Myrciaria jaboticaba Fruit Peel: Bioactive Composition as Determined by Distinct Harvest Seasons and In Vitro Anti-Cancer Activity
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Fruit Registry, Collection, and Processing
2.3. Proximate and Spectrophotometric Analyses
2.4. Chromatographic Analyses
2.5. Anti-Proliferative and Colony Formation Assays
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition and Antioxidant Capacity
3.2. Anti-Cancer Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C3G | cyanidin-3-O-glucoside |
CRC | colorectal cancer |
D3G | delphinidin-3-O-glucoside |
DAD | diode array detector |
DMEM | Dulbecco’s Modified Eagle Medium |
EGFR | epidermal growth factor receptor |
FRAP | ferric-reducing antioxidant power |
HPLC | high-performance liquid chromatography |
IC50 | half maximal inhibitory concentration |
ORAC | oxygen radical absorbance capacity |
P3G | pelargonidin-3-O-glucoside |
PBS | phosphate-buffered saline |
TPC | total phenolic content |
References
- Ministério do Meio Ambiente. Espécies Nativas Da Sociobiodiversidade Brasileira de Valor Alimentício; Ministério do Meio Ambiente: Brasília, Brazil, 2018; pp. 92–94.
- Sviech, F.; Ubbink, J.; Prata, A.S. Potential for the Processing of Brazilian Fruits—A Review of Approaches Based on the State Diagram. LWT 2022, 156, 113013. [Google Scholar] [CrossRef]
- Schulz, M.; Seraglio, S.K.T.; Brugnerotto, P.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Composition and Potential Health Effects of Dark-Colored Underutilized Brazilian Fruits—A Review. Food Res. Int. 2020, 137, 109744. [Google Scholar] [CrossRef]
- Neri-Numa, I.A.; Soriano Sancho, R.A.; Pereira, A.P.A.; Pastore, G.M. Small Brazilian Wild Fruits: Nutrients, Bioactive Compounds, Health-Promotion Properties and Commercial Interest. Food Res. Int. 2018, 103, 345–360. [Google Scholar] [CrossRef]
- Fernandes, I.d.A.A.; Maciel, G.M.; Maroldi, W.V.; Bortolini, D.G.; Pedro, A.C.; Haminiuk, C.W.I. Bioactive Compounds, Health-Promotion Properties and Technological Applications of Jabuticaba: A Literature Overview. Meas. Food 2022, 8, 100057. [Google Scholar] [CrossRef]
- Inada, K.O.P.; Oliveira, A.A.; Revorêdo, T.B.; Martins, A.B.N.; Lacerda, E.C.Q.; Freire, A.S.; Braz, B.F.; Santelli, R.E.; Torres, A.G.; Perrone, D.; et al. Screening of the Chemical Composition and Occurring Antioxidants in Jabuticaba (Myrciaria jaboticaba) and Jussara (Euterpe edulis) Fruits and Their Fractions. J. Funct. Foods 2015, 17, 422–433. [Google Scholar] [CrossRef]
- Benvenutti, L.; Zielinski, A.A.F.; Ferreira, S.R.S. Jaboticaba (Myrtaceae Cauliflora) Fruit and Its by-Products: Alternative Sources for New Foods and Functional Components. Trends Food Sci. Technol. 2021, 112, 118–136. [Google Scholar] [CrossRef]
- Inada, K.O.P.; Leite, I.B.; Martins, A.B.N.; Fialho, E.; Tomás-Barberán, F.A.; Perrone, D.; Monteiro, M. Jaboticaba Berry: A Comprehensive Review on Its Polyphenol Composition, Health Effects, Metabolism, and the Development of Food Products. Food Res. Int. 2021, 147, 110518. [Google Scholar] [CrossRef]
- Vieira, V.L.L.P.; Ferreira, W.R. A Festa Da Jabuticaba e o Empreendedorismo Feminino No Município de Sabará/MG. Rev. Bras. Gestão Eng. 2013, 4, 1–28. [Google Scholar]
- do Nascimento, R.d.P.; Reguengo, L.M.; da Fonseca Machado, A.P.; Marostica Junior, M.R. The Preventive and Therapeutic Potential of Native Brazilian Fruits on Colorectal Cancer. Food Biosci. 2022, 46, 101539. [Google Scholar] [CrossRef]
- Reguengo, L.M.; do Nascimento, R.d.P.; da Fonseca Machado, A.P.; Marostica Junior, M.R. Signaling Pathways and the Potential Anticarcinogenic Effect of Native Brazilian Fruits on Breast Cancer. Food Res. Int. 2022, 155, 111117. [Google Scholar] [CrossRef]
- da Fonseca Machado, A.P.; da Rocha Alves, M.; do Nascimento, R.d.P.; Reguengo, L.M.; Marostica Junior, M.R. Antiproliferative Effects and Main Molecular Mechanisms of Brazilian Native Fruits and Their By-Products on Lung Cancer. Food Res. Int. 2022, 162, 111953. [Google Scholar] [CrossRef]
- do Nascimento, R.S.; de Freitas Pedrosa, L.; Diethelm, L.T.H.; Souza, T.; Shiga, T.M.; Fabi, J.P. The Purification of Pectin from Commercial Fruit Flours Results in a Jaboticaba Fraction That Inhibits Galectin-3 and Colon Cancer Cell Growth. Food Res. Int. 2020, 137, 109747. [Google Scholar] [CrossRef]
- do Nascimento, R.d.P.; Rizzato, J.S.; Polezi, G.; Moya, A.M.T.M.; Silva, M.F.; da Fonseca Machado, A.P.; Franchi Junior, G.C.; Borguini, R.G.; de Araújo Santiago, M.C.P.; Paiotti, A.P.R.; et al. Freeze-Dried Jaboticaba (Myrciaria jaboticaba) Peel Powder, a Rich Source of Anthocyanins and Phenolic Acids, Mitigates Inflammation-Driven Colorectal Cancer in Mice. Food Biosci. 2023, 53, 102578. [Google Scholar] [CrossRef]
- Augusti, P.R.; Quatrin, A.; Mello, R.; Bochi, V.C.; Rodrigues, E.; Prazeres, I.D.; Macedo, A.C.; Oliveira-Alves, S.C.; Emanuelli, T.; Bronze, M.R.; et al. Antiproliferative Effect of Colonic Fermented Phenolic Compounds from Jaboticaba (Myrciaria trunciflora) Fruit Peel in a 3D Cell Model of Colorectal Cancer. Molecules 2021, 26, 4469. [Google Scholar] [CrossRef]
- Holkem, A.T.; Robichaud, V.; Favaro-Trindade, C.S.; Lacroix, M. Chemopreventive Properties of Extracts Obtained from Blueberry (Vaccinium myrtillus L.) and Jabuticaba (Myrciaria cauliflora Berg.) in Combination with Probiotics. Nutr. Cancer 2021, 73, 671–685. [Google Scholar] [CrossRef]
- Ardanareswari, K.; Lowisia, W.; Soedarini, B.; Liao, J.W.; Chung, Y.C. Jaboticaba (Myrciaria cauliflora) Fruit Extract Suppressed Aberrant Crypt Formation in 1,2-Dimetylhydrazine-Induced Rats. Plant Foods Hum. Nutr. 2023, 78, 286–291. [Google Scholar] [CrossRef]
- Fidelis, M.; Santos, J.S.; Escher, G.B.; Rocha, R.S.; Cruz, A.G.; Cruz, T.M.; Marques, M.B.; Nunes, J.B.; do Carmo, M.A.V.; de Almeida, L.A.; et al. Polyphenols of Jabuticaba [Myrciaria jaboticaba (Vell.) O. Berg] Seeds Incorporated in a Yogurt Model Exert Antioxidant Activity and Modulate Gut Microbiota of 1,2-Dimethylhydrazine-Induced Colon Cancer in Rats. Food Chem. 2021, 334, 127565. [Google Scholar] [CrossRef]
- Van der Jeught, K.; Xu, H.-C.; Li, Y.-J.; Lu, X.-B.; Ji, G. Drug Resistance and New Therapies in Colorectal Cancer. World J. Gastroenterol. 2018, 24, 3834–3848. [Google Scholar] [CrossRef]
- Boursi, B.; Arber, N. Current and Future Clinical Strategies in Colon Cancer Prevention and the Emerging Role of Chemoprevention. Curr. Pharm. Des. 2007, 13, 2274–2282. [Google Scholar] [CrossRef]
- Kimura, M.; Rodriguez-Amaya, D.B. A Scheme for Obtaining Standards and HPLC Quantification of Leafy Vegetable Carotenoids. Food Chem. 2002, 78, 389–398. [Google Scholar] [CrossRef]
- Leite-Legatti, A.V.; Batista, A.G.; Dragano, N.R.V.; Marques, A.C.; Malta, L.G.; Riccio, M.F.; Eberlin, M.N.; Machado, A.R.T.; de Carvalho-Silva, L.B.; Ruiz, A.L.T.G.; et al. Jaboticaba Peel: Antioxidant Compounds, Antiproliferative and Antimutagenic Activities. Food Res. Int. 2012, 49, 596–603. [Google Scholar] [CrossRef]
- Instituto Adolfo Lutz. Métodos Físico-Químicos Para Análise de Alimentos; ANVISA: São Paulo, Brazil, 2008; ISBN 9788578110796. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- do Nascimento, R.d.P.; Polezi, G.; Rizzato, J.S.; Batista, P.B.; dos Santos, N.M.; Loubet Filho, P.S.; Reguengo, L.M.; Morari, J.; Bogusz Junior, S.; Paiotti, A.P.R.; et al. Brazilian Berries Prevent Colitis Induced in Obese Mice by Reducing the Clinical Signs and Intestinal Damage. Food Biosci. 2021, 44, 101447. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.E. The Phenolic Constituents of Prunus Domestica. I.—The Quantitative Analysis of Phenolic Constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Jia, Z.; Tang, M.; Wu, J. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Abe, L.T.; Da Mota, R.V.; Lajolo, F.M.; Genovese, M.I. Compostos Fenólicos e Capacidade Antioxidante de Cultivares de Uvas Vitis labrusca L. e Vitis vinifera L. Food Sci. Technol. 2007, 27, 394–400. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Dávalos, A.; Gómez-Cordovés, C.; Bartolomé, B. Extending Applicability of the Oxygen Radical Absorbance Capacity (ORAC-Fluorescein) Assay. J. Agric. Food Chem. 2004, 52, 48–54. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI Press: Washington, DC, USA, 2001; ISBN 9781578810727. [Google Scholar]
- Gouvêa, A.C.M.S.; Melo, A.; Santiago, M.C.P.A.; Peixoto, F.M.; Freitas, V.; Godoy, R.L.O.; Ferreira, I.M.P.L.V.O. Identification and Quantification of Anthocyanins in Fruits from Neomitranthes Obscura (DC.) N. Silveira an Endemic Specie from Brazil by Comparison of Chromatographic Methodologies. Food Chem. 2015, 185, 277–283. [Google Scholar] [CrossRef]
- Nascimento, L.; Santiago, M.; Oliveira, E.; Borguini, R.; Braga, E.; Martins, V.; Pacheco, S.; Souza, M.; Gogoy, R. Characterization of Bioactive Compounds in Eugenia Brasiliensis, Lam. (Grumixama). Nutr. Food Technol. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Pacheco, S.; Peixoto, F.M.; Borguini, R.G.; do Nascimento, L.d.S.d.M.; Bobeda, C.R.R.; Santiago, M.C.P.d.A.; Godoy, R.L.d.O. Microscale Extraction Method for HPLC Carotenoid Analysis in Vegetable Matrices. Sci. Agric. 2014, 71, 416–419. [Google Scholar] [CrossRef]
- Lenquiste, S.A.; da Silva Marineli, R.; Moraes, É.A.; Dionísio, A.P.; de Brito, E.S.; Maróstica, M.R. Jaboticaba Peel and Jaboticaba Peel Aqueous Extract Shows in Vitro and in Vivo Antioxidant Properties in Obesity Model. Food Res. Int. 2015, 77, 162–170. [Google Scholar] [CrossRef]
- da Silva-Maia, J.K.; Batista, Â.G.; Cazarin, C.B.B.; Soares, E.S.; Junior, S.B.; Leal, R.F.; da Cruz-Höfling, M.A.; Maróstica Junior, M.R. Aqueous Extract of Brazilian Berry (Myrciaria jaboticaba) Peel Improves Inflammatory Parameters and Modulates Lactobacillus and Bifidobacterium in Rats with Induced-Colitis. Nutrients 2019, 11, 2776. [Google Scholar] [CrossRef]
- George, D.; Mallery, P. SPSS for Windows Step by Step: A Simple Guide and Reference. 11.0 Update; Allyn & Bacon, Inc.: Boston, MA, USA, 2003. [Google Scholar]
- Bower, J.P.; Papli, G. Effect of Fruit Coatings and Packaging on Chilling Injury of ‘Hass ’ Avocados. S. Afr. Avocado Grow. Assoc. Yearb. 2006, 29, 69–72. [Google Scholar]
- Garçoa, L.G.C.; Da Solva, F.A.; Asquoero, E.R.; Volas Bdas, E.V.D.B.; Dgandd, F.O.B.; De Aguoar, C.L.; Damoano, C. Proximate Composition, Minerals Profile, and Predominant Sugars by Ion Chromatograph along the Physiological Development of Jabuticaba Var. Pingo de Mel. Food Sci. Technol. 2018, 38, 16–21. [Google Scholar] [CrossRef]
- Marquetti, C.; Dos Santos, T.B.; Kaipers, K.F.C.; Böger, B.R.; Tonial, I.B.; Wagner Junior, A.; Lucchetta, L.; Do Prado, N.V. Jaboticaba Skin Flour: Analysis and Sustainable Alternative Source to Incorporate Bioactive Compounds and Increase the Nutritional Value of Cookies. Food Sci. Technol. 2018, 38, 629–638. [Google Scholar] [CrossRef]
- Appelt, P.; da Cunha, M.A.A.; Guerra, A.P.; Kalinke, C.; da Lima, V.A. Desenvolvimento e Caracterização de Barras de Cereais Produzidas Com Farinhas de Casca de Jabuticaba e Okara. Acta Sci.—Technol. 2015, 37, 117–122. [Google Scholar] [CrossRef]
- Rufino, S.M.; Alves, R.E.; De Brito, E.S.; Pérez-jiménez, J.; Saura-calixto, F.; Mancini-filho, J. Bioactive Compounds and Antioxidant Capacities of 18 Non-Traditional Tropical Fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Oxidants and Antioxidants Part A; Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Prior, R.L.; Sintara, M.; Chang, T. Multi-Radical (ORAC MR5) Antioxidant Capacity of Selected Berries and Effects of Food Processing. J. Berry Res. 2016, 6, 159–173. [Google Scholar] [CrossRef]
- Frauches, N.S.; Montenegro, J.; Amaral, T.; Abreu, J.P.; Laiber, G.; Junior, J.; Borguini, R.; Santiago, M.; Pacheco, S.; Nakajima, V.M.; et al. Antiproliferative Activity on Human Colon Adenocarcinoma Cells and In Vitro Antioxidant Effect of Anthocyanin-Rich Extracts from Peels of Species of the Myrtaceae Family. Molecules 2021, 26, 564. [Google Scholar] [CrossRef]
- Resende, L.M.; Oliveira, L.S.; Franca, A.S. Polyphenols in Jabuticaba (Plinia Spp.) Peel Flours: Extraction and Comparative Evaluation of FTIR and HPLC for Quantification of Individual Compounds. Foods 2023, 12, 1488. [Google Scholar] [CrossRef]
- Plaza, M.; Batista, Â.G.; Cazarin, C.B.B.; Sandahl, M.; Turner, C.; Östman, E.; Maróstica Júnior, M.R. Characterization of Antioxidant Polyphenols from Myrciaria jaboticaba Peel and Their Effects on Glucose Metabolism and Antioxidant Status: A Pilot Clinical Study. Food Chem. 2016, 211, 185–197. [Google Scholar] [CrossRef]
- Loubet Filho, P.S.; Baseggio, A.M.; Vuolo, M.M.; Reguengo, L.M.; Telles Biasoto, A.C.; Correa, L.C.; Junior, S.B.; Alves Cagnon, V.H.; Betim Cazarin, C.B.; Maróstica Júnior, M.R. Gut Microbiota Modulation by Jabuticaba Peel and Its Effect on Glucose Metabolism via Inflammatory Signaling. Curr. Res. Food Sci. 2022, 5, 382–391. [Google Scholar] [CrossRef]
- Correia, V.T.d.V.; Silva, V.D.M.; Mendonça, H.d.O.P.; Ramos, A.L.C.C.; Silva, M.R.; Augusti, R.; de Paula, A.C.C.F.F.; Ferreira, R.M.d.S.B.; Melo, J.O.F.; Fante, C.A. Efficiency of Different Solvents in the Extraction of Bioactive Compounds from Plinia cauliflora and Syzygium cumini Fruits as Evaluated by Paper Spray Mass Spectrometry. Molecules 2023, 28, 2359. [Google Scholar] [CrossRef]
- Quatrin, A.; Pauletto, R.; Maurer, L.H.; Minuzzi, N.; Nichelle, S.M.; Carvalho, J.F.C.; Maróstica, M.R.; Rodrigues, E.; Bochi, V.C.; Emanuelli, T. Characterization and Quantification of Tannins, Flavonols, Anthocyanins and Matrix-Bound Polyphenols from Jaboticaba Fruit Peel: A Comparison between Myrciaria Trunciflora and M. Jaboticaba. J. Food Compos. Anal. 2019, 78, 59–74. [Google Scholar] [CrossRef]
- de Andrade Neves, N.; Stringheta, P.C.; da Silva, I.F.; García-Romero, E.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Identification and Quantification of Phenolic Composition from Different Species of Jabuticaba (Plinia spp.) by HPLC-DAD-ESI/MSn. Food Chem. 2021, 355, 129605. [Google Scholar] [CrossRef]
- Resende, L.M.; Franca, A.S. Jabuticaba (Plinia sp.) Peel as a Source of Pectin: Characterization and Effect of Different Extraction Methods. Foods 2023, 12, 117. [Google Scholar] [CrossRef]
- Leite, A.V.; Malta, L.G.; Riccio, M.F.; Eberlin, M.N.; Pastore, G.M.; Maróstica Júnior, M.R. Antioxidant Potential of Rat Plasma by Administration of Freeze-Dried Jaboticaba Peel (Myrciaria jaboticaba Vell Berg). J. Agric. Food Chem. 2011, 59, 2277–2283. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, L.; Liao, P.; Xiao, Z.; Zhang, F.; Sindaye, D.; Xin, Z.; Tan, C.; Deng, J.; Yin, Y.; et al. Impact of Gallic Acid on Gut Health: Focus on the Gut Microbiome, Immune Response, and Mechanisms of Action. Front. Immunol. 2020, 11, 580208. [Google Scholar] [CrossRef]
- De Araujo Santiago, M.C.P.; Galhardo Borguini, R.; Da Silva de Mattos do Nascimento, L.; De Oliveira Braga, E.C.; De Carvalho Martins, V.; Senna Gouvêa, A.C.M.; Marques Peixoto, F.; Pacheco, S.; Nogueira, R.I.; De Oliveira Godoy, R.L. Jabuticaba (Myrciaria jaboticaba (Vell.) O. Berg) Peel Powder Produced by Convective Drying Process: A Rich Anthocyanin Product. Fruits 2018, 73, 201–208. [Google Scholar] [CrossRef]
- Resende, L.M.; Oliveira, L.S.; Franca, A.S. Characterization of Jabuticaba (Plinia cauliflora) Peel Flours and Prediction of Compounds by FTIR Analysis. LWT 2020, 133, 110135. [Google Scholar] [CrossRef]
- Almeida, R.L.J.; dos Santos Pereira, T.; Almeida, R.D.; Santiago, Â.M.; de Lima Marsiglia, W.I.M.; Nabeshima, E.H.; de Sousa Conrado, L.; de Gusmão, R.P. Rheological and Technological Characterization of Red Rice Modified Starch and Jaboticaba Peel Powder Mixtures. Sci. Rep. 2021, 11, 9284. [Google Scholar] [CrossRef]
- Biazotto, K.R.; De Souza Mesquita, L.M.; Neves, B.V.; Braga, A.R.C.; Tangerina, M.M.P.; Vilegas, W.; Mercadante, A.Z.; De Rosso, V.V. Brazilian Biodiversity Fruits: Discovering Bioactive Compounds from Underexplored Sources. J. Agric. Food Chem. 2019, 67, 1860–1876. [Google Scholar] [CrossRef]
- Garcia, L.G.C.; da Silva, F.A.; Asquieri, E.R.; Vilas Boas, E.V.d.B.; Silva, M.M.M.; Damiani, C. Harvesting Period of Jabuticaba Fruits Var. “Pingo de Mel” in Relation to the Physicochemical Characterization Evaluated during Their Development. Emirates J. Food Agric. 2018, 30, 232–239. [Google Scholar] [CrossRef]
- Garcia, L.G.C.; da Silva, F.A.; Asquieri, E.R.; Vilas Boas, E.V.d.B.; Damiani, C. Bioactive Compounds and Antioxidant Activity of Jabuticaba Var. Pingo de Mel during Its Physiological Development. Food Sci. Technol. 2019, 2061, 556–562. [Google Scholar] [CrossRef]
- Fortes, G.A.C.; Naves, S.S.; Godoi, F.F.F.; Duarte, A.R.; Ferri, P.H.; Santos, S.C. Assessment of a Maturity Index in Jabuticaba Fruit by the Evaluation of Phenolic Compounds, Essential Oil Components, Sugar Content and Total Acidity. Am. J. Food Technol. 2011, 6, 974–984. [Google Scholar] [CrossRef]
- da Silva, J.K.; Batista, Â.G.; Cazarin, C.B.B.; Dionísio, A.P.; de Brito, E.S.; Marques, A.T.B.; Maróstica Junior, M.R. Functional Tea from a Brazilian Berry: Overview of the Bioactives Compounds. LWT—Food Sci. Technol. 2017, 76, 292–298. [Google Scholar] [CrossRef]
- Pérez-Ortiz, J.M.; Alguacil, L.F.; Salas, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S.; González-Martín, C. Antiproliferative and Cytotoxic Effects of Grape Pomace and Grape Seed Extracts on Colorectal Cancer Cell Lines. Food Sci. Nutr. 2019, 7, 2948–2957. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Gao, Y.; Zhang, Q.; Chang, A.K.; Yang, Z.; Bi, X. Black Raspberry Anthocyanins Increased the Antiproliferative Effects of 5-Fluorouracil and Celecoxib in Colorectal Cancer Cells and Mouse Model. J. Funct. Foods 2021, 87, 104801. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Cock, I.E. Acai, Cacao and Maca Extracts: Anticancer Activity and Growth Inhibition of Microbial Triggers of Selected Autoimmune Inflammatory Diseases. Pharmacogn. Commun. 2016, 6, 204–214. [Google Scholar] [CrossRef]
- da Silva, R.C.; Fagundes, R.R.; Faber, K.N.; Campos, É.G. Pro-Oxidant and Cytotoxic Effects of Tucum-Do-Cerrado (Bactris Setosa Mart.) Extracts in Colorectal Adenocarcinoma Caco-2 Cells. Nutr. Cancer 2022, 74, 3723–3734. [Google Scholar] [CrossRef]
- Mazewski, C.; Kim, M.S.; Gonzalez de Mejia, E. Anthocyanins, Delphinidin-3-O-Glucoside and Cyanidin-3-O-Glucoside, Inhibit Immune Checkpoints in Human Colorectal Cancer Cells In Vitro and In Silico. Sci. Rep. 2019, 9, 11560. [Google Scholar] [CrossRef]
- Passardi, A.; Canale, M.; Valgiusti, M.; Ulivi, P. Immune Checkpoints as a Target for Colorectal Cancer Treatment. Int. J. Mol. Sci. 2017, 18, 1324. [Google Scholar] [CrossRef]
- Mazewski, C.; Liang, K.; Gonzalez de Mejia, E. Comparison of the Effect of Chemical Composition of Anthocyanin-Rich Plant Extracts on Colon Cancer Cell Proliferation and Their Potential Mechanism of Action Using in Vitro, in Silico, and Biochemical Assays. Food Chem. 2018, 242, 378–388. [Google Scholar] [CrossRef]
- Pabla, B.; Bissonnette, M.; Konda, V.J. Colon Cancer and the Epidermal Growth Factor Receptor: Current Treatment Paradigms, the Importance of Diet, and the Role of Chemoprevention. World J. Clin. Oncol. 2015, 6, 133–141. [Google Scholar] [CrossRef]
- Bourgine, J.; Billaut-Laden, I.; Happillon, M.; Lo-Guidice, J.M.; Maunoury, V.; Imbenotte, M.; Broly, F. Gene Expression Profiling of Systems Involved in the Metabolism and the Disposition of Xenobiotics: Comparison between Human Intestinal Biopsy Samples and Colon Cell Lines. Drug Metab. Dispos. 2012, 40, 694–705. [Google Scholar] [CrossRef]
- Lea, T. Caco-2 Cell Line. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 103–111. ISBN 978-3-319-16104-4. [Google Scholar]
- Martínez-Maqueda, D.; Miralles, B.; Recio, I. HT29 Cell Line. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 113–124. ISBN 978-3-319-16104-4. [Google Scholar]
- May, S.; Greenow, K.R.; Higgins, A.T.; Derrick, A.V.; Taylor, E.; Pan, P.; Konstantinou, M.; Nixon, C.; Wooley, T.E.; Sansom, O.J.; et al. Modification of Diet to Reduce the Stemness and Tumorigenicity of Murine and Human Intestinal Cells. Mol. Nutr. Food Res. 2022, 66, 2200234. [Google Scholar] [CrossRef]
- da Silva-Maia, J.K.; Nagalingam, A.; Cazarin, C.B.B.; Marostica Junior, M.R.; Sharma, D. Jaboticaba (Myrciaria jaboticaba) Peel Extracts Induce Reticulum Stress and Apoptosis in Breast Cancer Cells. Food Chem. Mol. Sci. 2023, 6, 100167. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, R.d.P.d.; Rizzato, J.S.; Polezi, G.; Boughanem, H.; Williams, N.G.; Borguini, R.G.; Santiago, M.C.P.d.A.; Marostica Junior, M.R.; Parry, L. Myrciaria jaboticaba Fruit Peel: Bioactive Composition as Determined by Distinct Harvest Seasons and In Vitro Anti-Cancer Activity. Plants 2024, 13, 2907. https://doi.org/10.3390/plants13202907
Nascimento RdPd, Rizzato JS, Polezi G, Boughanem H, Williams NG, Borguini RG, Santiago MCPdA, Marostica Junior MR, Parry L. Myrciaria jaboticaba Fruit Peel: Bioactive Composition as Determined by Distinct Harvest Seasons and In Vitro Anti-Cancer Activity. Plants. 2024; 13(20):2907. https://doi.org/10.3390/plants13202907
Chicago/Turabian StyleNascimento, Roberto de Paula do, Julia Soto Rizzato, Gabriele Polezi, Hatim Boughanem, Non Gwenllian Williams, Renata Galhardo Borguini, Manuela Cristina Pessanha de Araujo Santiago, Mario Roberto Marostica Junior, and Lee Parry. 2024. "Myrciaria jaboticaba Fruit Peel: Bioactive Composition as Determined by Distinct Harvest Seasons and In Vitro Anti-Cancer Activity" Plants 13, no. 20: 2907. https://doi.org/10.3390/plants13202907
APA StyleNascimento, R. d. P. d., Rizzato, J. S., Polezi, G., Boughanem, H., Williams, N. G., Borguini, R. G., Santiago, M. C. P. d. A., Marostica Junior, M. R., & Parry, L. (2024). Myrciaria jaboticaba Fruit Peel: Bioactive Composition as Determined by Distinct Harvest Seasons and In Vitro Anti-Cancer Activity. Plants, 13(20), 2907. https://doi.org/10.3390/plants13202907