Ecophysiological Trade-Off Strategies of Three Gramineous Crops in Response to Root Extracts of Phytolacca americana
Abstract
:1. Introduction
2. Results
2.1. The Chemical Composition of Root Extracts of P. americana
2.2. The Allelopathic Responses of Three Crops in Hydroponic Experiment
2.3. Changes in Antioxidant Enzyme Activities of Seedlings
2.4. The Pathway of Allelochemicals Affecting on Seedling Growth
2.5. The Allelopathic Responses of Three Crops in Pot Experiment
3. Discussion
3.1. The Responses of Seed Germination and Seedling Growth to Allelopathic Extracts
3.2. The Physiological and Biochemical Response of Seedlings to Allelopathic Extracts
3.3. The Ecological Response of the Seedling to Allelopathic Extracts
4. Conclusions
5. Materials and Methods
5.1. Study Species and Extracts Preparation
5.2. Hydroponic Experiment
5.3. Soil Culture Experiment
5.4. Data Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.H.; Cheng, J.L.; Yao, B.B.; Lu, H.; Zhang, Y.; Xu, J.; Song, X.; Sowndhararajan, K.; Qiang, S. Polyploidy-promoted phenolic metabolism confers the increased competitive ability of Solidago canadensis. Oikos 2021, 130, 1014–1025. [Google Scholar] [CrossRef]
- Singh, M.; Daehler, C.C. Meta-analytic evidence that allelopathy may increase the success and impact of invasive grasses. PeerJ 2023, 11, 2167–8359. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Geng, X.Z.; Zhu, P.; Bai, X.; Zhang, P.; Ni, G.; Hou, Y. Enhanced mutualism: A promotional effect driven by bacteria during the early invasion of Phytolacca americana. Ecol. Appl. 2022, 34, e2742. [Google Scholar] [CrossRef]
- Chen, Y.; Zhi, J.; Li, X.; Zhang, H.; Liu, H.; Xu, J. Diversity in cadmium accumulation and resistance associated with various metallothionein genes (type III) in Phytolacca americana L. Int. J. Biol. Macromol. 2018, 108, 704–709. [Google Scholar] [CrossRef]
- Chen, P.D.; Hou, Y.P.; Wei, W.; Lu, X.; Han, L.; Ni, G. Allelopathic effects of seven common species on the growth of alien invasive plant Phytolacca americana. Allelopath. J. 2019, 47, 195–207. [Google Scholar] [CrossRef]
- Olaru, A.L.; Bonea, D.; Bonciu, E. Phytotoxic and cyto-genotoxic potential of Phytolacca americana on Zea mays. Rom. Agric. Res. 2020, 37, 107–114. [Google Scholar] [CrossRef]
- Kim, Y.O.; Johnson, J.D.; Lee, E.J. Phytotoxicity of Phytolacca americana leaf extracts on the growth, and physiological response of Cassia mimosoides. J. Chem. Ecol. 2005, 31, 2963–2974. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.H.; Zhang, B.L.; Zhou, B.; Wang, N.; Yang, J.-Q. Allelopathic activity of the extracts from Phytolacca americana-an invasive alien plant. J. Ecol. Rural Environ. 2012, 28, 139–145. [Google Scholar]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Scavo, A.; Abbate, C.; Mauromicale, G. Plant allelochemicals: Agronomic, nutritional and ecological relevance in the soil system. Plant Soil 2019, 442, 23–48. [Google Scholar] [CrossRef]
- Callaway, R.M.; Aschehoug, E.T. Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science 2000, 290, 521–523. [Google Scholar] [CrossRef]
- Lind, E.M.; Parker, J.D. Novel weapons testing: Are invasive plants more chemically defended than native plants? PLoS ONE 2010, 5, e10429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.J.; Liu, Y.J.; Yuan, L.; Weber, E.; van Kleunen, M. Effect of allelopathy on plant performance: A meta-analysis. Ecol. Lett. 2021, 24, 348–362. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, C.S.; Behera, B. Mechanisms of allelopathic interactions for sustainable weed management. Pol. J. Environ. Stud. 2023, 21, 713–717. [Google Scholar] [CrossRef]
- Malkomes, H.P. Allelopathy of middle European agricultural weeds—An overview. J. Plant Dis. Protect. 2006, 20, 435–445. [Google Scholar]
- Hierro, J.L.; Callaway, R.M. Allelopathy and exotic plant invasion. Plant Soil 2003, 256, 29–39. [Google Scholar] [CrossRef]
- Svensson, J.R.; Nylund, G.M.; Cervin, G.; Toth, G.B.; Pavia, H. Novel chemical weapon of an exotic macroalga inhibits recruitment of native competitors in the invaded range. J. Ecol. 2013, 101, 140–148. [Google Scholar] [CrossRef]
- Chen, B.M.; Liao, H.X.; Chen, W.B.; Wei, H.-J.; Peng, S.-L. Role of allelopathy in plant invasion and control of invasive plants. Allelopath. J. 2017, 41, 155–166. [Google Scholar] [CrossRef]
- Yuan, L.; Li, J.M.; Yu, F.H.; Oduor, A.M.O.; van Kleunen, M. Allelopathic and competitive interactions between native and alien plants. Biol. Invasions 2021, 23, 3077–3090. [Google Scholar] [CrossRef]
- Butcko, V.M.; Jensen, R.J. Evidence of tissue-specific allelopathic activity in Euthamia graminifolia and Solidago canadensis (Aster aceae). Am. Midl. Nat. 2002, 148, 253–262. [Google Scholar] [CrossRef]
- Li, S.L.; Li, Z.H.; Wang, Y.F.; Ruan, X.; De Pan, C.; Wang, Q. Preliminary study for the allelopathic effect of water extracts from Solidago canadensis leaves. Adv. Mater. Res. 2013, 699, 340–348. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wu, B.D.; Jiang, K. Allelopathic effects of Canada goldenrod leaf extracts on the seed germination and seedling growth of lettuce reinforced under salt stress. Ecotoxicology 2019, 28, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Możdżeń, K.; Barabasz, K.B.; Zandi, P.; Kliszcz, A.; Puła, J. Effect of aqueous extracts from Solidago canadensis L. Leaves on germination and early growth stages of three cultivars of Raphanus sativus L. var. Radicula Pers. Plants 2020, 9, 1549. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. The allelopathy of the invasive plant species Ludwigia decurrens against rice and paddy weeds. Agriculture 2024, 14, 1297. [Google Scholar] [CrossRef]
- Motmainna, M.; Juraimi, A.S.B.; Uddin, M.K.; Asib, N.B.; Islam, A.K.M.M.; Hasan, M. Allelopathic potential of Malaysian invasive weed species on Weedy rice (Oryza sativa f. spontanea Roshev). Allelopath. J. 2021, 53, 53–67. [Google Scholar] [CrossRef]
- Chen, P.D.; Huang, Q.Q.; Zhuge, Y.H.; Li, C.; Zhu, P.; Hou, Y. The effects of plant-soil feedback on invasion resistance are soil context dependent. Oecologia 2021, 197, 213–222. [Google Scholar] [CrossRef]
- Shen, G.; Zhang, J.; Lei, Y.; Xu, Y.; Wu, J. Between-plant signaling. Ann. Rev. Plant Biol. 2023, 74, 367–386. [Google Scholar] [CrossRef]
- Guerrieri, E.; Rasmann, S. Exposing belowground plant communication. Science 2024, 384, 272–273. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Wang, Z.H.; Hu, Z.R.; Xin, M.-M.; Yao, Y.-Y.; Peng, H.-R.; You, M.-S.; Su, Z.-Q.; Guo, W.-L. Comparative analysis of the genomic sequences between commercial wheat varieties Jimai 22 and Liangxing 99. Acta Agron. Sin. 2020, 46, 1870–1883. [Google Scholar]
- Cheng, F.; Cheng, Z.H. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 2015, 6, 1020. [Google Scholar] [CrossRef]
- Xu, H.W.; Mo, Y.W.; Wang, W.; Wang, H.; Wang, Z. OsPIN1a gene participates in regulating negative phototropism of rice roots. Rice Sci. 2014, 21, 83–89. [Google Scholar] [CrossRef]
- Liu, X.F.; Hu, X.J. Effects of allelochemical ferulic acid on endogenous hormone level of wheat seedling. Chin. J. Eco-Agric. 2001, 9, 86–88. [Google Scholar]
- Xia, X.J.; Jian, M.Y.; Han, Y.C.; Zhai, X.G.; Zhao, D.Y.; Zhu, T.; Fang, X.; Gao, G.N.; Ding, Q.; Ma, L.J. Effects of cadmium stress on morphological development and physiological metabolism in wheat (Triticum aestivum). J. Agric. Biotechnol. 2018, 26, 1494–1503. [Google Scholar]
- Mikulic-Petkovsek, M.; Veberic, R.; Hudina, M.; Misic, E. HPLC-DAD-MS identification and quantification of phenolic components in Japanese Knotweed and American Pokeweed extracts and their phytotoxic effects on seed germination. Plants 2022, 11, 3053. [Google Scholar] [CrossRef]
- Li, Z.H.; Wang, Q.; Ruan, X.; Pan, C.-D.; Jiang, D.-A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef]
- Kato, N.H.; Kato, M. Allelopathy and allelochemicals of Solidago canadensis L. and S. altissima L. for their naturalization. Plants 2022, 11, 3235. [Google Scholar] [CrossRef]
- Bi, J.W.; Bossdorf, O.; Liao, Z.Y.; Richards, C.L.; Parepa, M.; Zhao, W.; Berninger, F.; Zhao, Y.; Liu, Z.; Feng, X.; et al. Divergent geographic variation in above- versus below-ground secondary metabolites of Reynoutria japonica. J. Ecol. 2024, 112, 514–527. [Google Scholar] [CrossRef]
- Poljuha, D.; Sladonja, B.; Bozac, M.U.; Šola, I.; Damijanić, D.; Weber, T. The invasive alien plant Solidago canadensis: Phytochemical composition, ecosystem service potential, and application in bioeconomy. Plants 2024, 13, 1745. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Gonzalez, V.M.; Kazimir, J.; Nimbal, C.; Weston, L.A.; Cheniae, G.M. Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J. Agric. Food Chem. 1997, 45, 1415–1421. [Google Scholar] [CrossRef]
- Shao, J.; Wu, Z.; Yu, G.; Peng, X.; Li, R. Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (Cyanobacteria): From views of gene expression and antioxidant system. Chemosphere 2009, 75, 924–928. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, Z.F.; Hao, F.G.; Guo, W.M. Effects of aquatic extracts from different parts and rhizospheric soil of chrysanthemum on the rooting of stem cuttings of the same species. Acta Bot. Boreali-Occident. Sin. 2010, 30, 762–768. [Google Scholar]
- Rai, C.A.; Singh, M.; Shah, K. Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiol. Biochem. 2012, 61, 108–114. [Google Scholar]
- Bauer, J.T.; Shannon, S.M.; Stoops, R.E.; Reynolds, H.L. Context dependency of the allelopathic effects of Lonicera maackii on seed germination. Plant Ecol. 2012, 213, 1907–1916. [Google Scholar] [CrossRef]
- Xu, H.W.; Zhang, Y.; Yang, X.; Wang, H.; Hou, D. Tissue specificity and responses to abiotic stresses and hormones of PIN gens in rice. Biologia 2022, 77, 1459–1470. [Google Scholar] [CrossRef]
- Hu, L.X.; Li, H.Y.; Pang, H.C.; Fu, J. Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J. Plant Physiol. 2012, 169, 146–156. [Google Scholar] [CrossRef]
- Chen, R.; Xiao, N.; Lu, Y.; Tao, T.; Huang, Q.; Wang, S.; Wang, Z.; Chuan, M.; Bu, Q.; Lu, Z.; et al. A de novo evolved gene contributes to rice grain shape difference between indica and japonica. Nat. Commun. 2023, 14, 5906. [Google Scholar] [CrossRef] [PubMed]
- Pellegrineschi, A.; Reynolds, M.; Pacheco, M. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 2004, 47, 493–500. [Google Scholar] [CrossRef]
- Poonpaiboonpipat, T.; Pangnakorn, U.; Suvunnamek, U.; Teerarak, M.; Charoenying, P.; Laosinwattana, C. Phytotoxic effects of essential oil from Cymbopogon citratus and its physiological mechanisms on barnyardgrass (Echinochloa crus-galli). Ind. Crops Prod. 2013, 41, 403–407. [Google Scholar] [CrossRef]
- R Core Team. R: The R Project for Statistical Computing. 2024. Available online: https://www.r-project.org/ (accessed on 20 October 2024).
Latent Variables | Path Coefficients | Correlation | Contribution to R2 for Each Variable (%) | |
---|---|---|---|---|
Aboveground biomass | Species | −0.465 | −0.811 | 41.46 |
Allelochemicals | −0.153 | −0.350 | 5.89 | |
Photosynthesis | 0.356 | 0.880 | 34.47 | |
Enzyme | −0.472 | −0.912 | 47.32 | |
Metabolite | 0.317 | −0.835 | −29.14 | |
Belowground biomass | Species | −0.271 | −0.368 | 13.28 |
Allelochemicals | −0.264 | −0.733 | 25.77 | |
Photosynthesis | −0.217 | 0.345 | −9.97 | |
Enzyme | −0.763 | −0.592 | 60.15 | |
Metabolite | −0.509 | −0.157 | 10.64 | |
Root/shoot ratio | Species | −0.126 | 0.341 | −6.44 |
Allelochemicals | −0.789 | −0.626 | 74.05 | |
Photosynthesis | 0.238 | −0.301 | −10.74 | |
Enzyme | 0.598 | 0.209 | 18.74 | |
Metabolite | −0.283 | −0.575 | 24.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Cao, Y.; Jin, Y.; Sun, L.; Tang, F.; Dong, L. Ecophysiological Trade-Off Strategies of Three Gramineous Crops in Response to Root Extracts of Phytolacca americana. Plants 2024, 13, 3026. https://doi.org/10.3390/plants13213026
Wang X, Cao Y, Jin Y, Sun L, Tang F, Dong L. Ecophysiological Trade-Off Strategies of Three Gramineous Crops in Response to Root Extracts of Phytolacca americana. Plants. 2024; 13(21):3026. https://doi.org/10.3390/plants13213026
Chicago/Turabian StyleWang, Xinyu, Yuting Cao, Yefei Jin, Lifu Sun, Fangping Tang, and Lijia Dong. 2024. "Ecophysiological Trade-Off Strategies of Three Gramineous Crops in Response to Root Extracts of Phytolacca americana" Plants 13, no. 21: 3026. https://doi.org/10.3390/plants13213026
APA StyleWang, X., Cao, Y., Jin, Y., Sun, L., Tang, F., & Dong, L. (2024). Ecophysiological Trade-Off Strategies of Three Gramineous Crops in Response to Root Extracts of Phytolacca americana. Plants, 13(21), 3026. https://doi.org/10.3390/plants13213026