Simulation and Evaluation of Spring Maize Growth Under Drip Irrigation with Fully Biodegradable Film Mulching Based on the DSSAT Model
Abstract
:1. Introduction
2. Results
2.1. Fully Biodegradable Mulch Film Damage Ratio
2.2. Temperature Increase Compensation Coefficient
2.3. Calibration of the DSSAT Model Under Fully Biodegradable Mulch
2.4. Model Validation Under Fully Biodegradable Mulch
2.5. Yield Prediction Under Fully Biodegradable Mulch
3. Discussion
4. Materials and Methods
4.1. Field Experiment
4.2. Data Measurement and Methods
4.2.1. Meteorological Data
4.2.2. Soil Water Content
4.2.3. Soil Temperature
4.2.4. Fully Biodegradable Mulch Film Damage Ratio Statistical Method
4.2.5. Leaf Area Index, Yield, and WUE
4.3. Model Improvement
4.3.1. Irrigation Amount
4.3.2. Temperature
4.3.3. Soil Evaporation
4.3.4. Precipitation
4.4. Model Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hengshan, Y.; Ruifu, Z.; Yuanyuan, L. Shallow-buried drip irrigation promoted the enrichment of beneficial microorganisms in surface soil. Rhizosphere 2023, 28, 100776. [Google Scholar]
- Sun, S.; Zhang, W.; Liu, C.; Zhou, J.; Zhu, K. Degradation property of oxo-biodegradable plastic film and its mulching effect on soil moisture, soil temperature and maize growth in rainfed Northeast China. Chin. J. Eco-Agric. 2019, 27, 72–80. [Google Scholar]
- Wang, Y.; Xu, M.; Xin, M.; Luo, X.; Zhang, T.; Pan, X.; Ji, Y.; Yin, H.; Zhao, Y.; Sui, M. Dicator construction and spatial distribution characteristics of maize spring waterlogging in Northeast China. Trans. Chin. Soc. Agric. Eng. 2022, 38, 101–110. [Google Scholar]
- Li, R.; Zhao, J.; Shi, H.; Wang, N.; Qi, Y.; Feng, Y.; Jia, Q. Simulation of evapotranspiration of corn under mulched drip irrigation based on SIMDual_Kc model in Tongliao area of Inner Mongolia. Trans. Chin. Soc. Agric. Eng. 2018, 34, 127–134. [Google Scholar]
- Gu, X.; Li, Y.; Du, Y. Biodegradable film mulching improves soil temperature, moisture and seed yield of winter oilseed rape (Brassica napus L.). Soil Tillage Res. 2017, 171, 42–50. [Google Scholar] [CrossRef]
- Liang, S.; Li, Y.; Rashid, M.A.R.; He, S.; Wang, P.; Yin, Z.; Lu, L.; Zhan, K.; Wang, S.; Wang, X. Effects of planting patterns on rainwater use efficiency and potato tuber yield in seasonally arid areas of southwestern China. Soil Tillage Res. 2020, 197, 104502. [Google Scholar] [CrossRef]
- Saglam, M.; Sintim, H.Y.; Bary, A.I.; Miles, C.A.; Ghimire, S.; Inglis, D.A.; Flury, M. Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics. Agric. Water Manag. 2017, 193, 240–250. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Bary, A.I.; Hayes, D.G.; Wadsworth, L.C.; Anunciado, M.B.; English, M.E.; Bandopadhyay, S.; Schaeffer, S.M.; DeBruyn, J.M.; Miles, C.A. In situ degradation of biodegradable plastic mulch film in compost and agricultural soils. Sci. Total Environ. 2020, 727, 138668. [Google Scholar] [CrossRef]
- Marí, A.; Pardo, G.; Aibar, J.; Cirujeda, A. Purple nutsedge (Cyperus rotundus L.) control with biodegradable mulches and its effect on fresh pepper production. Sci. Hortic. 2020, 263, 109111. [Google Scholar] [CrossRef]
- Feng, Y.; Shi, H.; Cao, X.; Miao, Q.; Jia, Q.; Li, J.; Wang, N.; Zhu, K. Numerical modeling of soil water–heat transport under oxo-biodegradable film mulch and the optimal mulching period. J. Irrig. Drain. Eng. 2021, 147, 04021035. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Shi, H.; Yan, J.; Hu, Q.; Zhang, Y. Modeling maize evapotranspiration and associated processes under biodegradable film mulching in an arid dripped field. Agric. For. Meteorol. 2021, 297, 108247. [Google Scholar] [CrossRef]
- Gao, X.; Xie, D.; Yang, C. Effects of a PLA/PBAT biodegradable film mulch as a replacement of polyethylene film and their residues on maize and soil environment. Agric. Water Manag. 2021, 255, 107053. [Google Scholar] [CrossRef]
- Yin, M.; Li, Y.; Fang, H.; Chen, P. Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth. Agric. Water Manag. 2019, 216, 127–137. [Google Scholar] [CrossRef]
- Shen, H.; Gao, Y.; Guo, F.; Wang, Y.; Ma, X. A modified DSSAT-CERES model for simulating summer maize growth under film mulching. Agron. J. 2021, 113, 4819–4831. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Shi, H.; Zhang, Y.; Hu, Q.; Sun, Y.N. Modeling effects of biodegradable film mulching on evapotranspiration and maize yields in Inner Mongolia. Agric. Water Manag. 2023, 275, 107996. [Google Scholar] [CrossRef]
- Chen, Q.; Nan, D. Preliminary Report on the Relationship between the Accumulated Temperature in Plow Layer of Soil and Cotton Growing Status. Acta Pedol. Sin. 1983, 1, 92–96. [Google Scholar]
- Wang, H.; Gong, D.; Mei, X.; Hao, W. Dynamics comparison of rain-fed spring maize growth and evapotranspiration in plastic mulching and un-mulching fields. Trans. Chin. Soc. Agric. Eng. 2012, 28, 88–94. [Google Scholar]
- Ning, Y.; Zhanxiang, S.; Zhe, Z.; Jiaming, Z.; Liangshan, F.; Kaiyu, L.; Chen, F.; Lizhen, Z. Simulation of water use process by film mulched cultivated maize, based on improved AquaMaize model and its verification. Trans. Chin. Soc. Agric. Eng. 2015, 31, 122–132. [Google Scholar]
- Yuan, X.; Wu, P.; Wang, Y. Study on the effect of irrigation under plastic preservation of soil moisture on soil and maize. J. Irrig. Drain. 2006, 25, 25–29. [Google Scholar]
- Sun, T.; Li, G.; Ning, T.Y. Suitability of mulching with biodegradable film to moderate soil temperature and moisture and to increase photosynthesis and yield in peanut. Agric. Water Manag. 2018, 208, 214–223. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Z.; Zheng, X.; Zhang, J.; Li, W. Effects of biodegradation film mulching on soil temperature, moisture and yield of cotton under drip irrigation in typical oasis area. Trans. Chin. Soc. Agric. Eng. 2017, 33, 135–143. [Google Scholar]
- Jia, Q.; Shi, H.; Li, R.; Miao, Q.; Feng, Y.; Wang, N.; Li, J. Evaporation of maize maize under mulch film and soil covered drip irrigation: Field assessment and modelling on West Liaohe Plain, China. Agric. Water Manag. 2021, 253, 106894. [Google Scholar] [CrossRef]
- Feng, Y.; Shi, H.; Jia, Y.; Miao, Q.; Jia, Q.; Wang, N. Infiltration and water use efficiency of maize fields with drip irrigation and biodegradable mulches in the west liaohe plain, China. Plants 2023, 12, 975. [Google Scholar] [CrossRef]
- Li, M.; Du, Y.; Zhang, F.; Bai, Y.; Fan, J.; Zhang, J.; Chen, S. Simulation of cotton growth and soil water content under film-mulched drip irrigation using modified CSM-MAIZEGRO-cotton model. Agric. Water Manag. 2019, 218, 124–138. [Google Scholar] [CrossRef]
- Fu, C.; Wang, J.; Gong, S.; Zhang, Y.; Wang, C.; Mo, Y. Optimization of irrigation and fertilization of drip-irrigated corn in the chernozem area of north-east China based on the CERES-Maize model. Irrig. Drain. 2020, 69, 714–731. [Google Scholar] [CrossRef]
- Jia, Q.; Shi, H.; Li, R.; Feng, Y.; Li, H.; Zheng, J. Drip irrigation schedules of maize in Tongliao. Drain. Irrig. Mach. Eng. 2018, 36, 897–902. [Google Scholar]
- Watson, D.J. Comparative physiological studies on the growth of field maize: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann. Bot. 1947, 11, 41–76. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, W.; Zhang, S.; Luo, W. Simulation Model for Cotton Development Stages Based on Physiological Development Time. Cotton Sci. 2003, 15, 97–103. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
Year | Treatments | Temperature Increase Compensation Coefficient | ||
---|---|---|---|---|
Sowing to Emergence | Emergence to Elongation | Elongation to Tasseling | ||
BM60 | 2019 | 1.47 | 0.35 | 0.10 |
2020 | 1.38 | 0.32 | 0.12 | |
2021 | 1.59 | 0.43 | 0.13 | |
2022 | 1.61 | 0.37 | 0.09 | |
2023 | 1.42 | 0.33 | 0.13 | |
Mean | 1.49 | 0.36 | 0.11 | |
CV | 5.58% | 9.89% | 13.01% | |
BM80 | 2019 | 1.48 | 0.41 | 0.15 |
2020 | 1.38 | 0.38 | 0.13 | |
2021 | 1.59 | 0.45 | 0.16 | |
2022 | 1.61 | 0.39 | 0.11 | |
2023 | 1.42 | 0.36 | 0.15 | |
Mean | 1.50 | 0.40 | 0.14 | |
CV | 5.55% | 7.02% | 11.66% | |
BM100 | 2019 | 1.49 | 0.44 | 0.21 |
2020 | 1.39 | 0.40 | 0.16 | |
2021 | 1.59 | 0.47 | 0.20 | |
2022 | 1.62 | 0.42 | 0.16 | |
2023 | 1.42 | 0.39 | 0.18 | |
Mean | 1.50 | 0.42 | 0.18 | |
CV | 5.51% | 6.18% | 10.23% |
Variety | P1 | P2 | P5 | PHINT | G2 | G3 |
---|---|---|---|---|---|---|
Nonghua 106 | 196 | 0.55 | 858 | 45 | 980 | 6.2 |
Treatment | Emergence | Tasseling | Filling | Harvest | Yield (kg/ha) | ETc (mm) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sim. | Obs. | MRE (%) | Sim. | Obs. | MRE (%) | Sim. | Obs. | MRE (%) | Sim. | Obs. | MRE (%) | Sim. | Obs. | MRE (%) | Sim. | Obs. | MRE (%) | ||
2016 | BM60 | 135 | 136 | 0.74% | 203 | 205 | 0.99% | 228 | 229 | 0.44% | 262 | 264 | 0.76% | 13,301 | 13,484 | 1.37% | 443.25 | 450.69 | 1.68% |
BM80 | 135 | 136 | 0.74% | 202 | 205 | 1.49% | 227 | 229 | 0.88% | 261 | 264 | 1.15% | 13,015 | 12,995 | 0.15% | 438.22 | 445.52 | 1.67% | |
BM100 | 135 | 136 | 0.74% | 201 | 205 | 1.99% | 226 | 228 | 0.88% | 260 | 264 | 1.54% | 12,409 | 12,471 | 0.50% | 427.07 | 435.39 | 1.95% | |
2017 | BM60 | 136 | 138 | 1.47% | 206 | 206 | 0.00% | 231 | 233 | 0.87% | 265 | 265 | 0.00% | 12,890 | 13,379 | 3.79% | 491.74 | 471.35 | 4.15% |
BM80 | 136 | 138 | 1.47% | 205 | 206 | 0.49% | 230 | 233 | 1.30% | 264 | 265 | 0.38% | 12,361 | 12,848 | 3.94% | 490.99 | 470.43 | 4.19% | |
BM100 | 136 | 138 | 1.47% | 204 | 206 | 0.98% | 229 | 233 | 1.75% | 263 | 265 | 0.76% | 12,351 | 12,727 | 3.05% | 484.87 | 464.97 | 4.10% | |
2018 | BM60 | 135 | 134 | 0.74% | 206 | 204 | 0.97% | 231 | 230 | 0.43% | 265 | 263 | 0.75% | 11,305 | 11,193 | 0.99% | 415.44 | 435.95 | 4.94% |
BM80 | 135 | 134 | 0.74% | 206 | 204 | 0.97% | 231 | 230 | 0.43% | 265 | 263 | 0.75% | 12,125 | 12,461 | 2.77% | 411.36 | 431.62 | 4.93% | |
BM100 | 135 | 134 | 0.74% | 205 | 204 | 0.49% | 230 | 228 | 0.87% | 264 | 263 | 0.38% | 12,330 | 12,732 | 3.26% | 402.26 | 423.19 | 5.20% |
Treatment | Precipitation | ETc | Yield | WUE | |
---|---|---|---|---|---|
(mm) | (mm) | (kg ha−1) | (kg mm−1 ha−1) | ||
2019 | BM60 | 192.53 | 449.74 | 12,659.15 | 28.15 |
BM80 | 177.81 | 434.68 | 12,471.10 | 28.69 | |
BM100 | 168.97 | 423.74 | 12,223.73 | 28.85 | |
2020 | BM60 | 203.98 | 459.85 | 13,692.62 | 29.78 |
BM80 | 203.98 | 455.12 | 13,531.60 | 29.73 | |
BM100 | 184.86 | 439.28 | 13,114.28 | 29.85 | |
2021 | BM60 | 242.34 | 449.90 | 12,903.12 | 28.68 |
BM80 | 226.56 | 435.48 | 12,715.48 | 29.20 | |
BM100 | 204.58 | 412.70 | 12,140.05 | 29.42 | |
2022 | BM60 | 209.05 | 457.10 | 12,316.49 | 26.94 |
BM80 | 192.87 | 442.48 | 12,284.17 | 27.76 | |
BM100 | 183.42 | 434.80 | 12,179.04 | 28.01 | |
2023 | BM60 | 382.13 | 498.03 | 11,819.63 | 23.73 |
BM80 | 364.80 | 480.30 | 11,442.29 | 23.82 | |
BM100 | 352.64 | 467.84 | 11,163.77 | 23.86 |
Soil Layers | Soil Types (%) | Field Capacity | Saturated Water Content | Wilting Point | Bulk Density | ||
---|---|---|---|---|---|---|---|
(cm) | Clay | Silt | Sand | (cm3 cm−3) | (cm3 cm−3) | (cm3 cm−3) | (g cm−3) |
0–20 | 10.54 | 52.7 | 36.76 | 0.26 | 0.40 | 0.08 | 1.39 |
20–40 | 29.54 | 48.81 | 21.65 | 0.34 | 0.45 | 0.08 | 1.38 |
40–70 | 40.67 | 39.15 | 20.18 | 0.45 | 0.53 | 0.10 | 1.41 |
70–100 | 1.41 | 25.58 | 73.01 | 0.17 | 0.38 | 0.05 | 1.52 |
Year | Irrigation Depth (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|
2016 | Date | 9 May | 2 June | 9 July | 22 July | 2 August | 8 August | 14 August | 25 August |
Act | 30 | 30 | 30 | 15 | 10 | 20 | 20 | 20 | |
Inp | 51 | 53 | 44 | 27 | 31 | 42 | 46 | 39 | |
2017 | Date | 8 May | 11 June | 27 June | 2 July | 17 July | 22 July | 2 August | |
Act | 30 | 30 | 30 | 30 | 20 | 10 | 10 | ||
Inp | 52 | 56 | 50 | 46 | 39 | 18 | 24 | ||
2018 | Date | 9 May | 18 May | 10 June | 22 June | 17 July | 1 August | 9 August | |
Act | 15 | 30 | 30 | 30 | 30 | 30 | 30 | ||
Inp | 33 | 59 | 58 | 52 | 42 | 37 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Shi, H.; Miao, Q.; Sun, X.; Feng, Y. Simulation and Evaluation of Spring Maize Growth Under Drip Irrigation with Fully Biodegradable Film Mulching Based on the DSSAT Model. Plants 2024, 13, 3027. https://doi.org/10.3390/plants13213027
Jia Y, Shi H, Miao Q, Sun X, Feng Y. Simulation and Evaluation of Spring Maize Growth Under Drip Irrigation with Fully Biodegradable Film Mulching Based on the DSSAT Model. Plants. 2024; 13(21):3027. https://doi.org/10.3390/plants13213027
Chicago/Turabian StyleJia, Yanhui, Haibin Shi, Qingfeng Miao, Xiulu Sun, and Yayang Feng. 2024. "Simulation and Evaluation of Spring Maize Growth Under Drip Irrigation with Fully Biodegradable Film Mulching Based on the DSSAT Model" Plants 13, no. 21: 3027. https://doi.org/10.3390/plants13213027
APA StyleJia, Y., Shi, H., Miao, Q., Sun, X., & Feng, Y. (2024). Simulation and Evaluation of Spring Maize Growth Under Drip Irrigation with Fully Biodegradable Film Mulching Based on the DSSAT Model. Plants, 13(21), 3027. https://doi.org/10.3390/plants13213027