; Dal Ferro, N.; Fant, M.; Zerlottin, M.; Borin, M. Emerged Macrophytes to the Rescue: Perfluoroalkyl Acid Removal from Wastewater and Spiked Solutions. J. Environ. Manag. 2022, 309, 114703. [Google Scholar] [CrossRef]
- Rezania, S.; Kamyab, H.; Rupani, P.F.; Park, J.; Nawrot, N.; Wojciechowska, E.; Yadav, K.K.; Lotfi Ghahroud, M.; Mohammadi, A.A.; Thirugnana, S.T.; et al. Recent Advances on the Removal of Phosphorus in Aquatic Plant-Based Systems. Environ. Technol. Innov. 2021, 24, 101933. [Google Scholar] [CrossRef]
- Justin, L.D.; Olukanni, D.O.; Babaremu, K.O. Performance Assessment of Local Aquatic Macrophytes for Domestic Wastewater Treatment in Nigerian Communities: A Review. Heliyon 2022, 8, e10093. [Google Scholar] [CrossRef]
- Bulu, Y.I.; Oladoja, N.A. Process Variables That Defined the Phytofiltration Efficiency of Invasive Macrophytes in Aquatic System. Int. J. Phytoremediat. 2023, 25, 1774–1792. [Google Scholar] [CrossRef]
- Wang, D.; Gan, X.; Wang, Z.; Jiang, S.; Zheng, X.; Zhao, M.; Zhang, Y.; Fan, C.; Wu, S.; Du, L. Research Status on Remediation of Eutrophic Water by Submerged Macrophytes: A Review. Process Saf. Environ. Prot. 2023, 169, 671–684. [Google Scholar] [CrossRef]
- Rocha, C.S.; Kochi, L.Y.; Ribeiro, G.B.; Rocha, D.C.; Carneiro, D.N.M.; Gomes, M.P. Evaluating Aquatic Macrophytes for Removing Erythromycin from Contaminated Water: Floating or Submerged? Int. J. Phytoremediat. 2022, 24, 995–1003. [Google Scholar] [CrossRef]
- Waqkene, T.; Mereta, S.T.; Terfe, A.; Ousman, W.Z. Integrated Methods for Household Greywater Treatment: Modified Biofiltration and Phytoremediation. J. Environ. Public Health 2023, 2023, 7778240. [Google Scholar] [CrossRef]
- Obeng, E.; Essandoh, H.M.K.; Akodwaa-Boadi, K.; Taylor, T.S.; Kusi, I.; Appiah-Effah, E. Recycled Clay Bricks and Palm Kernel Shell as Constructed Wetland Substrate for Wastewater Treatment: An Engineered Closed Circuit Circular Economy Approach. Environ. Technol. Innov. 2023, 32, 103324. [Google Scholar] [CrossRef]
- Hua, Y.; Peng, L.; Zhang, S.; Heal, K.V.; Zhao, J.; Zhu, D. Effects of Plants and Temperature on Nitrogen Removal and Microbiology in Pilot-Scale Horizontal Subsurface Flow Constructed Wetlands Treating Domestic Wastewater. Ecol. Eng. 2017, 108, 70–77. [Google Scholar] [CrossRef]
- Corzo, A.; Sanabria, O. Adaptation of Vegetation in High-Rate Constructed Wetland Using Artificial Carriers for Bacterial Growth: Assessment Using Phytopathological Indicators. J. Water Process Eng. 2019, 32, 100974. [Google Scholar] [CrossRef]
- Dong, B.; Zhou, Y.; Jeppesen, E.; Shi, K.; Qin, B. Response of Community Composition and Biomass of Submerged Macrophytes to Variation in Underwater Light, Wind and Trophic Status in a Large Eutrophic Shallow Lake. J. Environ. Sci. 2021, 103, 298–310. [Google Scholar] [CrossRef]
- Striker, G.G. An Overview of Oxygen Transport in Plants: Diffusion and Convection. Plant Biol. 2023, 25, 842–847. [Google Scholar] [CrossRef]
- Szabó, S.; Koleszár, G.; Zavanyi, G.; Nagy, P.T.; Braun, M.; Hilt, S. Disentangling the Mechanisms Sustaining a Stable State of Submerged Macrophyte Dominance against Free-Floating Competitors. Front. Plant Sci. 2022, 13, 963579. [Google Scholar] [CrossRef]
- Du, J.; Song, K. Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China. Chin. Geogr. Sci. 2018, 28, 420–429. [Google Scholar] [CrossRef]
- Yadav, A.; Chazarenc, F.; Mutnuri, S. Development of the “French System” Vertical Flow Constructed Wetland to Treat Raw Domestic Wastewater in India. Ecol. Eng. 2018, 113, 88–93. [Google Scholar] [CrossRef]
- Chaves, V.T.; Morita, D.M.; Chao, I.R.S.; Contrera, R.C. Phosphorus Recovery from Sewage with a Sustainable and Low-Cost Treatment System. Water Sci. Technol. 2019, 80, 846–854. [Google Scholar] [CrossRef]
- Caselles-Osorio, A.; Vega, H.; Lancheros, J.C.; Casierra-Martínez, H.A.; Mosquera, J.E. Horizontal Subsurface-Flow Constructed Wetland Removal Efficiency Using Cyperus articulatus L. Ecol. Eng. 2017, 99, 479–485. [Google Scholar] [CrossRef]
- Henry, G.M.; Elmore, M.T.; Gannon, T.W. Cyperus esculentus and Cyperus rotundus. In Biology and Management of Problematic Crop Weed Species; Elsevier: Amsterdam, The Netherlands, 2021; pp. 151–172. [Google Scholar]
- García-Ávila, F.; Patiño-Chávez, J.; Zhinín-Chimbo, F.; Donoso-Moscoso, S.; Flores del Pino, L.; Avilés-Añazco, A. Performance of Phragmites australis and Cyperus papyrus in the Treatment of Municipal Wastewater by Vertical Flow Subsurface Constructed Wetlands. Int. Soil Water Conserv. Res. 2019, 7, 286–296. [Google Scholar] [CrossRef]
- Kumari, D.; Daverey, A.; Dutta, K. Microbial Electrochemical-Based Constructed Wetland Technology for Wastewater Treatment: Reality, Challenges, and Future Prospects. In Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development; Elsevier: Amsterdam, The Netherlands, 2022; pp. 383–413. [Google Scholar]
- Arivoli, A.; Mohanraj, R.; Seenivasan, R. Application of Vertical Flow Constructed Wetland in Treatment of Heavy Metals from Pulp and Paper Industry Wastewater. Environ. Sci. Pollut. Res. 2015, 22, 13336–13343. [Google Scholar] [CrossRef]
- Trejo-Téllez, L.I. Diversidad, Distribución y Reproducción de Heliconias. Agro Product. 2018, 11, 33–40. [Google Scholar] [CrossRef]
- Khajah, M.; Bydalek, F.; Babatunde, A.O.; Al-Matouq, A.; Wenk, J.; Webster, G. Nitrogen Removal Performance and Bacterial Community Analysis of a Multistage Step-Feeding Tidal Flow Constructed Wetland. Front. Water 2023, 5, 1–13. [Google Scholar] [CrossRef]
- Huang, J.; Yan, C.; Liu, J.; Guan, W.; Singh, R.P.; Cao, C.; Xiao, J. Feasibility Study of Vertical Flow Constructed Wetland for Tertiary Treatment of Nanosilver Wastewater and Temporal-Spatial Distribution of Pollutants and Microbial Community. J. Environ. Manag. 2019, 245, 28–36. [Google Scholar] [CrossRef]
- Yao, D.; Dai, N.; Hu, X.; Cheng, C.; Xie, H.; Hu, Z.; Liang, S.; Zhang, J. New Insights into the Effects of Wetland Plants on Nitrogen Removal Pathways in Constructed Wetlands with Low C/N Ratio Wastewater: Contribution of Partial Denitrification-Anammox. Water Res. 2023, 243, 120277. [Google Scholar] [CrossRef]
- Zahran, M.A.; El-Demerdash, M.A.; Mashaly, I.A. On the Ecology of Juncus acutus and J. rigidus as Fiber Producing Halophytes in Arid Regions. In Towards the Rational use of High Sanility Tolerant Plants. Tasks for Vegetation Science; Springer: Dordrecht, The Netherlands, 1993; pp. 331–342. [Google Scholar] [CrossRef]
- Snow, N.; Peterson, P.M.; Simon, B.K.; Romaschenko, K. Monograph of Diplachne (Poaceae, Chloridoideae, Cynodonteae). PhytoKeys 2018, 93, 1–102. [Google Scholar] [CrossRef]
- Vila-Aiub, M.M.; Gundel, P.E.; Ghersa, C.M. Fungal Endophyte Infection Changes Growth Attributes in Lolium multiflorum Lam. Austral Ecol. 2005, 30, 49–57. [Google Scholar] [CrossRef]
- Bolton, L.; Joseph, S.; Greenway, M.; Donne, S.; Munroe, P.; Marjo, C.E. Phosphorus Adsorption onto an Enriched Biochar Substrate in Constructed Wetlands Treating Wastewater. Ecol. Eng. 2019, 142, 100005. [Google Scholar] [CrossRef]
- Sochacki, A.; Nowrotek, M.; Felis, E.; Kalka, J.; Ziembińska-Buczyńska, A.; Bajkacz, S.; Ciesielski, S.; Miksch, K. The Effect of Loading Frequency and Plants on the Degradation of Sulfamethoxazole and Diclofenac in Vertical-Flow Constructed Wetlands. Ecol. Eng. 2018, 122, 187–196. [Google Scholar] [CrossRef]
- Hussain, Z.; Arslan, M.; Malik, M.H.; Mohsin, M.; Iqbal, S.; Afzal, M. Integrated Perspectives on the Use of Bacterial Endophytes in Horizontal Flow Constructed Wetlands for the Treatment of Liquid Textile Effluent: Phytoremediation Advances in the Field. J. Environ. Manag. 2018, 224, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Malyan, S.K.; Yadav, S.; Sonkar, V.; Goyal, V.C.; Singh, O.; Singh, R. Mechanistic Understanding of the Pollutant Removal and Transformation Processes in the Constructed Wetland System. Water Environ. Res. 2021, 93, 1882–1909. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Upadhyay, M.; Gupta, A.K.; Ghosal, P.S. A Review on the Treatment of Septage and Faecal Sludge Management: A Special Emphasis on Constructed Wetlands. J. Environ. Manag. 2022, 315, 115143. [Google Scholar] [CrossRef]
- Reddy, K.R.; DeLaune, R.D. Biogeochemistry of Wetlands; CRC Press: Boca Raton, FL, USA, 2008; ISBN 9780203491454. [Google Scholar]
- Chang, N.-B.; Xuan, Z.; Marimon, Z.; Islam, K.; Wanielista, M.P. Exploring Hydrobiogeochemical Processes of Floating Treatment Wetlands in a Subtropical Stormwater Wet Detention Pond. Ecol. Eng. 2013, 54, 66–76. [Google Scholar] [CrossRef]
- Clevering, O.A.; Blom, C.W.P.M.; Vierssen, W. Van Growth and Morphology of Scirpus lacustris and S. maritimus Seedlings as Affected by Water Level and Light Availability. Funct. Ecol. 1996, 10, 289. [Google Scholar] [CrossRef]
- Sun, S.; Gao, X.; Cai, Y. Variations in Sexual and Asexual Reproduction of Scirpus mariqueter along an Elevational Gradient. Ecol. Res. 2001, 16, 263–274. [Google Scholar] [CrossRef]
- Nguru, M.I.; Sabo, R. Origin, Classification and Distribution of Typha Species a Paradigm for Understanding the Biology and Ecology of the Wetland Emergent Plant Species. Fane-Fane Int. Multidiscip. J. 2022, 6, 1–8. [Google Scholar]
- Arliyani, I.; Tangahu, B.V.; Mangkoedihardjo, S.; Zulaika, E.; Kurniawan, S.B. Enhanced Leachate Phytodetoxification Test Combined with Plants and Rhizobacteria Bioaugmentation. Heliyon 2023, 9, e12921. [Google Scholar] [CrossRef]
- Almeida, A.; Ribeiro, C.; Carvalho, F.; Durao, A.; Bugajski, P.; Kurek, K.; Pochwatka, P.; Jóźwiakowski, K. Phytoremediation Potential of Vetiveria zizanioides and Oryza sativa to Nitrate and Organic Substance Removal in Vertical Flow Constructed Wetland Systems. Ecol. Eng. 2019, 138, 19–27. [Google Scholar] [CrossRef]
- de Oliveira Souza, A.; Bernardelli, J.K.B.; de Carvalho Silva, L.; Perretto, F.; Nagalli, A.; Mymrin, V.; Passig, F.H.; de Carvalho, K.Q. Plasterboard Sheet Applied in Vertical-Flow Constructed Wetlands: Nutrients Removal, Microbial Diversity, and Mechanisms. J. Water Process Eng. 2023, 53, 103811. [Google Scholar] [CrossRef]
- Ijoma, G.N.; Lopes, T.; Mannie, T.; Mhlongo, T.N. Exploring Macrophytes’ Microbial Populations Dynamics to Enhance Bioremediation in Constructed Wetlands for Industrial Pollutants Removal in Sustainable Wastewater Treatment. Symbiosis 2024, 92, 323–354. [Google Scholar] [CrossRef]
- Limmer, M.; Burken, J. Phytovolatilization of Organic Contaminants. Environ. Sci. Technol. 2016, 50, 6632–6643. [Google Scholar] [CrossRef] [PubMed]
- Barac, T.; Taghavi, S.; Borremans, B.; Provoost, A.; Oeyen, L.; Colpaert, J.V.; Vangronsveld, J.; van der Lelie, D. Engineered Endophytic Bacteria Improve Phytoremediation of Water-Soluble, Volatile, Organic Pollutants. Nat. Biotechnol. 2004, 22, 583–588. [Google Scholar] [CrossRef]
- Kitamura, R.S.A.; Marques, R.Z.; Kubis, G.C.; Kochi, L.Y.; Barbato, M.L.; Maranho, L.T.; Juneau, P.; Gomes, M.P. The Phytoremediation Capacity of Lemna Minor Prevents Deleterious Effects of Anti-HIV Drugs to Nontarget Organisms. Environ. Pollut. 2023, 329, 121672. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, R.S.A.; Fusaro, T.; Marques, R.Z.; Brito, J.C.M.; Juneau, P.; Gomes, M.P. The Use of Aquatic Macrophytes as a Nature-Based Solution to Prevent Ciprofloxacin Deleterious Effects on Microalgae. Water 2023, 15, 2143. [Google Scholar] [CrossRef]
- Gomes, M.P.; Santos, M.F.P.; Schafaschek, A.B.; Kitamura, R.S.A.; Paulete, V.; Navarro-Siva, M.A. The Aquatic Macrophyte Salvinia molesta Mitigates Herbicides (Glyphosate and Aminomethylphosphonic Acid) Effects to Aquatic Invertebrates. Environ. Sci. Pollut. Res. 2022, 30, 12348–12361. [Google Scholar] [CrossRef]
- Gomes, M.P.; Juneau, P. Oxidative Stress in Duckweed (Lemna minor L.) Induced by Glyphosate: Is the Mitochondrial Electron Transport Chain a Target of This Herbicide? Environ. Pollut. 2016, 218, 402–409. [Google Scholar] [CrossRef]
- Palacios, Y.M.; Gleadow, R.; Davidson, C.; Gan, W.; Winfrey, B. Do Mycorrhizae Increase Plant Growth and Pollutant Removal in Stormwater Biofilters? Water Res. 2021, 202, 117381. [Google Scholar] [CrossRef]
- Kalengo, L.; Ge, H.; Liu, N.; Wang, Z. The Efficiency of Aquatic Macrophytes on the Nitrogen and Phosphorous Uptake from Pond Effluents in Different Seasons. J. Ecol. Eng. 2021, 22, 75–85. [Google Scholar] [CrossRef]
- Beilby, M.J.; Bisson, M.A.; Schneider, S.C. How Characean Algae Take up Needed and Excrete Unwanted Ions—An Overview Explaining How Insights from Electrophysiology Are Useful to Understand the Ecology of Aquatic Macrophytes. Aquat. Bot. 2022, 181, 103542. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment: Five Decades of Experience. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef]
- Nikolakopoulou, M.; Argerich, A.; Bernal, S.; Gacia, E.; Ribot, M.; Martí, E.; Sorolla, A.; Sabater, F. Effect of Three Emergent Macrophyte Species on Nutrient Retention in Aquatic Environments under Excess Nutrient Loading. Environ. Sci. Technol. 2020, 54, 15376–15384. [Google Scholar] [CrossRef]
- Sauvêtre, A.; Eichhorn, P.; Pérez, S. Metabolism of Pharmaceuticals in Plants and Their Associated Microbiota. In Interaction and Fate of Pharmaceuticals in Soil-Crop Systems. The Handbook of Environmental Chemistry; Springer: Cham, Swizerland, 2020; pp. 221–264. [Google Scholar] [CrossRef]
- Velasco-Arroyo, B.; Curiel-Alegre, S.; Khan, A.H.A.; Rumbo, C.; Pérez-Alonso, D.; Rad, C.; De Wilde, H.; Pérez-de-Mora, A.; Barros, R. Phytostabilization of Metal(Loid)s by Ten Emergent Macrophytes Following a 90-Day Exposure to Industrially Contaminated Groundwater. N. Biotechnol. 2024, 79, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Yildiz Töre, G.; Özkoç, Ö.B. Recent Developments in Aquatic Macrophytes for Environmental Pollution Control: A Case Study on Heavy Metal Removal from Lake Water and Agricultural Return Wastewater with the Use of Duckweed (Lemnacea). In Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water; Elsevier: Amsterdam, The Netherlands, 2022; pp. 75–127. [Google Scholar]
- Basile, A.; Sorbo, S.; Conte, B.; Cobianchi, R.C.; Trinchella, F.; Capasso, C.; Carginale, V. Toxicity, Accumulation, and Removal of Heavy Metals by Three Aquatic Macrophytes. Int. J. Phytoremediat. 2012, 14, 374–387. [Google Scholar] [CrossRef]
- Tan, H.W.; Pang, Y.L.; Lim, S.; Chong, W.C. A State-of-the-Art of Phytoremediation Approach for Sustainable Management of Heavy Metals Recovery. Environ. Technol. Innov. 2023, 30, 103043. [Google Scholar] [CrossRef]
- Sabreena; Hassan, S.; Bhat, S.A.; Kumar, V.; Ganai, B.A.; Ameen, F. Phytoremediation of Heavy Metals: An Indispensable Contrivance in Green Remediation Technology. Plants 2022, 11, 1255. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.L.; Quek, Y.Y.; Lim, S.; Shuit, S.H. Review on Phytoremediation Potential of Floating Aquatic Plants for Heavy Metals: A Promising Approach. Sustainability 2023, 15, 1290. [Google Scholar] [CrossRef]
- Březinová, T.D.; Vymazal, J. Distribution of Heavy Metals in Phragmites australis Growing in Constructed Treatment Wetlands and Comparison with Natural Unpolluted Sites. Ecol. Eng. 2022, 175, 106505. [Google Scholar] [CrossRef]
- Chitimus, D.; Nedeff, V.; Mosnegutu, E.; Barsan, N.; Irimia, O.; Nedeff, F. Studies on the Accumulation, Translocation, and Enrichment Capacity of Soils and the Plant Species Phragmites australis (Common Reed) with Heavy Metals. Sustainability 2023, 15, 8729. [Google Scholar] [CrossRef]
- Sellal, A.; Belattar, R. The Traces Elements Absorption, Accumulation and Translocation Ability of Phragmites australis. Int. J. Phytoremediat. 2024, 26, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Kristanti, A.; Ngu, W.J.; Yuniarto, A.; Hadibarata, T. Rhizofiltration for Removal of Inorganic and Organic Pollutants in Groundwater: A Review. Biointerface Res. Appl. Chem. 2021, 11, 12326–12347. [Google Scholar] [CrossRef]
- Bhat, S.A.; Bashir, O.; Ul Haq, S.A.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. Phytoremediation of Heavy Metals in Soil and Water: An Eco-Friendly, Sustainable and Multidisciplinary Approach. Chemosphere 2022, 303, 134788. [Google Scholar] [CrossRef]
- Bharani, A.; Sentilraja, K.; Shahidha, P.A.; Mahimairaja, S. Rhizosphere Microbes as Biosorbents for Heavy Metal Removal. Indian J. Appl. Res. 2022, 12, 45–48. [Google Scholar] [CrossRef]
- Aldridge, K.T.; Ganf, G.G. Modification of Sediment Redox Potential by Three Contrasting Macrophytes: Implications for Phosphorus Adsorption/Desorption. Mar. Freshw. Res. 2003, 54, 87. [Google Scholar] [CrossRef]
- Ren, H.; Wang, G.; Ding, W.; Li, H.; Shen, X.; Shen, D.; Jiang, X.; Qadeer, A. Response of Dissolved Organic Matter (DOM) and Microbial Community to Submerged Macrophytes Restoration in Lakes: A Review. Environ. Res. 2023, 231, 116185. [Google Scholar] [CrossRef]
- Reddy, K.R.; D’Angelo, E.M.; DeBusk, T.A. Oxygen Transport through Aquatic Macrophytes: The Role in Wastewater Treatment. J. Environ. Qual. 1990, 19, 261–267. [Google Scholar] [CrossRef]
- Horppila, J.; Nurminen, L. The Effect of an Emergent Macrophyte (Typha angustifolia) on Sediment Resuspension in a Shallow North Temperate Lake. Freshw. Biol. 2001, 46, 1447–1455. [Google Scholar] [CrossRef]
- James, W.F.; Barko, J.W. Macrophyte Influences on Sediment Resuspension and Export in a Shallow Impoundment. Lake Reserv. Manag. 1994, 10, 95–102. [Google Scholar] [CrossRef]
- Wosnie, A.; Mengistou, S.; Alvarez, M. Aquatic Macrophytes in Ethiopian Rift Valley Lake Koka: Biological Management Option to Reduce Sediment Loading. Aquat. Bot. 2020, 165, 103242. [Google Scholar] [CrossRef]
- Huang, J.; Li, R.; Ma, Y.; Cao, C.; Li, X.; Han, T.; Cao, M. Effects of Macrophytes on Micro—And Nanoplastic Retention and Cycling in Constructed Wetlands. Environ. Pollut. 2023, 326, 121259. [Google Scholar] [CrossRef] [PubMed]
- Bareuther, M.; Klinge, M.; Buerkert, A. Spatio-Temporal Dynamics of Algae and Macrophyte Cover in Urban Lakes: A Remote Sensing Analysis of Bellandur and Varthur Wetlands in Bengaluru, India. Remote Sens. 2020, 12, 3843. [Google Scholar] [CrossRef]
- Romeijn, P.; Hannah, D.M.; Krause, S. Macrophyte Controls on Urban Stream Microbial Metabolic Activity. Environ. Sci. Technol. 2021, 55, 4585–4596. [Google Scholar] [CrossRef] [PubMed]
- Opitz, J.; Alte, M.; Bauer, M.; Peiffer, S. The Role of Macrophytes in Constructed Surface-Flow Wetlands for Mine Water Treatment: A Review. Mine Water Environ. 2021, 40, 587–605. [Google Scholar] [CrossRef]
- Mahajan, B.; Shastri, S.; Londhe, S. Waste Removal Efficiencies of Floating Macrophytes for Restoration of Polluted Stream: An Experimental Analysis. Urban Sci. 2023, 7, 27. [Google Scholar] [CrossRef]
- Liu, C.; Zeng, Y.; Su, Z.; Zhou, D. Physiological Responses of Typical Wetland Plants Following Flooding Process—From an Eco-Hydrological Model Perspective. Front. Ecol. Evol. 2022, 10, 721244. [Google Scholar] [CrossRef]
- Ejiri, M.; Fukao, T.; Miyashita, T.; Shiono, K. A Barrier to Radial Oxygen Loss Helps the Root System Cope with Waterlogging-Induced Hypoxia. Breed. Sci. 2021, 71, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.d.l.C.; Pedersen, O. Mitigation of Greenhouse Gas Emissions from Rice via Manipulation of Key Root Traits. Rice 2023, 16, 24. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, O.; Sauter, M.; Colmer, T.D.; Nakazono, M. Regulation of Root Adaptive Anatomical and Morphological Traits during Low Soil Oxygen. New Phytol. 2021, 229, 42–49. [Google Scholar] [CrossRef]
- Bai, S.; Chen, J.; Guo, M.; Ren, N.; Zhao, X. Vertical-Scale Spatial Influence of Radial Oxygen Loss on Rhizosphere Microbial Community in Constructed Wetland. Environ. Int. 2023, 171, 107690. [Google Scholar] [CrossRef]
- Gan, L.; Zhang, W.; Fang, F.; Yang, L. Evidence of a Trade-off between Root Aeration and Architecture in Vallisneria natans in the Presence of Pseudomonas putida KT2440. Aquat. Bot. 2020, 162, 103189. [Google Scholar] [CrossRef]
- Gomes, M.P.; Soares, A.M.; Garcia, Q.S. Phosphorous and Sulfur Nutrition Modulate Antioxidant Defenses in Myracrodruom urundeuva Plants Exposed to Arsenic. J. Hazard. Mater. 2014, 276, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Rocha, C.d.S.; Kochi, L.Y.; Brito, J.C.M.; Maranho, L.T.; Carneiro, D.N.M.; dos Reis, M.V.; Gauthier, A.; Juneau, P.; Gomes, M.P. Calla Lily Production in Enrofloxacin-Contaminated Soil and Manure: An Attractive Alternative Coupling Income Generation with Antimicrobial Removal from the Environment. Front. Soil Sci. 2022, 2, 1060937. [Google Scholar] [CrossRef]
- Mendes, E.J.; Malage, L.; Rocha, D.C.; Kitamura, R.S.A.; Gomes, S.M.A.; Navarro-Silva, M.A.; Gomes, M.P. Isolated and Combined Effects of Glyphosate and Its By-Product Aminomethylphosphonic Acid on the Physiology and Water Remediation Capacity of Salvinia molesta. J. Hazard. Mater. 2021, 417, 125694. [Google Scholar] [CrossRef]
- Gomes, M.P.; Brito, J.C.M.; Rocha, D.C.; Navarro-Silva, M.A.; Juneau, P. Individual and Combined Effects of Amoxicillin, Enrofloxacin, and Oxytetracycline on Lemna minor Physiology. Ecotoxicol. Environ. Saf. 2020, 203, 111025. [Google Scholar] [CrossRef]
- Gomes, M.P.; Kitamura, R.S.A.; Marques, R.Z.; Barbato, M.L.; Zámocký, M. The Role of H2O2-Scavenging Enzymes (Ascorbate Peroxidase and Catalase) in the Tolerance of Lemna minor to Antibiotics: Implications for Phytoremediation. Antioxidants 2022, 11, 151. [Google Scholar] [CrossRef]
- Arthaud, F.; Toury, J.; Romestaing, C.; Bornette, G. Photosynthetic and Morphological Traits Control Aquatic Plant Distribution According to Light Stress. Evol. Ecol. 2021, 35, 739–760. [Google Scholar] [CrossRef]
- Chou, Q.; Zhang, W.; Chen, J.; Ren, W.; Yuan, C.; Wen, Z.; Zhang, X.; Cao, T.; Ni, L.; Jeppesen, E. Phenotypic Responses of a Submerged Macrophyte (Vallisneria natans) to Low Light Combined with Water Depth. Aquat. Bot. 2022, 176, 103462. [Google Scholar] [CrossRef]
- Chen, J.; Chou, Q.; Ren, W.; Su, H.; Zhang, M.; Cao, T.; Zhu, T.; Ni, L.; Liu, Z.; Xie, P. Growth, Morphology and C/N Metabolism Responses of a Model Submersed Macrophyte, Vallisneria natans, to Various Light Regimes. Ecol. Indic. 2022, 136, 108652. [Google Scholar] [CrossRef]
- Chotikarn, P.; Pramneechote, P.; Sinutok, S. Photosynthetic Responses of Freshwater Macrophytes to the Daily Light Cycle in Songkhla Lagoon. Plants 2022, 11, 2806. [Google Scholar] [CrossRef]
- Kettenring, K.M.; Tarsa, E.E. Need to Seed? Ecological, Genetic, and Evolutionary Keys to Seed-Based Wetland Restoration. Front. Environ. Sci. 2020, 8, 109. [Google Scholar] [CrossRef]
- Kim, M.; Hyeon, D.Y.; Kim, K.; Hwang, D.; Lee, Y. Phytohormonal Regulation Determines the Organization Pattern of Shoot Aerenchyma in Greater Duckweed (Spirodela polyrhiza). Plant Physiol. 2024, 195, 2694–2711. [Google Scholar] [CrossRef] [PubMed]
- Dalla Vecchia, F.; La Rocca, N.; Moro, I.; De Faveri, S.; Andreoli, C.; Rascio, N. Morphogenetic, Ultrastructural and Physiological Damages Suffered by Submerged Leaves of Elodea canadensis Exposed to Cadmium. Plant Sci. 2005, 168, 329–338. [Google Scholar] [CrossRef]
- Faußer, A.C.; Hoppert, M.; Walther, P.; Kazda, M. Roots of the Wetland Plants Typha latifolia and Phragmites australis Are Inhabited by Methanotrophic Bacteria in Biofilms. Flora—Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 775–782. [Google Scholar] [CrossRef]
- Gomes, M.P.; Marques, T.C.L.L.S.M.; Nogueira, M.O.G.N.; Castro, E.M.; Soares, Â.M. Ecophysiological and Anatomical Changes Due to Uptake and Accumulation of Heavy Metal in Brachiaria decumbens. Sci. Agric. 2011, 68, 566–573. [Google Scholar] [CrossRef]
- Čuda, J.; Skálová, H.; Meyerson, L.A.; Pyšek, P. Regeneration of Phragmites australis from Rhizome and Culm Fragments. Preslia 2021, 93, 237–254. [Google Scholar] [CrossRef]
- Guo, L.; Plunkert, M.; Luo, X.; Liu, Z. Developmental Regulation of Stolon and Rhizome. Curr. Opin. Plant Biol. 2021, 59, 101970. [Google Scholar] [CrossRef]
- Geurts, J.J.M.; Oehmke, C.; Lambertini, C.; Eller, F.; Sorrell, B.K.; Mandiola, S.R.; Grootjans, A.P.; Brix, H.; Wichtmann, W.; Lamers, L.P.M.; et al. Nutrient Removal Potential and Biomass Production by Phragmites australis and Typha latifolia on European Rewetted Peat and Mineral Soils. Sci. Total Environ. 2020, 747, 141102. [Google Scholar] [CrossRef]
- Barco, A.; Bona, S.; Borin, M. Plant Species for Floating Treatment Wetlands: A Decade of Experiments in North Italy. Sci. Total Environ. 2021, 751, 141666. [Google Scholar] [CrossRef]
- Gu, J.; van Ardenne, L.B.; Chmura, G.L. Invasive Phragmites Increases Blue Carbon Stock and Soil Volume in a St. Lawrence Estuary Marsh. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005473. [Google Scholar] [CrossRef]
- Yu, H.; Wang, L.; Liu, C.; Yu, D.; Qu, J. Effects of a Spatially Heterogeneous Nutrient Distribution on the Growth of Clonal Wetland Plants. BMC Ecol. 2020, 20, 59. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, T.; García Molinos, J.; Li, C.; Hu, B.; Pan, M.; Zhang, M. Effects of Warming, Climate Extremes and Phosphorus Enrichment on the Growth, Sexual Reproduction and Propagule Carbon and Nitrogen Stoichiometry of Potamogeton crispus L. Environ. Int. 2020, 137, 105502. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.P.; Richardi, V.S.; Bicalho, E.M.; da Rocha, D.C.; Navarro-Silva, M.A.; Soffiatti, P.; Garcia, Q.S.; Sant’Anna-Santos, B.F. Effects of Ciprofloxacin and Roundup on Seed Germination and Root Development of Maize. Sci. Total Environ. 2019, 651, 2671–2678. [Google Scholar] [CrossRef] [PubMed]
- Rocha, D.C.; Rocha, C.S.; Tavares, D.S.; Calado, S.L.M.; Gomes, M.P. Veterinary Antibiotics and Plant Physiology: An Overview. Sci. Total Environ. 2021, 767, 144902. [Google Scholar] [CrossRef]
- Marques, R.Z.; da Silva Nogueira, K.; de Oliveira Tomaz, A.P.; Juneau, P.; Wang, S.; Gomes, M.P. Emerging Threat: Antimicrobial Resistance Proliferation during Epidemics—A Case Study of the SARS-CoV-2 Pandemic in South Brazil. J. Hazard. Mater. 2024, 470, 134202. [Google Scholar] [CrossRef]
- Brix, H. Root-Zone Acidity and Nitrogen Source Affects Typha latifolia L. Growth and Uptake Kinetics of Ammonium and Nitrate. J. Exp. Bot. 2002, 53, 2441–2450. [Google Scholar] [CrossRef]
- López, D.; Sepúlveda, M.; Vidal, G. Phragmites australis and Schoenoplectus californicus in Constructed Wetlands: Development and Nutrient Uptake. J. Soil Sci. Plant Nutr. 2016, 16, 763–777. [Google Scholar] [CrossRef]
- Toet, S.; Bouwman, M.; Cevaal, A.; Verhoeven, J.T.A. Nutrient Removal Through Autumn Harvest of Phragmites australis and Thypha latifolia Shoots in Relation to Nutrient Loading in a Wetland System Used for Polishing Sewage Treatment Plant Effluent. J. Environ. Sci. Health Part A 2005, 40, 1133–1156. [Google Scholar] [CrossRef]
- Hes, E.M.; van Dam, A.A. Modelling Nitrogen and Phosphorus Cycling and Retention in Cyperus papyrus Dominated Natural Wetlands. Environ. Model. Softw. 2019, 122, 104531. [Google Scholar] [CrossRef]
- Hes, E.M.A.; Yatoi, R.; Laisser, S.L.; Feyissa, A.K.; Irvine, K.; Kipkemboi, J.; van Dam, A.A. The Effect of Seasonal Flooding and Livelihood Activities on Retention of Nitrogen and Phosphorus in Cyperus papyrus Wetlands, the Role of Aboveground Biomass. Hydrobiologia 2021, 848, 4135–4152. [Google Scholar] [CrossRef]
- Petrucio, M.M.; Esteves, F.A. Uptake Rates of Nitrogen and Phosphorus in the Water by Eichhornia crassipes and Salvinia auriculata. Rev. Bras. Biol. 2000, 60, 229–236. [Google Scholar] [CrossRef] [PubMed]
- De Laet, C.; Matringe, T.; Petit, E.; Grison, C. Eichhornia crassipes: A Powerful Bio-Indicator for Water Pollution by Emerging Pollutants. Sci. Rep. 2019, 9, 7326. [Google Scholar] [CrossRef] [PubMed]
- Toyama, T.; Murashita, M.; Kobayashi, K.; Kikuchi, S.; Sei, K.; Tanaka, Y.; Ike, M.; Mori, K. Acceleration of Nonylphenol and 4-Tert-Octylphenol Degradation in Sediment by Phragmites australis and Associated Rhizosphere Bacteria. Environ. Sci. Technol. 2011, 45, 6524–6530. [Google Scholar] [CrossRef] [PubMed]
- Olisah, C.; Rubidge, G.; Human, L.R.D.; Adams, J.B. A Translocation Analysis of Organophosphate Pesticides between Surface Water, Sediments and Tissues of Common Reed Phragmites australis. Chemosphere 2021, 284, 131380. [Google Scholar] [CrossRef]
- Gomes, M.P.; Tavares, D.S.; Richardi, V.S.; Marques, R.Z.; Wistuba, N.; Moreira de Brito, J.C.; Soffiatti, P.; Sant’Anna-Santos, B.F.; Navarro da Silva, M.A.; Juneau, P. Enrofloxacin and Roundup® Interactive Effects on the Aquatic Macrophyte Elodea canadensis Physiology. Environ. Pollut. 2019, 249, 453–462. [Google Scholar] [CrossRef]
- Ukiwe, L.N.; Egereonu, U.U.; Njoku, P.C.; Nwoko, C.I.A. Degradation of Polycyclic Aromatic Hydrocarbons from Soil Leachate by Water Hyacinth (Eichhornia crassipes). Int. J. Chem. 2012, 4, 5. [Google Scholar] [CrossRef]
- Deyris, P.-A.; Pelissier, F.; Grison, C.M.; Hesemann, P.; Petit, E.; Grison, C. Efficient Removal of Persistent and Emerging Organic Pollutants by Biosorption Using Abundant Biomass Wastes. Chemosphere 2023, 313, 137307. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, C.; Li, S.S.; Lu, G.G.; Lu, G.G.; Li, S.S.; Zhou, Y. An Approach to Biodegradation of Chlorobenzenes: Combination of Typha angustifolia and Bacterial Effects on Hexachlorobenzene Degradation in Water. Water Sci. Technol. 2016, 74, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Abhayawardhana, M.L.D.D.; Bandara, N.J.G.J.; Rupasinge, S.K.L.S. Removal of Heavy Metals and Nutrients from Municipal Wastewater Using Salvinia molesta and Lemna Gibba. J. Trop. For. Environ. 2019, 9, 2. [Google Scholar] [CrossRef]
- Gao, Y.; Yi, N.; Wang, Y.; Ma, T.; Zhou, Q.; Zhang, Z.; Yan, S. Effect of Eichhornia crassipes on Production of N2 by Denitrification in Eutrophic Water. Ecol. Eng. 2014, 68, 14–24. [Google Scholar] [CrossRef]
- Hejna, M.; Moscatelli, A.; Stroppa, N.; Onelli, E.; Pilu, S.; Baldi, A.; Rossi, L. Bioaccumulation of Heavy Metals from Wastewater through a Typha latifolia and Thelypteris palustris Phytoremediation System. Chemosphere 2020, 241, 125018. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, D.; Arunachalam, K.; Arunachalam, A.; Das, A.K. Effect of Water Hyacinth (Eichhornia crassipes) Mulch on Soil Microbial Properties in Lowland Rainfed Rice-Based Agricultural System in Northeast India. Agric. Res. 2013, 2, 246–257. [Google Scholar] [CrossRef]
- Toyama, T.; Nishimura, Y.; Ogata, Y.; Sei, K.; Mori, K.; Ike, M. Effects of Planting Phragmites australis on Nitrogen Removal, Microbial Nitrogen Cycling, and Abundance of Ammonia-Oxidizing and Denitrifying Microorganisms in Sediments. Environ. Technol. 2016, 37, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Bai, Y.; Qu, J. The Phragmites Root-Inhabiting Microbiome: A Critical Review on Its Composition and Environmental Application. Engineering 2022, 9, 42–50. [Google Scholar] [CrossRef]
- Iha, D.S.; Bianchini, I. Phytoremediation of Cd, Ni, Pb and Zn by Salvinia minima. Int. J. Phytoremediation 2015, 17, 929–935. [Google Scholar] [CrossRef]
- Emiliani, J.; Llatance Oyarce, W.G.; Bergara, C.D.; Salvatierra, L.M.; Novo, L.A.B.; Pérez, L.M. Variations in the Phytoremediation Efficiency of Metal-Polluted Water with Salvinia biloba: Prospects and Toxicological Impacts. Water 2020, 12, 1737. [Google Scholar] [CrossRef]
- Marques, R.Z.; Kochi, L.Y.; Guzman-Tordecilla, M.; Malage, L.; Juneau, P.; Gomes, M.P. COVID-19 Pharmaceuticals in Aquatic Matrices: The Threatening Effects over Cyanobacteria and Microalgae. Sci. Total Environ. 2023, 892, 164309. [Google Scholar] [CrossRef] [PubMed]
- Bora, L.S.; Padial, A.A. A Global Review on Invasive Traits of Macrophytes and Their Link to Invasion Success. Acta Limnol. Bras. 2023, 35, e20. [Google Scholar] [CrossRef]
- Roy, H.E.; Pauchard, A.; Stoett, P.J.; Renard Truong, T.; Meyerson, L.A.; Bacher, S.; Galil, B.S.; Hulme, P.E.; Ikeda, T.; Kavileveettil, S.; et al. Curbing the Major and Growing Threats from Invasive Alien Species Is Urgent and Achievable. Nat. Ecol. Evol. 2024, 8, 1216–1223. [Google Scholar] [CrossRef]
- Hill, M.P.; Coetzee, J.A.; Martin, G.D.; Smith, R.; Strange, E.F. Invasive Alien Aquatic Plants in South African Freshwater Ecosystems. In Biological Invasions in South Africa; Springer International Publishing: Cham, Swizerland, 2020; pp. 97–114. [Google Scholar]
- Licata, M.; Farruggia, D.; Tuttolomondo, T.; Iacuzzi, N.; Leto, C.; Di Miceli, G. Seasonal Response of Vegetation on Pollutants Removal in Constructed Wetland System Treating Dairy Wastewater. Ecol. Eng. 2022, 182, 106727. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, Y.; Tang, H.; Song, X. Effects of Macrophyte Species and Density on Algae Inhibition and Water Purification in Submerged Macrophyte Ponds. Pol. J. Environ. Stud. 2020, 29, 3451–3456. [Google Scholar] [CrossRef] [PubMed]
- de Lima, D.V.N.; Filho, C.M.L.; Pacheco, A.B.F.; de Oliveira e Azevedo, S.M.F. Seasonal Variation in the Phytoremediation by Pontederia crassipes (Mart) Solms (Water Hyacinth) and Its Associated Microbiota. Ecol. Eng. 2022, 183, 106744. [Google Scholar] [CrossRef]
- Nichols, A.L.; Lusardi, R.A.; Willis, A.D. Seasonal Macrophyte Growth Constrains Extent, but Improves Quality, of Cold-water Habitat in a Spring-fed River. Hydrol. Process. 2020, 34, 1587–1597. [Google Scholar] [CrossRef]
- Levi, P.S.; Giménez-Grau, P.; Baattrup-Pedersen, A.; Riis, T. Macrophyte-Mediated Fluctuations in Stream Ecosystem Function. Freshw. Sci. 2024, 43, 169–182. [Google Scholar] [CrossRef]
- Gomes, M.P.; Pereira, E.G.; Qiu, B.-S.; Juneau, P. Editorial: Coping With Pollution—The Effects of Environmental Contaminants on Plant Growth and Physiology. Front. Plant Sci. 2021, 12, 740802. [Google Scholar] [CrossRef]
Macrophyte Morphotype | Characteristics | Function | Benefits to Treatment | Examples |
---|---|---|---|---|
Submerged | Completely submerged; leaves below the water surface | Absorbs nutrients directly from the water; provides oxygenation | Improves water quality; reduces turbidity; provides shelter for aquatic organisms | Elodea canadensis, Vallisneria spp. |
Emergent | Roots submerged; vegetative parts extend above the water surface | Provides structural support; stabilizes substrate; creates habitats for wildlife | Contributes to water filtration and nutrient removal; offers diverse habitats | Phragmites australis (common reed), Typha spp. (cattail) |
Free-Floating | Entirely float on the water surface, including leaves and roots | Absorbs nutrients directly from the water | Reduces nutrient loads; controls algal proliferation | Eichhornia crassipes (water hyacinth), Lemna minor (duckweed) |
Floating-leaved | Leaves float on the water surface; the plant is anchored to the substrate | Captures sunlight for photosynthesis; submerged parts absorb nutrients | Provides shade to reduce algae growth; stabilizes substrate | Nymphaea spp. (water lilies), Nelumbo nucifera (lotus) |
Criteria | Pollutant Removal Mechanisms | Species Examples and References |
---|---|---|
Nutrient Absorption and Accumulation | Efficient absorption of nutrients, such as nitrogen and phosphorus, through extensive root systems and adapted leaves. | Typha latifolia [66,122] |
Phragmites australis [123,124] | ||
Cyperus papyrus [125,126] | ||
Eichhornia crassipes [127,128] | ||
Organic Pollutant Degradation | Ability to degrade organic pollutants through metabolic processes and interactions with microorganisms | P. australis [129,130] |
Elodea canadensis [131] | ||
E. crassipes [132,133] | ||
Lemna sp. [5,59,101] | ||
Salvinia molesta [60,74] | ||
Typha spp. [134] | ||
Inorganic Pollutant Transformation and Stabilization | Sequestration and transformation of inorganic contaminants, such as heavy metals, into less toxic forms | E. crassipes [128] |
Salvinia spp. [135] | ||
T. latifolia [136] | ||
Support for Microbial Activity | Creation of favorable conditions for microbial activity, which contributes to pollutant degradation and nutrient cycling | T. latifolia and Thelypteris palustris [137] |
E. crassipes [136,138] | ||
P. australis [139,140] | ||
Heavy Metal Removal | Ability to remove and stabilize heavy metals through sequestration in plant tissues or chemical transformation | E. crassipes [128] |
Salvinia spp. [141,142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maranho, L.T.; Gomes, M.P. Morphophysiological Adaptations of Aquatic Macrophytes in Wetland-Based Sewage Treatment Systems: Strategies for Resilience and Efficiency under Environmental Stress. Plants 2024, 13, 2870. https://doi.org/10.3390/plants13202870
Maranho LT, Gomes MP. Morphophysiological Adaptations of Aquatic Macrophytes in Wetland-Based Sewage Treatment Systems: Strategies for Resilience and Efficiency under Environmental Stress. Plants. 2024; 13(20):2870. https://doi.org/10.3390/plants13202870
Chicago/Turabian StyleMaranho, Leila Teresinha, and Marcelo Pedrosa Gomes. 2024. "Morphophysiological Adaptations of Aquatic Macrophytes in Wetland-Based Sewage Treatment Systems: Strategies for Resilience and Efficiency under Environmental Stress" Plants 13, no. 20: 2870. https://doi.org/10.3390/plants13202870
APA StyleMaranho, L. T., & Gomes, M. P. (2024). Morphophysiological Adaptations of Aquatic Macrophytes in Wetland-Based Sewage Treatment Systems: Strategies for Resilience and Efficiency under Environmental Stress. Plants, 13(20), 2870. https://doi.org/10.3390/plants13202870