Potential of Ca-Complexed in Amino Acid in Attenuating Salt Stress in Sour Passion Fruit Seedlings
Abstract
:1. Introduction
2. Results
2.1. Gas Exchange and Photosynthetic Efficiency
2.2. Chlorophyll Indices and Chlorophyll a Fluorescence
2.3. Electrolyte Leakage and Relative Water Content
2.4. Multivariate Analysis of Principal Components
3. Materials and Methods
3.1. Description of the Experiment Site
3.2. Experimental Design and Treatments
3.3. Conducting the Experiment
3.4. Traits Analysed
3.4.1. Chlorophyll a Fluorescence
3.4.2. Leaf Chlorophyll Indices
3.4.3. Gas Exchange
3.4.4. Electrolyte Leakage
3.5. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, A. Soil Salinity: A Global Threat to Sustainable Development. Soil Use Manag. 2022, 38, 39–67. [Google Scholar] [CrossRef]
- Mustafa, G.; Akhtar, M.S.; Abdullah, R. Global Zoncern for Salinity on Various Agro-Ecosystems. In Salt Stress, Microbes, and Plant Interactions: Causes and Solution: Volume 1; Akhtar, M.S., Ed.; Springer: Singapore, 2019; pp. 1–19. ISBN 978-9-81138-801-9. [Google Scholar]
- Fu, Z.; Wang, P.; Sun, J.; Lu, Z.; Yang, H.; Liu, J.; Xia, J.; Li, T. Composition, Seasonal Variation, and Salinization Characteristics of Soil Salinity in the Chenier Island of the Yellow River Delta. Glob. Ecol. Conserv. 2020, 24, e01318. [Google Scholar] [CrossRef]
- Bezerra, J.D.; Pereira, W.E.; Silva, J.M.D.; Raposo, R.W.C. Crescimento de Dois Genótipos de Maracujazeiro-Amarelo Sob Condições de Salinidade. Rev. Ceres 2016, 63, 502–508. [Google Scholar] [CrossRef]
- Fatima, R.T.; Lima, G.S.; Soares, L.a.A.; Veloso, L.L.S.A.; Da Silva, A.A.R.; Lacerda, C.N.; Silva, F.A.; Nobrega, J.S.; Ferreira, J.T.A.; Pereira, W.E. Salicylic Acid Concentrations and Forms of Application Mitigate Water Stress in Sour Passion Fruit Seedlings. Braz. J. Biol. 2023, 83, e270865. [Google Scholar] [CrossRef]
- Lima, G.S.D.; Souza, W.B.B.D.; Paiva, F.J.D.S.; Soares, L.A.D.A.; Torres, R.A.F.; Silva, S.T.D.A.; Gheyi, H.R.; Lopes, K.P. Tolerance of Sour Passion Fruit Cultivars to Salt Stress in a Semi-Arid Region. Rev. Bras. Eng. Agríc. Ambient. 2023, 27, 785–794. [Google Scholar] [CrossRef]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity Induced Physiological and Biochemical Changes in Plants: An Omic Approach towards Salt Stress Tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef]
- Shahid, M.A.; Sarkhosh, A.; Khan, N.; Balal, R.M.; Ali, S.; Rossi, L.; Gómez, C.; Mattson, N.; Nasim, W.; Garcia-Sanchez, F. Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. Agronomy 2020, 10, 938. [Google Scholar] [CrossRef]
- Santos, L.F.S.; De Lima, G.S.; De Lima, V.L.A.; Da Silva, A.A.R.; De Fátima, R.T.; Arruda, T.F.d.L.; Soares, L.A.d.A.; Capitulino, J.D. Proline on the Induction of Tolerance of Sour Passion Fruit Seedlings to Salt Stress. Rev. Caatinga 2024, 37, e12048. [Google Scholar] [CrossRef]
- Da Silva, F.D.A.; Dias, M.D.S.; Fernandes, P.D.; De Lacerda, C.N.; Da Silva, A.A.R.; Marcelino, A.D.A.d.L.; De Lima, A.M.; Barbosa, D.D. Calcium Pyruvate as a Salt Stress Mitigator in Yellow Passion Fruit Seedlings. Rev. Bras. Eng. Agríc. Ambient. 2022, 26, 763–770. [Google Scholar] [CrossRef]
- El-Hady, E.S.; Merwad, M.A.; Shahin, M.F.M.; Hagagg, L.F. Influence of Foliar Spray with Some Calcium Sources on Flowering, Fruit Set, Yield and Fruit Quality of Olive Kalmata and Manzanillo Cultivars under Salt Stress. Bull. Natl. Res. Cent. 2020, 44, 197. [Google Scholar] [CrossRef]
- Wang, G.; Bi, A.; Amombo, E.; Li, H.; Zhang, L.; Cheng, C.; Hu, T.; Fu, J. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue. Front. Plant Sci. 2017, 8, 2032. [Google Scholar] [CrossRef]
- Hadi, M.R.; Karimi, N. The Role of Calcium in Plants’ Salt Tolerance. J. Plant Nutr. 2012, 35, 2037–2054. [Google Scholar] [CrossRef]
- Elsawy, H.I.A.; Alharbi, K.; Mohamed, A.M.M.; Ueda, A.; AlKahtani, M.; AlHusnain, L.; Attia, K.A.; Abdelaal, K.; Shahein, A.M.E.A. Calcium Lignosulfonate Can Mitigate the Impact of Salt Stress on Growth, Physiological, and Yield Characteristics of Two Barley Cultivars (Hordeum vulgare L.). Agriculture 2022, 12, 1459. [Google Scholar] [CrossRef]
- Alikhani, T.T.; Tabatabaei, S.J.; Mohammadi Torkashvand, A.; Khalighi, A.; Talei, D. Effects of Silica Nanoparticles and Calcium Chelate on the Morphological, Physiological and Biochemical Characteristics of Gerbera (Gerbera jamesonii L.) under Hydroponic Condition. J. Plant Nutr. 2021, 44, 1039–1053. [Google Scholar] [CrossRef]
- Saeedi, R.; Etemadi, N.; Nikbakht, A.; Khoshgoftarmanesh, A.H.; Sabzalian, M.R. Calcium Chelated with Amino Acids Improves Quality and Postharvest Life of Lisianthus (Eustoma grandiflorum Cv. Cinderella Lime). HortScience 2015, 50, 1394–1398. [Google Scholar] [CrossRef]
- Souri, M.K.; Hatamian, M. Aminochelates in Plant Nutrition: A Review. J. Plant Nutr. 2019, 42, 67–78. [Google Scholar] [CrossRef]
- Areche, F.O.; Aguilar, S.V.; López, J.M.M.; Chirre, E.T.C.; Sumarriva-Bustinza, L.A.; Pacovilca-Alejo, O.V.; Córdova, Y.F.C.; Montesinos, C.C.Z.; Astete, J.A.Q.; Quispe-Vidalon, D.; et al. Recent and Historical Developments in Chelated Fertilizers as Plant Nutritional Sources, Their Usage Efficiency, and Application Methods. Braz. J. Biol. 2023, 83, e271055. [Google Scholar]
- Thye, K.-L.; Wan Abdullah, W.M.A.N.; Ong-Abdullah, J.; Lamasudin, D.U.; Wee, C.-Y.; Mohd Yusoff, M.H.Y.; Loh, J.-Y.; Cheng, W.-H.; Lai, K.-S. Calcium Lignosulfonate Modulates Physiological and Biochemical Responses to Enhance Shoot Multiplication in Vanilla Planifolia Andrews. Physiol. Mol. Biol. Plants 2023, 29, 377–392. [Google Scholar] [CrossRef]
- Pan, T.; Liu, M.; Kreslavski, V.D.; Zharmukhamedov, S.K.; Nie, C.; Yu, M.; Kuznetsov, V.V.; Allakhverdiev, S.I.; Shabala, S. Non-Stomatal Limitation of Photosynthesis by Soil Salinity. Crit. Rev. Environ. Sci. Technol. 2021, 51, 791–825. [Google Scholar] [CrossRef]
- Silva, E.M.D.; Gheyi, H.R.; Nobre, R.G.; Soares, L.A.D.A.; Bonifácio, B.F. Saline Waters and Nitrogen/Potassium Fertilization Combinations on Physiological Aspects and Production of West Indian Cherry. Rev. Ambiente Água 2021, 16, 1–14. [Google Scholar] [CrossRef]
- Silva, F.C. Manual de análises químicas de solos, plantas e fertilizantes. In Portal Embrapa, 2nd ed.; Embrapa: Brasília, DF, Brazil, 2009; ISBN 978-85-7383-430-7. [Google Scholar]
- Guedes, L.R.; Cavalcante, L.F.; Souto, A.G.D.L.; Carvalho, L.H.M.; Cavalcante, Í.H.L.; Diniz Neto, M.A.; Lima, G.S.D.; Melo, T.D.S.; Henrique, J.C.G.D.S. Liquid Fertilizers on Photochemical Efficiency and Gas Exchange in Yellow Passion Fruit under Saline Stress. Rev. Bras. Eng. Agríc. Ambient. 2023, 27, 839–847. [Google Scholar] [CrossRef]
- Beltrano, J.; Ronco, M.G. Improved Tolerance of Wheat Plants (Triticum aestivum L.) to Drought Stress and Rewatering by the Arbuscular Mycorrhizal Fungus Glomus Claroideum: Effect on Growth and Cell Membrane Stability. Braz. J. Plant Physiol. 2008, 20, 29–37. [Google Scholar] [CrossRef]
- Ferreira, D.F. Sisvar: A Computer Analysis System to Fixed Effects Split Plot Type Designs: Sisvar. Rev. Bras. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef]
- R Team. Available online: https://www.r-project.org/ (accessed on 1 July 2024).
- Zivcak, M.; Kalaji, H.M.; Shao, H.-B.; Olsovska, K.; Brestic, M. Photosynthetic Proton and Electron Transport in Wheat Leaves under Prolonged Moderate Drought Stress. J. Photochem. Photobiol. B Biol. 2014, 137, 107–115. [Google Scholar] [CrossRef]
- Santos, T.B.; Ribas, A.F.; De Souza, S.G.H.; Budzinski, I.G.F.; Domingues, D.S. Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses 2022, 2, 113–135. [Google Scholar] [CrossRef]
- Gupta, S.; Kaur, N.; Kant, K.; Jindal, P.; Ali, A.; Naeem, M. Calcium: A Master Regulator of Stress Tolerance in Plants. S. Afr. J. Bot. 2023, 163, 580–594. [Google Scholar] [CrossRef]
- Nawaz, F.; Shehzad, M.A.; Majeed, S.; Ahmad, K.S.; Aqib, M.; Usmani, M.M.; Shabbir, R.N. Role of Mineral Nutrition in Improving Drought and Salinity Tolerance in Field Crops. In Agronomic Crops: Volume 3: Stress Responses and Tolerance; Hasanuzzaman, M., Ed.; Springer: Singapore, 2020; pp. 129–147. ISBN 978-9-81150-025-1. [Google Scholar]
- Haghighi, M.; Khosravi, S.; Sehar, S.; Shamsi, I.H. Foliar-Sprayed Calcium-Tryptophan Mediated Improvement in Physio-Biochemical Attributes and Nutritional Profile of Salt Stressed Brassica oleracea Var. Italica. Sci. Hortic. 2023, 307, 111529. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, H.; Song, C.; Zhu, J.-K.; Shabala, S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation 2020, 1, 100017. [Google Scholar] [CrossRef]
- Paiva, F.J.d.S.; De Lima, G.S.; De Lima, V.L.A.; De Souza, W.B.B.; Soares, L.A.d.A.; Torres, R.A.F.; Gheyi, H.R.; Silva, L.D.A.; Sá, F.V.d.S.; De Sá, V.K.N.O.; et al. The Effects of Irrigation Water Salinity on the Synthesis of Photosynthetic Pigments, Gas Exchange, and Photochemical Efficiency of Sour Passion Fruit Genotypes. Plants 2023, 12, 3894. [Google Scholar] [CrossRef]
- Sharma, S.; Joshi, J.; Kataria, S.; Verma, S.K.; Chatterjee, S.; Jain, M.; Pathak, K.; Rastogi, A.; Brestic, M. Chapter 27—Regulation of the Calvin Cycle under Abiotic Stresses: An Overview. In Plant Life Under Changing Environment; Tripathi, D.K., Pratap Singh, V., Chauhan, D.K., Sharma, S., Prasad, S.M., Dubey, N.K., Ramawat, N., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 681–717. ISBN 978-0-12-818204-8. [Google Scholar]
- Hameed, A.; Ahmed, M.Z.; Hussain, T.; Aziz, I.; Ahmad, N.; Gul, B.; Nielsen, B.L. Effects of Salinity Stress on Chloroplast Structure and Function. Cells 2021, 10, 2023. [Google Scholar] [CrossRef]
- Lima, G.S.D.; Pinheiro, F.W.A.; Souza, W.B.B.D.; Soares, L.A.D.A.; Gheyi, H.R.; Nobre, R.G.; Queiroga, R.C.F.D.; Fernandes, P.D. Physiological Indices of Sour Passion Fruit under Brackish Water Irrigation Strategies and Potassium Fertilization. Rev. Bras. Eng. Agríc. Ambient. 2023, 27, 383–392. [Google Scholar] [CrossRef]
- Lima, G.S.D.; Pinheiro, F.W.A.; Gheyi, H.R.; Soares, L.A.D.A.; Sousa, P.F.D.N.; Fernandes, P.D. Saline Water Irrigation Strategies and Potassium Fertilization on Physiology and Fruit Production of Yellow Passion Fruit. Rev. Bras. Eng. Agríc. Ambient. 2022, 26, 180–189. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Zhang, G.-X.; Qi, M.-F.; Li, T.-L. Effects of Calcium on Photosynthesis, Antioxidant System, and Chloroplast Ultrastructure in Tomato Leaves under Low Night Temperature Stress. J. Plant Growth Regul. 2015, 34, 263–273. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, S.; Wan, S.; Li, X. The Significance of Calcium in Photosynthesis. Int. J. Mol. Sci. 2019, 20, 1353. [Google Scholar] [CrossRef]
- Bezerra, M.A.F.; Cavalcante, L.F.; Bezerra, F.T.C.; Silva, A.R.; Oliveira, F.F.; Medeiros, S.A.S. Saline Water, Pit Coating and Calcium Fertilization on Chlorophyll, Fluorescence, Gas Exchange and Production in Passion Fruit. J. Agric. Sci. 2019, 11, 319. [Google Scholar] [CrossRef]
- Roháček, K. Chlorophyll Fluorescence Parameters: The Definitions, Photosynthetic Meaning, and Mutual Relationships. Photosynthetica 2002, 40, 13–29. [Google Scholar] [CrossRef]
- Aftab, T.; Khan, M.M.; Idrees, M.; Naeem, M.; Hashmi, N.; Moinuddin, A.S. Effect of Salt Stress on Growth, Membrane Damage, Antioxidant Metabolism and Artemisinin Accumulation in Artemisia annua L. Plant Stress 2010, 4, 36–43. [Google Scholar]
- Hniličková, H.; Hnilička, F.; Orsák, M.; Hejnák, V. Effect of Salt Stress on Growth, Electrolyte Leakage, Na+ and K+ Content in Selected Plant Species. Plant Soil Environ. 2019, 65, 90–96. [Google Scholar] [CrossRef]
S.V. | D.F. | Mean Squares | |||
---|---|---|---|---|---|
E | gs | A | |||
Cul | 2 | 0.007 ns | 32.832 ns | 1.782 ns | |
Sal | 1 | 0.390 ** | 1638.610 ** | 82.344 ** | |
Cal | 2 | 0.084 * | 10.737 ns | 0.196 ns | |
Cul × Sal | 1 | 0.110 * | 38.274 ns | 1.288 ns | |
Cul × Cal | 2 | 0.092 * | 69.151 ns | 0.104 ns | |
Sal × Cal | 2 | 0.002 ns | 100.330 * | 2.079 ns | |
Cul × Sal × Cal | 2 | 0.005 ns | 95.102 ns | 4.367 * | |
Block | 2 | 0.138 | 19. 543 | 1.369 | |
Residue | 22 | 0.023 | 28.303 | 0.913 | |
Total | 35 | - | - | - | |
CV (%) | - | 8.61 | 4.83 | 6.69 | |
Ci | WUE | iWUE | iCE | ||
Cul | 2 | 15.853 ns | 0.213 ns | 0.001 ns | 0.001 ns |
Sal | 1 | 13,599.058 * | 15.510 ** | 0.006 ** | 0.002 ns |
Cal | 2 | 1854.504 * | 0.374 ns | 0.001 ns | 0.001 ns |
Cul × Sal | 1 | 108.889 ns | 0.002 ns | 0.001 ns | 0.001 ns |
Cul × Cal | 2 | 413.560 ns | 0.381 ns | 0.001 ns | 0.001 ns |
Sal × Cal | 2 | 290.317 ns | 0.514 ns | 0.001 ns | 0.001 ns |
Cul × Sal × Cal | 2 | 786.346 ns | 1.203 * | 0.003 ns | 0.001 * |
Block | 2 | 1528.473 | 0.992 | 0.002 | 0.001 |
Residue | 22 | 243.847 | 0.318 | 0.001 | 0.000 |
Total | 35 | - | - | - | |
CV (%) | - | 6.08 | 15.81 | 14.40 | 24.00 |
S.V. | D.F. | Mean Squares | |||
---|---|---|---|---|---|
IChla | IChlb | IChlt | |||
Cul | 2 | 76.038 ** | 27.825 ** | 195.860 ** | |
Sal | 1 | 9.261 ns | 2.068 ns | 20.085 ns | |
Cal | 2 | 62.779 ** | 4.145 ns | 97.511 ** | |
Cul × Sal | 1 | 94.997 ** | 7.084 * | 153.966 ** | |
Cul × Cal | 2 | 2.203 ns | 1.815 ns | 4.704 ns | |
Sal × Cal | 2 | 39.151 ** | 4.689 * | 70.693 ** | |
Cul × Sal × Cal | 2 | 171.36 ** | 9.689 * | 262.611 ** | |
Block | 2 | 14.086 | 4.492 | 34.096 | |
Residue | 22 | 3.393 | 1.323 | 6.376 | |
Total | 35 | - | - | - | |
CV (%) | - | 4.82 | 15.86 | 5.55 | |
F0 | Fm | FV | RQPII | ||
Cul | 2 | 380.250 ns | 1980.250 ns | 245.444 ns | 0.002 ns |
Sal | 1 | 406.694 ns | 4074.694 ns | 1089.000 ns | 0.001 ns |
Cal | 2 | 88.583 ns | 238.083 ns | 149.527 ns | 0.009 ns |
Cul × Sal | 1 | 72.250 ns | 793.361 ns | 81.000 ns | 0.002 ns |
Cul × Cal | 2 | 424.083 ns | 1629.250 ns | 440.527 ns | 0.001 ns |
Sal × Cal | 2 | 105.194 ns | 189.194 ns | 207.750 ns | 0.002 ns |
Cul × Sal × Cal | 2 | 217.583 ns | 12,097.694 ns | 1170.083 ns | 0.010 ns |
Block | 2 | 991.083 | 1160.583 | 138.861 | 0.001 |
Residue | 22 | 179.659 | 2204.765 | 1720.830 | 0.005 |
Total | 35 | - | - | - | - |
CV (%) | - | 18.30 | 14.04 | 15.79 | 9.95 |
S.V. | D.F. | Mean Squares | |
---|---|---|---|
EL | RWC | ||
Cul | 2 | 41.667 ns | 0.043 ns |
Sal | 1 | 18.94.135 ** | 588.790 ** |
Cal | 2 | 74.488 * | 17.423 |
Cul × Sal | 1 | 25.050 ns | 5.405 |
Cul × Cal | 2 | 119.695 ** | 81.170 * |
Sal × Cal | 2 | 30.544 ns | 57.721 ** |
Cul × Sal × Cal | 2 | 49.778 * | 98.228 ** |
Block | 2 | 24.809 | 22.508 |
Residue | 22 | 11.285 | 10.002 |
Total | 35 | - | - |
CV | - | 13.60 | 3.78 |
pH | OM | P | K+ | Ca2+ | Mg2+ | Na+ | Al3+ | H+ + Al3+ | BS | CEC | ESP | ECse |
---|---|---|---|---|---|---|---|---|---|---|---|---|
H2O | % | mg dm−3 | ----------------------- (cmolc dm−3) ------------------------- | % | dS m−1 | |||||||
7.7 | 33.6 | 135.40 | 1.99 | 10.63 | 8.43 | 0.46 | 0.00 | 0.70 | 21.51 | 22.21 | 2.07 | 1.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souto, A.G.d.L.; Pessoa, A.M.d.S.; Sá, S.A.d.; Sousa, N.R.d.; Barros, E.S.; Morais, F.M.d.S.; Ferreira, F.N.; Silva, W.A.O.d.; Batista, R.O.; Silva, D.V.; et al. Potential of Ca-Complexed in Amino Acid in Attenuating Salt Stress in Sour Passion Fruit Seedlings. Plants 2024, 13, 2912. https://doi.org/10.3390/plants13202912
Souto AGdL, Pessoa AMdS, Sá SAd, Sousa NRd, Barros ES, Morais FMdS, Ferreira FN, Silva WAOd, Batista RO, Silva DV, et al. Potential of Ca-Complexed in Amino Acid in Attenuating Salt Stress in Sour Passion Fruit Seedlings. Plants. 2024; 13(20):2912. https://doi.org/10.3390/plants13202912
Chicago/Turabian StyleSouto, Antônio Gustavo de Luna, Angela Maria dos Santos Pessoa, Sarah Alencar de Sá, Nayana Rodrigues de Sousa, Emerson Serafim Barros, Francimar Maik da Silva Morais, Fagner Nogueira Ferreira, Wedson Aleff Oliveira da Silva, Rafael Oliveira Batista, Daniel Valadão Silva, and et al. 2024. "Potential of Ca-Complexed in Amino Acid in Attenuating Salt Stress in Sour Passion Fruit Seedlings" Plants 13, no. 20: 2912. https://doi.org/10.3390/plants13202912
APA StyleSouto, A. G. d. L., Pessoa, A. M. d. S., Sá, S. A. d., Sousa, N. R. d., Barros, E. S., Morais, F. M. d. S., Ferreira, F. N., Silva, W. A. O. d., Batista, R. O., Silva, D. V., Marcelino, R. M. O. d. S., Gheyi, H. R., Lima, G. S. d., Pessoa, R. M. d. S., & Rêgo, M. M. d. (2024). Potential of Ca-Complexed in Amino Acid in Attenuating Salt Stress in Sour Passion Fruit Seedlings. Plants, 13(20), 2912. https://doi.org/10.3390/plants13202912