Wild Lathyrus—A Treasure of Novel Diversity
Abstract
:1. Introduction
2. Origin, Domestication, and Geographic Distribution
3. Taxonomic Classification and the Gene Pool
Section | Species | Important Species | Geographical Distribution |
---|---|---|---|
Orobus | 54 | - | Europe, West and East Asia, Northwest Africa, North and Central America |
Lathyrostylis | 20 | - | Central and Southern Europe, West Asia, Northwest Africa |
Orobon | 1 | - | Anatolia, Caucasia, Crimea, Iran |
Lathyrus | 33 | L. annuus, L. cicera, L. sativus, L. sylvestris, L. tingitanus, L. tuberosus, L. gorgoni, L. hirsutus, L. latifolius, L. odoratus, L. rotundifolius, L. blepharicarpus | Europe, Canaries, West and Central Asia, North Africa |
Pratensis | 6 | L. pratensis | Europe, West and Central Asia, North Africa |
Aphaca | 2 | L. aphaca | Europe, West and Central Asia, North Africa |
Clymenum | 3 | L. clymenum, L. ochrus | Mediterranean |
Orobastrum | 1 | - | Mediterranean, Crimea, Caucasia |
Viciopsis | 1 | - | Southern Europe, Eastern Anatolia, North Africa |
Linearicarpus | 7 | - | Europe, West and Central Asia, North and East Africa |
Nissolia | 1 | - | Europe, West and Central Asia, Northwest Africa |
Neurolobus | 1 | - | West Crete |
Notolathyrus | 23 | - | Temperate South America, Southeast USA |
4. Conservation of Wild Relatives of L. sativus
Scheme | Major Genebanks | Total Accessions (with Three Major Species) |
---|---|---|
1 | Conservatoire botanique national Midi-Pyrénées (CBNPMP), France # | 4477 |
2 | International Center for Agricultural Research in Dry Areas, Lebanon (ICARDA) * | 4468 (L. sativus—2577, L. aphaca—346, L. cicera—216) |
3 | Indian Council of Agricultural Research National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India ** | 2767 |
4 | Bangladesh Agricultural Research Institute (Plant Genetic Resource Centre (BARI-PGRC)), Bangladesh # | 2422 (L. sativus) |
5 | Instituto Nacional de Investigación Agraria (INIA), Chile # | 1824 |
6 | Australian Grains Genebank, Australia * | 1477 (L. sativus—896, L. cicera—201, L. ochrus—122) |
7 | Millennium Seed Bank (MSB), Kew, England * | 1103 (L. aphaca—196, L. sativus—155, L. hierosolymitanus—86) |
8 | Ustymivka Experimental Station of Plant Production, Ukraine * | 1215 (L. sativus—782, L. cicera—73, L. hirsutus—70) |
9 | N.I. Vavilov All-Russian Scientific Research Institute of Plant Industry, Saint Petersburg, Russia * | 1207 (L. sativus—824, L. cicera—86, L. hirsutus —45) |
10 | United States Department of Agriculture (USDA) National Plant Germplasm System * | 864 (L. sativus—294, Lathyrus sp.—120, L. odoratus—52) |
5. β-ODAP: A Persistent Barrier for Grasspea Improvement
6. Pre-Breeding for Accessing Novel Alleles from Wild Species for Crop Improvement
7. Role of CWRs in Grasspea Improvement
Species | Trait | Reference |
---|---|---|
L. aphaca | Broomrape (Orobanche crenata and O. foetida) | [67] |
L. cicera | Zero or low ODAP (0.01% or less) | [3,63] |
Bruchid | [70] | |
Earliness and cold tolerance | [71] | |
Low ODAP, earliness, and cold tolerance | [3,72,73] | |
Pseudomonas syringae | [69] | |
Broomrape (Orobanche crenata Frosk) | [65,66] | |
L. clymenum | Crenata broomrape (Orobanche crenata) | [64] |
L. cicera, L. odoratus | Pod borer | [45] |
L. hirsutus, L. latifolius, L. sylvestris | Root-knot nematode (Meloidogyne artiella) | [74] |
L. cicera, L. ochrus, L. amphicarpus | Zero or low ODAP | [21,63] |
L. ochrus | Broomrape (Orobanche crenata) | [64,75] |
Broomrape (Orobanche crenata and O. foetida) | [67] | |
L. ochrus, L. clymenum | Ascochyta blight (Mycosphaerella pinodes) | [76,77] |
L. sativus | Powdery mildew (Erysiphe pisi and E. trifolii) | [69] |
Cercospora pisi-sativae | [78] | |
L. sativus, L. cicera | Powdery mildew (Erysiphe pisi) | [7,79,80] |
Rust (Uromyces pisi) | [81,82] | |
L. tingitanus | Drought tolerance Heat tolerance High protein content Low ODAP content | [3,83] |
L. czeczottianus | High phenolic content | [84] |
L. nissolia | Enzymatic inhibitory effects against cholinesterase, amylase, and glucosidase | [84] |
L. sphaericus | High phenolic content | [85] |
High protein content | [86] | |
L. annuus | High antioxidant activity | [85] |
High protein content | [86] |
8. Reproductive Barriers Hindering Utilization of CWRs in Grasspea Improvement
9. Interspecific Hybridization
10. Novel Tools and Technologies in Unraveling the Potential of Crop Wild Relatives
10.1. Molecular Phylogenetic Relationships Among Lathyrus
10.2. Molecular Markers and Genetic Diversity
Genotype Used | Trait | Sequencing Platform | No. of Primers Detected | No. of Genes Annotated | References |
---|---|---|---|---|---|
Eight grasspea accessions consisted of two Chinese, two Asian, one African, and three European accessions | - | Roche 454 GS FLX Titanium platform | 651,827 | - | [134] |
BGE015746, BGE024709 | Rust resistance | Illumina (San Diego, CA, USA) Hiseq2000 | 2634 SNPs 200 EST-SSR | 50,937 (60.4% into functional categories) | [128] |
BGE015746 | Aschochyta blight resistance | Illumina Genome Analyser IIx | - | 13,773 | [153] |
Rewa-2 | - | Illumina HiSeq 2500 | 1139 SSRs | - | [154] |
RQ23 and RQ36 | - | Illumina NextSeq™ 500 | 3204 EST-SSR, 146,406 SNP | - | [130] |
LZ | β-ODAP | Illumina HiSeq 3000 | - | 27,032 | [131] |
LP-24 | Drought | Illumina HiSeq 2500 | 8079 SSRs | 31,368 | [155] |
Species | Marker Type | Reference |
---|---|---|
L. sativus | SSR | [144,156,157,158,159] |
EST-SSR | [147,149] | |
RAPD | [160] | |
AFLP | [132] | |
CAPS | [129] | |
ISSR | [142] | |
L. sativus, L. cicera | SSR | [134] |
L. sativus, L cicera, L. ochrus | SSR | [143] |
ISSR | [140] | |
L. sativus, L. cicera, L. latifolius, L. ochrus | RAPD | [141] |
L. sativus, L. cicera, L. aphaca, L. clymenum, L. hirsutus, L. ochrus, L. tingitanus, L. latifolius, L. pratensis, L. sylvestris | SSR | [135] |
Cross transferable | ||
L. sativus | L. sativus- and Lotus japonicus-derived EST-SSR | [132] |
M. truncatula- and L. sativus-derived EST-SSR | [133] | |
L. sativus, L. cicera | P. sativum- and M. truncatula-derived ITAP and P. sativum-derived gSSR and EST-SSR | [151] |
10.3. Genetic Linkage Maps
10.4. Genome Sequencing
10.5. Omics Approaches
10.6. Genome Editing
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kislev, M.E. Origins of the Cultivation of Lathyrus sativus and L. cicera (Fabaceae). Econ. Bot. 1989, 43, 262–270. [Google Scholar] [CrossRef]
- de la Vega, M.P.; Torres, A.M.; Cubero, J.I.; Kole, C. (Eds.) Grass Pea. In Genetics, Genomics and Breeding of Cool Season Grain Legumes; CRC Press: Boca Raton, FL, USA, 2011; pp. 1–449. ISBN 9781439883396. [Google Scholar]
- Kumar, S.; Bejiga, G.; Ahmed, S.; Nakkoul, H.; Sarker, A. Genetic Improvement of Grass Pea for Low Neurotoxin (β-ODAP) Content. Food Chem. Toxicol. 2011, 49, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Jiao, C.J.; Jiang, J.L.; Ke, L.M.; Cheng, W.; Li, F.M.; Li, Z.X.; Wang, C.Y. Factors Affecting β-ODAP Content in Lathyrus Sativus and Their Possible Physiological Mechanisms. Food Chem. Toxicol. 2011, 49, 543–549. [Google Scholar] [CrossRef]
- Drouin, P.; Prévost, D.; Antoun, H. Physiological Adaptation to Low Temperatures of Strains of Rhizobium Leguminosarum Bv. Viciae Associated with Lathyrus spp.1. FEMS Microbiol. Ecol. 2006, 32, 111–120. [Google Scholar] [CrossRef]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; Sampet, C.; et al. Biological Nitrogen Fixation by Food Legumes. In Proceedings of the 4th International Food Legumes Research Conference, New Delhi, India, 18–22 October 2008; Volume 1, pp. 435–453. [Google Scholar]
- Vaz Patto, M.C.; Fernández-Aparicio, M.; Moral, A.; Rubiales, D. Characterization of Resistance to Powdery Mildew (Erysiphe Pisi) in a Germplasm Collection of Lathyrus sativus. Plant Breed. 2006, 125, 308–310. [Google Scholar] [CrossRef]
- Hanbury, C.; Sarker, A.; Siddique, K.; Perry, M. Evaluation of Lathyrus Germplasm in a Mediterranean Type Environment in South-Western Australia; CLIMA: Nedlands, WA, Australia, 1955. [Google Scholar] [CrossRef]
- Siddique, K.H.M.; Loss, S.P.; Herwig, S.P.; Wilson, J.M. Growth, Yield and Neurotoxin (ODAP) Concentration of Three Lathyrus Species in Mediterranean-Type Environments of Western Australia. Aust. J. Exp. Agric. 1996, 36, 209–218. [Google Scholar] [CrossRef]
- Kiehn, F.A.; Reimer, M. Alternative Crops for the Prairies; Agriculture Canada: Ottawa, ON, Canada, 2012; ISBN 0662200705. [Google Scholar]
- Lambein, F.; Travella, S.; Kuo, Y.H.; Van Montagu, M.; Heijde, M. Grass Pea (Lathyrus sativus L.): Orphan Crop, Nutraceutical or Just Plain Food? Planta 2019, 250, 821–838. [Google Scholar]
- Dufour, D.L. Assessing Diet in Populations at Risk for Konzo and Neurolathyrism. Food Chem. Toxicol. 2011, 49, 655–661. [Google Scholar] [CrossRef]
- Kusama-Eguchi, K.; Miyano, T.; Yamamoto, M.; Suda, A.; Ito, Y.; Ishige, K.; Ishii, M.; Ogawa, Y.; Watanabe, K.; Ikegami, F.; et al. New Insights into the Mechanism of Neurolathyrism: L-β-ODAP Triggers [Ca2+]i Accumulation and Cell Death in Primary Motor Neurons through Transient Receptor Potential Channels and Metabotropic Glutamate Receptors. Food Chem. Toxicol. 2014, 67, 113–122. [Google Scholar] [CrossRef]
- Cohn, D.F.; Streifler, M. Intoxication by Chickling Pea (Lathyrus sativus): Nervous System and Skeletal Findings. Arch. Toxicol. 1983, 53, 190–193. [Google Scholar] [CrossRef]
- Rizvi, A.H.; Sarker, A.; Dogra, A. Enhancing Grasspea (Lathyrus sativus L.) Production in Problematic Soils of South Asia for Nutritional Security. Ind. J. Genet. Plant Breed. 2016, 76, 583–592. [Google Scholar] [CrossRef]
- Rybiñski, W. Mutagenesis as a Tool for Improvement of Trait in Grass Pea (Lathyrus sativus L.). Lathyrus Lathyrism Newsl. 2003, 3, 27–31. [Google Scholar]
- Kupicha, F.K. Vicieae. In Advances in Legume Systematics; Polhill, R.M., Raven, P.M., Eds.; Royal Botanic Garden: Kew, UK, 1981; pp. 377–381. [Google Scholar]
- International Plant Genetic Resources Institute. Descriptors for Lathyrus spp.; International Plant Genetic Resources Institute: Rome, Italy, 2000. [Google Scholar]
- Saxena, M.; Abd El Moneim, A.M.; Raninam, M. Vetches (Vicia Spp.) and Chicklings (Lathyrus Spp.) in the Farming Systems in West Asia and North Africa and Improvement of These Crops at ICARDA. In Potential for Vicia and Lathyrus Species as New Grain and Fodder Legumes for Southern Australia; Co-Operative Research Centre for Legumes in Mediterranean Agriculture: Nedlands, WA, Australia, 1993; pp. 2–9. [Google Scholar]
- Sarker, A.; El Moneim, A.A.; Maxted, N. Grasspea and Chicklings (Lathyrus L.). In Plant Genetic Resources of Legumes in the Mediterranean; Springer: Dordrecht, The Netherlands, 2001; pp. 159–180. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, P.; Barpete, S.; Sarker, A.; Amri, A.; Mathur, P.N.; Baum, M. Grass Pea. In Genetic and Genomic Resources of Grain Legume Improvement; Elsevier: Amsterdam, The Netherlands, 2013; pp. 269–292. ISBN 9780123979353. [Google Scholar]
- Vavilov, N.I. The Origin, Variation, Immunity and Breeding of Cultivated Plants. Soil Sci. 1951, 72, 482. [Google Scholar] [CrossRef]
- Jackson, M.T.; Yunus, A.G. Variation in the Grass Pea (Lathyrus sativus L.) and Wild Species. Euphytica 1984, 33, 549–559. [Google Scholar] [CrossRef]
- Saraswat, K.S. The Ancient Remains of the Crop Plants at Atranjikhera. J. Ind. Bot. Soc. 1980, 59, 306–319. [Google Scholar]
- Ferrio, J.P.; Arab, G.; Buxó, R.; Guerrero, E.; Molist, M.; Voltas, J.; Araus, J.L. Agricultural Expansion and Settlement Economy in Tell Halula (Mid-Euphrates Valley): A Diachronic Study from Early Neolithic to Present. J. Arid. Environ. 2012, 86, 104–112. [Google Scholar] [CrossRef]
- Valamoti, S.M.; Moniaki, K.; Karthanou, A. Processing and Consumption of Pulses in Prehistoric Greece: Archaeobotanical, Experimental and Ethnographic Evidence. In Proceedings of the 15th Conference of the International Work Group for Palaeoethnobotany, Wilhemshaven, Germany, 31 May–6 June 2010. [Google Scholar]
- Butler, A.; Tesfay, Z.; D’Andrea, C.; Lyons, D. The Ethnobotany of Lathyrus Sativus L. in the Highlands of Ethiopia. In The Exploitation of Plant Resources in Ancient Africa; Springer: Boston, MA, USA, 1999; pp. 123–136. [Google Scholar]
- Coward, F.; Shennan, S.; Colledge, S.; Conolly, J.; Collard, M. The Spread of Neolithic Plant Economies from the Near East to Northwest Europe: A Phylogenetic Analysis. J. Archaeol. Sci. 2008, 35, 42–56. [Google Scholar] [CrossRef]
- Peña-Chocarro, L.; Jordà, G.P.; Mateos, J.M.; Zapata, L. Neolithic Plant Use in the Western Mediterranean Region: Preliminary Results from the Agriwestmed Project. Ann. Bot. 2013, 3, 135–141. [Google Scholar] [CrossRef]
- Schaefer, H.; Hechenleitner, P.; Santos-Guerra, A.; de Sequeira, M.M.; Pennington, R.T.; Kenicer, G.; Carine, M.A. Systematics, Biogeography, and Character Evolution of the Legume Tribe Fabeae with Special Focus on the Middle-Atlantic Island Lineages. BMC Evol. Biol. 2012, 12, 250. [Google Scholar] [CrossRef]
- Magee, A.M.; Aspinall, S.; Rice, D.W.; Cusack, B.P.; Sémon, M.; Perry, A.S.; Stefanović, S.; Milbourne, D.; Barth, S.; Palmer, J.D.; et al. Localized Hypermutation and Associated Gene Losses in Legume Chloroplast Genomes. Genome Res. 2010, 20, 1700–1710. [Google Scholar] [CrossRef]
- Robeson, D.J.; Harborne, J.B. A Chemical Dichotomy in Phytoalexin Induction within the Tribe Vicieae of the Leguminosae. Phytochemistry 1980, 19, 2359–2365. [Google Scholar] [CrossRef]
- Rix, M.; Nesbitt, M.; King, C. 1063. Lathyrus oleraceus Lam.: Leguminosae. Curtis’s Bot. Mag. 2023, 40, 197–205. [Google Scholar] [CrossRef]
- Ellis, T.H.N.; Smýkal, P.; Maxted, N.; Coyne, C.J.; Domoney, C.; Burstin, J.; Bouchenak-Khelladi, Y.; Chayut, N. The Taxonomic Status of Genera within the Fabeae (Vicieae), with a Special Focus on Pisum. Diversity 2024, 16, 365. [Google Scholar] [CrossRef]
- Allkin, R.; Goyder, D.J.; Bisby, F.A.; White, R.J. List of Species and Subspecies in the Vicieae. Vicieae Database Proj. 1983, 1, 4–11. [Google Scholar]
- Allkin, R.; Goyder, D.J.; Bisby, F.A.; White, R.J. Names and Synonyms of Species and Subspecies in the Vicieae. Vicieae Database Proj. 1986, 7, 1–75. [Google Scholar]
- Kupicha, F.K. The Infrageneric Structure of Lathyrus. Notes R. Bot. Garden Edinb. 1983, 41, 209–244. [Google Scholar]
- Asmussen, C.B.; Liston, A. Chloroplast DNA Characters, Phylogeny, and Classification of Lathyrus (Fabaceae). Am. J. Bot. 1998, 85, 387–401. [Google Scholar] [CrossRef]
- Kenicer, G.J.; Kajita, T.; Pennington, R.T.; Murata, J. Systematics and Biogeography of Lathyrus (Leguminosae) Based on Internal Transcribed Spacer and CpDNA Sequence Data. Am. J. Bot. 2005, 92, 1199–1209. [Google Scholar] [CrossRef]
- Yunus, A.G.; Jackson, M.T. The Gene Pools of the Grasspea (Lathyrus sativus L.). Plant Breed. 1991, 106, 319–328. [Google Scholar] [CrossRef]
- Kearney, J.P. Wild Lathyrus Species as Genetic Resources for Improvement of Grasspea (Lathyrus sativus). Ph.D. Thesis, University of Southampton, Southampton, UK, 1996. [Google Scholar]
- Kearney, J.P.; Smartt, J. The Grasspea Lathyrus sativus (Leguminosae-Papilionoideae). In Evolution of Crop Plants; Smartt, J., Simmonds, N.W., Eds.; Longman: London, UK, 1995; pp. 266–270. [Google Scholar]
- Heywood, V.; Casas, A.; Ford-Lloyd, B.; Kell, S.; Maxted, N. Conservation and Sustainable Use of Crop Wild Relatives. Agric. Ecosyst. Environ. 2007, 121, 245–255. [Google Scholar] [CrossRef]
- Global Crop Diversity Trust Strategy for the Ex-Situ Conservation of Lathyrus (Grass Pea), with Special Reference to Lathyrus sativus, L. cicera, L. ochrus; Zenedo: Geneva, Switzerland, 2007; pp. 1–36.
- International Plant Genetic Resources Institute. Lathyrus Genetic Resources Network; Mathur, P.N., Ramanatha Rao, V., Arora, R.K., Eds.; International Plant Genetic Resources Institute: Stockholm, Sweden, 1999; ISBN 9290433949. [Google Scholar]
- Gurung, A.M.; Pang, E.C.K. Lathyrus. In Wild Crop Relatives: Genomic and Breeding Resources: Legume Crops and Forages; Springer: Berlin/Heidelberg, Germany, 2011; pp. 117–126. ISBN 9783642143878. [Google Scholar]
- Shehadeh, A.; Amri, A.; Maxted, N. Ecogeographic Survey and Gap Analysis of Lathyrus L. Species. Genet. Resour. Crop. Evol. 2013, 60, 2101–2113. [Google Scholar] [CrossRef]
- Odong, T.L.; Jansen, J.; van Eeuwijk, F.A.; van Hintum, T.J.L. Quality of Core Collections for Effective Utilisation of Genetic Resources Review, Discussion and Interpretation. Theor. Appl. Genet. 2013, 126, 289–305. [Google Scholar] [CrossRef]
- Ramya, K.R.; Tripathi, K.; Pandey, A.; Barpete, S.; Gore, P.G.; Raina, A.P.; Khawar, K.M.; Swain, N.; Sarker, A. Rediscovering the Potential of Multifaceted Orphan Legume Grasspea- a Sustainable Resource with High Nutritional Values. Front. Nutr. 2022, 8, 826208. [Google Scholar] [CrossRef] [PubMed]
- Vaz Patto, M.C.; Rubiales, D. Lathyrus Diversity: Available Resources with Relevance to Crop Improvement—L. sativus and L. cicera as Case Studies. Ann. Bot. 2014, 113, 895–908. [Google Scholar] [CrossRef]
- Kusama-Eguchi, K. [Research in Motor Neuron Diseases Caused by Natural Substances: Focus on Pathological Mechanisms of Neurolathyrism]. Yakugaku Zasshi 2019, 139, 609–615. [Google Scholar] [CrossRef]
- Yan, Z.Y.; Spencer, P.S.; Li, Z.X.; Liang, Y.M.; Wang, Y.F.; Wang, C.Y.; Li, F.M. Lathyrus sativus (Grass Pea) and Its Neurotoxin ODAP. Phytochemistry 2006, 67, 107–121. [Google Scholar] [CrossRef]
- Quereshi, M.Y.; Pilbeam, D.J.; Evans, C.S.; Bell, E.A. The Neurolathyrogen, α-Amino-β-Oxalylaminopropionic Acid in Legume Seeds. Phytochemistry 1977, 16, 477–479. [Google Scholar] [CrossRef]
- Bell, E.A.; O’Donovan, J.P. The Isolation of α- and γ-Oxalyl Derivatives of α,γ-Diaminobutyric Acid from Seeds of Lathyrus latifolius, and the Detection of the α-Oxalyl Isomer of the Neurotoxin α-Amino-β-Oxalylaminopropionic Acid Which Occurs Together with the Neurotoxin in This and Other Species. Phytochemistry 1966, 5, 1211–1219. [Google Scholar] [CrossRef]
- De Bruyn, A.; Becu, C.; Lambein, F.; Kebede, N.; Abegaz, B.; Nunn, P.B. The Mechanism of the Rearrangement of the Neurotoxin β-Odap to α-Odap. Phytochemistry 1994, 36, 85–89. [Google Scholar] [CrossRef]
- Das, A.; Parihar, A.K.; Barpete, S.; Kumar, S.; Gupta, S. Current Perspectives on Reducing the β-ODAP Content and Improving Potential Agronomic Traits in Grass Pea (Lathyrus sativus L.). Front. Plant Sci. 2021, 12, 703275. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, F.; Chen, P.; Jez, J.M.; Krishnan, H.B. β-n-Oxalyl-l-α, β-Diaminopropionic Acid (β-Odap) Content in Lathyrus sativus: The Integration of Nitrogen and Sulfur Metabolism through β-Cyanoalanine Synthase. Int. J. Mol. Sci. 2017, 18, 526. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Jiao, C.; Bi, C.; Xu, Q.; Chen, P.; Heuberger, A.L.; Krishnan, H.B. Metabolomics Approach to Understand Mechanisms of β-N-Oxalyl-l-α,β-Diaminopropionic Acid (β-ODAP) Biosynthesis in Grass Pea (Lathyrus sativus L.). J. Agric. Food Chem. 2017, 65, 10206–10213. [Google Scholar] [CrossRef]
- Tsegaye, D.; Tadesse, W.; Bayable, M. Performance of Grass Pea (Lathyrus sativus L.) Somaclones at Adet, Northwest Ethiopia. Lathyrus Lathyrism Newsl. 2005, 4, 5–6. [Google Scholar]
- Siddique, K.H.M.; Hanbury, C.L.; Sarker, A. Registration of “Ceora” Grass Pea. Crop. Sci. 2006, 46, 986. [Google Scholar] [CrossRef]
- Sawant, P.V.; Jayade, V.S.; Patil, R.S. Line× Tester Analysis in Lathyrus. J. Food Legum. 2011, 24, 41–45. [Google Scholar]
- Dwivedi, S.L.; Ceccarelli, S.; Blair, M.W.; Upadhyaya, H.D.; Are, A.K.; Ortiz, R. Landrace Germplasm for Improving Yield and Abiotic Stress Adaptation. Trends Plant Sci. 2016, 21, 31–42. [Google Scholar] [CrossRef]
- Campbell, C.G. Grass Pea, Lathyrus sativus L.; International Plant Genetic Resources Institute: Rome, Italy, 1997; ISBN 9290433418. [Google Scholar]
- Rubiales, D.; Moreno, M.T.; Sillero, J.C. Search for Resistance to Crenate Broomrape (Orobanche crenata Forsk.) in Pea Germplasm. Genet. Resour. Crop. Evol. 2005, 52, 853–861. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. Field Response of Lathyrus Cicera Germplasm to Crenate Broomrape (Orobanche crenata). Field Crops Res. 2009, 113, 321–327. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Rubiales, D. Characterisation of Resistance to Crenate Broomrape (Orobanche crenata Forsk.) in Lathyrus cicera L. Euphytica 2010, 173, 77–84. [Google Scholar] [CrossRef]
- Abdallah, F.; Kumar, S.; Amri, A.; Mentag, R.; Kehel, Z.; Mejri, R.K.; Triqui, Z.E.A.; Hejjaoui, K.; Baum, M.; Amri, M. Wild Lathyrus Species as a Great Source of Resistance for Introgression into Cultivated Grass Pea (Lathyrus sativus L.) against Broomrape Weeds (Orobanche crenata Forsk. and Orobanche foetida Poir.). Crop Sci. 2021, 61, 263–276. [Google Scholar] [CrossRef]
- Vaz Patto, M.C.; Rubiales, D. Resistance to Rust and Powdery Mildew in Lathyrus Crops. Czech J. Genet. Plant Breed. 2014, 50, 116–122. [Google Scholar] [CrossRef]
- Martín-Sanz, A.; Palomo, J.L.; de la Vega, M.P.; Caminero, C. Characterization of Pseudomonas syringae Pv. Syringae Isolates Associated with Bacterial Blight in Lathyrus spp. and Sources of Resistance. Eur. J. Plant Pathol. 2012, 134, 205–216. [Google Scholar] [CrossRef]
- Tsialtas, I.Τ.; Theologidou, G.S.; Bilias, F.; Irakli, M.; Lazaridou, A. Ex Situ Evaluation of Seed Quality and Bruchid Resistance in Greek Accessions of Red Pea (Lathyrus cicera L.). Genet. Resour. Crop. Evol. 2020, 67, 985–997. [Google Scholar] [CrossRef]
- Robertson, L.D.; Abd-El-Moneim, A.M. Status of Lathyrus Germplasm Held at ICARDA and Its Use in Breeding Programs. In Proceedings of the Lathyrus Genetic Resources Network, Proceedings of a IPGRI-ICARDA-ICAR Regional Working Group Meeting, New Delhi, India, 8–10 December 1997; pp. 30–41. [Google Scholar]
- Granati, E.; Bisignano, V.; Chiaretti, D.; Crinò, P.; Polignano, G.B. Characterization of Italian and Exotic Lathyrus Germplasm for Quality Traits. Genet. Resour. Crop. Evol. 2003, 50, 273–280. [Google Scholar] [CrossRef]
- Hanbury, C.D.; White, C.L.; Mullan, B.P.; Siddique, K.H.M. A Review of the Potential of Lathyrus Sativus L. and L. Cicera L. Grain for Use as Animal Feed. Anim. Feed. Sci. Technol. 2000, 87, 1–27. [Google Scholar] [CrossRef]
- Rumbaugh, M.D.; Griffin, G.D. Resistance of Lathyrus Species and Accessions to the Northern Root-Knot Nematode, Meloidogyne Hapla 1. J. Nematol. 1992, 24, 729–734. [Google Scholar]
- Linke, K.-H.; Abd El-Moneim, A.M.; Saxena, M.C. Variation in Resistance of Some Forage Legumes Species to Orobanche Crenata Forsk. Field Crops Res. 1993, 32, 277–285. [Google Scholar] [CrossRef]
- Gurung, A.M.; Pang, E.C.K.; Taylor, P.W.J. Examination of Pisum and Lathyrus Species as Sources of Ascochyta Blight Resistance for Field Pea (Pisum sativum). Aust. Plant Pathol. 2002, 31, 41–45. [Google Scholar] [CrossRef]
- Skiba, B.; Ford, R.; Pang, E.C.K. Construction of a Linkage Map Based on a Lathyrus sativus Backcross Population and Preliminary Investigation of QTLs Associated with Resistance to Ascochyta Blight. Theor. Appl. Genet. 2004, 109, 1726–1735. [Google Scholar] [CrossRef]
- Gokid, Y.; Singh, M.N.; Lekkala, S.; Suryanarayana, L. Inheritance of Resistance to Mungbean Yellow Mosaic Virus (MYMV) in Mungbean [Vigna radiata L. Wilczek]. Electron. J. Plant Breed. 2021, 12, 821–826. [Google Scholar] [CrossRef]
- Campbell, C.G.; Mehra, R.B.; Agrawal, S.K.; Chen, Y.Z.; Abdel Moneim, A.M.; Khawaja, H.I.T.; Yadov, C.R.; Tay, J.U.; Araya, W.A. Current Status and Future Strategy in Breeding Grasspea (Lathyrus sativus). In Expanding the Production and Use of Cool Season Food Legumes; Springer: Dordrecht, The Netherlands, 1994; pp. 617–630. [Google Scholar]
- Vaz Patto, M.C.; Fernández-Aparicio, M.; Moral, A.; Rubiales, D. Resistance Reaction to Powdery Mildew (Erysiphe pisi) in a Germplasm Collection of Lathyrus cicera from Iberian Origin. Genet. Resour. Crop. Evol. 2007, 54, 1517–1521. [Google Scholar] [CrossRef]
- Vaz Patto, M.C.; Rubiales, D. Identification and Characterization of Partial Resistance to Rust in a Germplasm Collection of Lathyrus sativus L. Plant Breed. 2009, 128, 495–500. [Google Scholar] [CrossRef]
- Vaz Patto, M.C.; Fernández-Aparicio, M.; Moral, A.; Rubiales, D. Pre and Posthaustorial Resistance to Rusts in Lathyrus cicera L. Euphytica 2009, 165, 27–34. [Google Scholar] [CrossRef]
- Aloui, K.; Choukri, H.; El Haddad, N.; Gupta, P.; El Bouhmadi, K.; Emmrich, P.M.F.; Singh, A.; Edwards, A.; Maalouf, F.; Bouhlal, O.; et al. Impact of Heat and Drought Stress on Grasspea and Its Wild Relatives. Plants 2023, 12, 3501. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Zengin, G.; de Córdova, M.L.F.; Bender, O.; Atalay, A.; Ceylan, R.; Mollica, A.; Mocan, A.; Uysal, S.; Guler, G.O.; et al. Traditionally Used Lathyrus Species: Phytochemical Composition, Antioxidant Activity, Enzyme Inhibitory Properties, Cytotoxic Effects, and In Silico Studies of L. czeczottianus and L. nissolia. Front. Pharmacol. 2017, 8, 83. [Google Scholar] [CrossRef]
- Pastor-Cavada, E.; Juan, R.; Pastor, J.E.; Alaiz, M.; Vioque, J. Antioxidant Activity of Seed Polyphenols in Fifteen Wild Lathyrus Species from South Spain. LWT Food Sci. Technol. 2009, 42, 705–709. [Google Scholar] [CrossRef]
- Basaran, U.; Ascı, O.O.; Mut, H.; Ayan, I.; Acar, Z. Morphological and Nutritional Properties of Some Lathyrus Species. Options Méditerr. Sér. A Sémin. Méditerr. 2008, 79, 415–417. [Google Scholar]
- Khawaja, H.I.T. A New Interspecific Lathyrus Hybrid to Introduce the Yellow Flower Character into Sweet Pea. Euphytica 1988, 37, 69–75. [Google Scholar] [CrossRef]
- Yunus, A.G. Biosystematics of ‘Lathyrus’ Section ‘Lathyrus’ with Special Reference to the Grass Pea, ‘L. sativus’ L. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 1990. [Google Scholar]
- Addis, G.; Narayan, R.K.J. Interspecific Hybridisation of Lathyrus sativus (Guaya) with Wild Lathyrus Species and Embryo Rescue. Afr. Crop. Sci. J. 2000, 8, 129–136. [Google Scholar] [CrossRef]
- DeVerna, J.W.; Myers, J.R.; Collins, G.B. Bypassing Prefertilization Barriers to Hybridization in Nicotiana Using in Vitro Pollination and Fertilization. Theor. Appl. Genet. 1987, 73, 665–671. [Google Scholar] [CrossRef]
- De Jeu, M.J.; Jacobsen, E. Early Postfertilization Ovule Culture in Alstroemeria L. and Barriers to Interspecific Hybridization. Euphytica 1995, 86, 15–23. [Google Scholar] [CrossRef]
- David, H.; Westoby, M. Genomic Imprinting in Endosperm: Its Effect on Seed Development in Crosses between Species, and Its Implications for the Evolution of Apomixis. Philos. Trans. R Soc. Lond. B Biol. Sci. 1991, 333, 1–13. [Google Scholar] [CrossRef]
- Herrick, J.F.; Murray, B.G.; Hammett, K.R.W. Barriers Preventing Hybridisation of Lathyrus odoratus with L. chloranthus and L. chrysanthus. N. Z. J. Crop. Hortic. Sci. 1993, 21, 115–121. [Google Scholar] [CrossRef]
- Narayan, R.K.J. Molecular Organisation of the Plant Genome: Its Relation to Structure, Recombination and Evolution of Chromosomes. J. Genet. 1991, 70, 43–61. [Google Scholar] [CrossRef]
- Simola, L.K. The Effect of Some Non-Protein Amino Acids on Pollen Germination and Pollen-Tube Growth in Five Species of the Vicieae. Planta 1967, 77, 287–297. [Google Scholar] [CrossRef]
- Ochatt, S.; Durieu, P.; Jacas, L.; Pontécaille, C. Protoplast, Cell and Tissue Cultures for the Biotechnological Breeding of Grass Pea (Lathyrus sativus L.). Lathyrus Lathyrism Newsl. 2001, 2, 35–38. [Google Scholar]
- Mehta, S.L.; Santha, I.M. Development of Regeneration Protocols to Exploit Somaclonal Variations in Lathyrus sativus for Developing Toxin Free Cultivar. In Improvement Strategies of Leguminosae Biotechnology. Focus on Biotechnology; Springer: Dordrecht, The Netherlands, 2003; pp. 291–299. [Google Scholar]
- Ochatt, S.J.; Abirached-Darmency, M.; Marget, P.; Aubert, G. The Lathyrus Paradox: A “Poor Men’s Diet” or A Remarkable Genetic Resource for Protein Legume Breeding? In Breeding of Neglected and Under-Utilized Crops, Spices, and Herbs; Ochatt, S.J., Jain, S.M., Eds.; Science Press: Plymouth, UK, 2020; pp. 59–78. [Google Scholar]
- Scheffler, J.A.; Dale, P.J. Opportunities for Gene Transfer from Transgenic Oilseed Rape (Brassica napus) to Related Species. Transgenic Res. 1994, 3, 263–278. [Google Scholar] [CrossRef]
- Choudhary, B.R.; Joshi, P. Genetic Diversity in Advanced Derivatives of Brassica Interspecific Hybrids. Euphytica 2001, 121, 1–7. [Google Scholar] [CrossRef]
- Barker, B.T.P. Sweet Pea Hybrids. Gard. Chron. Ser. 1916, 60, 156–157. [Google Scholar]
- Lwin, S. Studies in Genus Lathyrus. Ph.D. Thesis, Manchester University, Manchester, UK, 1956. [Google Scholar]
- Davies, A.J.S. Successful Crossing in the Genus Lathyrus through Stylar Amputation. Nature 1957, 180, 612. [Google Scholar] [CrossRef]
- Marsden-Jones, M. Hybrids of Lathyrus. J. R. Hortic. Soc. 1919, 45, 92–93. [Google Scholar]
- Kumar, S.; Imtiaz, M.; Gupta, S.; Pratap, A. Distant Hybridization and Alien Gene Introgression. In Biology and Breeding of Food Legumes; Kaul, A.K., Combes, D., Eds.; CABI: London, UK, 2011; pp. 81–110. [Google Scholar]
- Kiyoshi, Y.; Toshiyuki, F.; Blumenreich, I.D. Isozymic Variation and Interspecific Crossability in Annual Species of Genus Lathyrus L. In Lathyrus and Lathyrism; Kaul, A.K., Combes, D., Eds.; Colloque Lathyrus: Pau, France, 1985; pp. 118–129. [Google Scholar]
- Davies, A.J.S. A Cytogenetic Study in the Genus Lathyrus. Ph.D Thesis, University of Manchester, Manchester, UK, 1958. [Google Scholar]
- Winkelmann, T.; Hartwig, N.; Sparke, J. Interspecific Hybridisation in the Genus Helleborus. Acta Hortic. 2015, 1087, 301–307. [Google Scholar] [CrossRef]
- Hammett, K.R.; Murray, B.G.; Markham, K.R.; Hallett, I.C. Interspecific Hybridization between Lathyrus odoratus and L. belinensis. Int. J. Plant Sci. 1994, 55, 763–771. [Google Scholar] [CrossRef]
- Hammett, K.R.W.; Murray, B.G.; Markham, K.R.; Hallett, I.C.; Osterloh, I. New Interspecific Hybrids in Lathyrus (Leguminosae): Lathyrus annuus × L. hierosolymitanus. Bot. J. Linn. Soc. 1996, 122, 89–101. [Google Scholar] [CrossRef]
- Barpete, S.; Gupta, P.; Khawar, K.M.; Ozcan, S.; Kumar, S. In Vitro Approaches for Shortening Generation Cycles and Faster Breeding of Low β-N-Oxalyl-L-α, β-Diaminopropionic Acid Content of Grass Pea (Lathyrus sativus L.). Fresenius Environ. Bull. 2020, 29, 2698–2706. [Google Scholar]
- Tripathy, S.K.; Panda, A.; Nayak, P.K.; Dash, S.; Lenka, D.; Mishra, D.R.; Kar, R.K.; Senapati, N.; Dash, G.B. Somaclonal Variation for Genetic Improvement in Grasspea (Lathyrus sativus L.). Legume Res. 2016, 39, 329–335. [Google Scholar] [CrossRef]
- Barik, D.P.; Mohapatra, U.; Chand, P.K. Direct Shoot Regeneration from Epicotyl Explants of Grasspea (Lathyrus sativus). Aust. J. Bot. 2006, 54, 505–508. [Google Scholar] [CrossRef]
- Barpete, S.; Özcan, S.F.; Khawar, K.M.; Özcan, S. Effect of Plant Growth Regulators and Physical Factors on in Vitro High Frequency Regeneration of Grass Pea. J. Anim. Plant Sci. 2016, 26, 1087–1093. [Google Scholar]
- Kaneko, Y.; Bang, S.W. Interspecific and Intergeneric Hybridization and Chromosomal Engineering of Brassicaceae Crops. Breed. Sci. 2014, 64, 14–22. [Google Scholar] [CrossRef]
- Senn, H.A. Experimental Data for a Revision of the Genus Lathyrus. Am. J. Bot. 1938, 25, 67. [Google Scholar] [CrossRef]
- Nandini, A.V.; Hammett, K.R.; Murray, B.G. Interspecific Hybridization in Perennial Species of Lathyrus (Fabaceae). Agronomie 1999, 19, 521–529. [Google Scholar] [CrossRef]
- Paul, S.; Banik, B.; Dholakia, B.B.; Datta, B.K. Assessing Karyotype Diversity in the Genus Lathyrus L. (Fabaceae). Feddes Repert. 2022, 133, 199–214. [Google Scholar] [CrossRef]
- Maroua, G.; Nadia, Z.; Imen, F.; Neila, T.F.; Sonia, M. Molecular Characterization of Lathyrus Species Using Chloroplast DNA TrnH-PsbA. Biochem. Syst. Ecol. 2014, 57, 439–444. [Google Scholar] [CrossRef]
- Oskoueiyan, R.; Osaloo, S.K.; Amirahmadi, A. Molecular Phylogeny of the Genus Lathyrus (Fabaceae-Fabeae) Based on Cpdna Matk Sequence in Iran. Iran. J. Biotechnol. 2014, 12, 41–48. [Google Scholar] [CrossRef]
- Acar, P.; Değirmenci, F.; Duman, H.; Kaya, Z. Molecular Phylogenetic Analysis Resolving the Taxonomic Discrepancies among Salix L. Species Naturally Found in Turkey. Dendrobiology 2022, 87, 13–26. [Google Scholar] [CrossRef]
- Ghorbel, M.; Marghali, S.; Trifi-Farah, N.; Chtourou-Ghorbel, N. Phylogeny of Mediterranean Lathyrus Species Using Inter Simple Sequence Repeats Markers. Acta Bot. Gall. 2014, 161, 91–98. [Google Scholar] [CrossRef]
- Marghali, S.; Fadhlaoui, I.; Gharbi, M.; Zitouna, N.; Trifi-Farah, N. Utility of ITS2 Sequence Data of Nuclear Ribosomal DNA: Molecular Evolution and Phylogenetic Reconstruction of Lathyrus spp. Sci. Hortic. 2015, 194, 313–319. [Google Scholar] [CrossRef]
- Omar, G.I.; Saqer, M.M.; Adwan, G.M. Phylogenetic Relationship among Some Species of the Genera Lens, Vicia, Lathyrus and Pisum (Leguminosae) in Palestine. Jordan J. Biol. Sci. 2019, 12, 289–296. [Google Scholar]
- Sáenz De Miera, L.E.; Ramos, J.; Pérez De La Vega, M. A Comparative Study of Convicilin Storage Protein Gene Sequences in Species of the Tribe Vicieae. Genome 2008, 51, 511–523. [Google Scholar] [CrossRef]
- Ceccarelli, M.; Sarri, V.; Polizzi, E.; Andreozzi, G.; Cionini, P.G. Characterization, Evolution and Chromosomal Distribution of Two Satellite DNA Sequence Families in Lathyrus Species. Cytogenet. Genome Res. 2010, 128, 236–244. [Google Scholar] [CrossRef]
- Skiba, B.; Ford, R.; Pang, E.C.K. Amplification and Detection of Polymorphic Sequence-Tagged Sites in Lathyrus sativus. Plant Mol. Biol. Rep. 2003, 21, 391–404. [Google Scholar] [CrossRef]
- Almeida, N.F.; Leitão, S.T.; Krezdorn, N.; Rotter, B.; Winter, P.; Rubiales, D.; Vaz Patto, M.C. Allelic Diversity in the Transcriptomes of Contrasting Rust-Infected Genotypes of Lathyrus sativus, a Lasting Resource for Smart Breeding. BMC Plant Biol. 2014, 14, 376. [Google Scholar] [CrossRef]
- Shiferaw, E.; Porceddu, E.; Pé, E.; Ponnaiah, M. Application of CAPS Markers for Diversity Assessment in Grass Pea ( Lathyrus sativus L.). Biodivers. Res. Conserv. 2017, 48, 11–18. [Google Scholar] [CrossRef]
- Hao, X.; Yang, T.; Liu, R.; Hu, J.; Yao, Y.; Burlyaeva, M.; Wang, Y.; Ren, G.; Zhang, H.; Wang, D.; et al. An RNA Sequencing Transcriptome Analysis of Grasspea (Lathyrus sativus L.) and Development of SSR and KASP Markers. Front. Plant Sci. 2017, 8, 1873. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, F.; Qu, R.; Gillman, J.D.; Bi, C.; Hu, X.; Chen, P.; Krishnan, H.B. Transcriptomic Profiling of Lathyrus sativus L. Metabolism of β-ODAP, a Neuroexcitatory Amino Acid Associated with Neurodegenerative Lower Limb Paralysis. Plant Mol. Biol. Rep. 2018, 36, 832–843. [Google Scholar] [CrossRef]
- Lioi, L.; Sparvoli, F.; Sonnante, G.; Laghetti, G.; Lupo, F.; Zaccardelli, M. Characterization of Italian Grasspea (Lathyrus sativus L.) Germplasm Using Agronomic Traits, Biochemical and Molecular Markers. Genet. Resour. Crop. Evol. 2011, 58, 425–437. [Google Scholar] [CrossRef]
- Shiferaw, E.; Pè, M.E.; Porceddu, E.; Ponnaiah, M. Exploring the Genetic Diversity of Ethiopian Grass Pea (Lathyrus sativus L.) Using EST-SSR Markers. Mol. Breed. 2012, 30, 789–797. [Google Scholar] [CrossRef]
- Yang, T.; Jiang, J.; Burlyaeva, M.; Hu, J.; Coyne, C.J.; Kumar, S.; Redden, R.; Sun, X.; Wang, F.; Chang, J.; et al. Large-Scale Microsatellite Development in Grasspea (Lathyrus sativus L.), an Orphan Legume of the Arid Areas. BMC Plant Biol. 2014, 14, 65. [Google Scholar] [CrossRef]
- Wang, F.; Yang, T.; Burlyaeva, M.; Li, L.; Jiang, J.; Fang, L.; Redden, R.; Zong, X. Genetic Diversity of Grasspea and Its Relative Species Revealed by SSR Markers. PLoS ONE 2015, 10, e0118542. [Google Scholar] [CrossRef]
- Polignano, G.B.; Uggenti, P.; Alba, V.; Bisignano, V.; Della Gatta, C. Morpho-Agronomic Diversity in Grasspea ( Lathyrus sativus L.). Plant Genet. Resour. 2005, 3, 29–34. [Google Scholar] [CrossRef]
- Rahman, S.; Molla, M.R.; Nazim-Ud-Dowla, M.A.N.; Rasul, M.G.; Mian, M.A.K. Assessment of Genetic Diversity in Grasspea (Lathyrus sativus L.) Genotypes Using Morphological Markers. Acad. J. Plant Sci. 2010, 3, 85–91. [Google Scholar]
- Chowdhury, M.A.; Slinkard, A.E. Genetic Diversity in Grasspea (Lathyrus sativus L.). Genet. Resour. Crop. Evol. 2000, 47, 163–169. [Google Scholar] [CrossRef]
- Dixit, G.P.; Parihar, A.K.; Bohra, A.; Singh, N.P. Achievements and Prospects of Grass Pea (Lathyrus sativus L.) Improvement for Sustainable Food Production. Crop. J. 2016, 4, 407–416. [Google Scholar] [CrossRef]
- Belaïd, Y.; Chtourou-Ghorbel, N.; Marrakchi, M.; Trifi-Farah, N. Genetic Diversity within and between Populations of Lathyrus Genus (Fabaceae) Revealed by ISSR Markers. Genet. Resour. Crop. Evol. 2006, 53, 1413–1418. [Google Scholar] [CrossRef]
- Chtourou-Ghorbel, N.; Lauga, B.; Combes, D.; Marrakchi, M. Comparative Genetic Diversity Studies in the Genus Lathyrus Using RFLP and RAPD Markers. Lathyrus Lathyrism Newsl. 2001, 2, 62–68. [Google Scholar]
- Tavoletti, S.; Iommarini, L. Molecular Marker Analysis of Genetic Variation Characterizing a Grasspea (Lathyrus sativus) Collection from Central Italy. Plant Breed. 2007, 126, 607–611. [Google Scholar] [CrossRef]
- Aci, M.M.; Lupini, A.; Badagliacca, G.; Mauceri, A.; Presti, E.L.; Preiti, G. Genetic Diversity among Lathyrus Ssp. Based on Agronomic Traits and Molecular Markers. Agronomy 2020, 10, 1182. [Google Scholar] [CrossRef]
- Rahman, M.M.; Quddus, M.R.; Ali, M.O.; Liu, R.; Li, M.; Yan, X.; Li, G.; Ji, Y.; Hossain, M.M.; Wang, C.; et al. Genetic Diversity of Lathyrus Sp Collected from Different Geographical Regions. Mol. Biol. Rep. 2022, 49, 519–529. [Google Scholar] [CrossRef]
- Kalia, R.K.; Rai, M.K.; Kalia, S.; Singh, R.; Dhawan, A.K. Microsatellite Markers: An Overview of the Recent Progress in Plants. Euphytica 2010, 177, 309–334. [Google Scholar] [CrossRef]
- Lioi, L.; Galasso, I. Development of Genomic Simple Sequence Repeat Markers from an Enriched Genomic Library of Grass Pea (Lathyrus sativus L.). Plant Breed. 2013, 132, 649–653. [Google Scholar] [CrossRef]
- Arslan, M.; Basak, M.; Aksu, E.; Uzun, B.; Yol, E. Genotyping of Low β-ODAP Grass Pea (Lathyrus Sativus L.) Germplasm with EST-SSR Markers. Braz. Arch. Biol. Technol. 2020, 63, e20190150. [Google Scholar] [CrossRef]
- Gupta, P.; Udupa, S.M.; Sen Gupta, D.; Kumar, J.; Kumar, S. Population Structure Analysis and Determination of Neurotoxin Content in a Set of Grass Pea (Lathyrus sativus L.) Accessions of Bangladesh Origin. Crop. J. 2018, 6, 435–442. [Google Scholar] [CrossRef]
- Sun, X.; Yang, T.; Guan, J.; Ma, Y.; Jiang, J.; Cao, R.; Burlyaeva, M.; Vishnyakova, M.; Semenova, E.; Bulyntsev, S.; et al. Development of 161 Novel EST-SSR Markers from Lathyrus sativus (Fabaceae). Am. J. Bot. 2012, 99, e379–e390. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Choi, H.-K.; Cook, D.R.; Shoemaker, R.C. Bridging Model and Crop Legumes through Comparative Genomics. Plant Physiol. 2005, 137, 1189–1196. [Google Scholar] [CrossRef]
- Almeida, N.F.; Leitão, S.T.; Caminero, C.; Torres, A.M.; Rubiales, D.; Vaz Patto, M.C. Transferability of Molecular Markers from Major Legumes to Lathyrus Spp. for Their Application in Mapping and Diversity Studies. Mol. Biol. Rep. 2014, 41, 269–283. [Google Scholar] [CrossRef]
- Soren, K.R.; Konda, A.K.; Gangwar, P.; Tiwari, V.A.; Shanmugavadivel, P.S.; Parihar, A.K.; Dixit, G.P.; Singh, N.P. Development of SSR Markers and Association Studies of Markers with Phenology and Yield-Related Traits in Grass Pea (Lathyrus sativus). Crop. Pasture Sci. 2020, 71, 768–775. [Google Scholar] [CrossRef]
- Almeida, N.F.; Krezdorn, N.; Rotter, B.; Winter, P.; Rubiales, D.; Vazpatto, M.C. Lathyrus sativus Transcriptome Resistance Response to Ascochyta lathyri Investigated by Deep Super SAGE Analysis. Front. Plant Sci. 2015, 6, 178. [Google Scholar] [CrossRef]
- Chapman, M.A. Transcriptome Sequencing and Marker Development for Four Underutilized Legumes. Appl. Plant Sci. 2015, 3, 1400111. [Google Scholar] [CrossRef]
- Rathi, D.; Gayali, S.; Pareek, A.; Chakraborty, S.; Chakraborty, N. Transcriptome Profiling Illustrates Expression Signatures of Dehydration Tolerance in Developing Grasspea Seedlings. Planta 2019, 250, 839–855. [Google Scholar] [CrossRef]
- Kumari, S.; Kumar, J.; Kumar, R.R.; Kumar, A.; Nimmy, M.S.; Ranjan, T.; Kumar, V. Genetic Diversity Analysis in Grasspea (Lathyrus sativus L.) Using SSR Molecular Markers. Curr. J. Appl. Sci. Technol. 2019, 33, 1–6. [Google Scholar] [CrossRef]
- Kumar Yadav, V.; Radhakrishna, A.; Mohan Das, M.; Singh, T.; Yadav, S.; Sharma, P.; Kumar Mishra, A.; Sarker, A. Deciphering Genetic Diversity in Grass Pea (Lathyrus sativus L.) Collections Using Agronomic and Forage Quality Traits and SSR Markers. J. Agricu. Sci. Technol. 2022, 24, 1429–1442. [Google Scholar] [CrossRef]
- Mekonen, D.A.; Abraham, A.; Oselebe, H.; Afiukwa, C.; Ilesanmi, O.; Abebe, T.D. Genetic Diversity and Population Structure Analysis of Grass Pea (Lathyrus sativus L.) Accessions Collected from North-Western Ethiopia Using SSR Markers. Genet. Resour. Crop. Evol. 2022, 69, 1247–1260. [Google Scholar] [CrossRef]
- KR, R.; Tripathi, K.; Singh, R.; Pandey, A.; Pamarthi, R.K.; Rajendran, N.R.; Gore, P.G.; Panda, R.R.; Barpete, S.; Gomashe, S.; et al. Insights into Morphological and Molecular Diversity in Grasspea (Lathyrus sativus L.) Germplasm. Genet. Resour. Crop. Evol. 2024, 1–13. [Google Scholar] [CrossRef]
- Barik, D.P.; Acharya, L.; Mukherjee, A.K.; Chand, P.K. Analysis of Genetic Diversity among Selected Grasspea (Lathyrus sativus L.) Genotypes Using RAPD Markers. Z. Naturforschung C 2007, 62, 869–874. [Google Scholar] [CrossRef]
- Santos, C.; Martins, D.; Rubiales, D.; Patto, M.C.V. Partial Resistance against Erysiphe pisi and E. trifolii under Different Genetic Control in Lathyrus cicera: Outcomes from a Linkage Mapping Approach. Plant Dis. 2020, 104, 2875–2884. [Google Scholar] [CrossRef]
- Santos, C.; Polanco, C.; Rubiales, D.; Vaz Patto, M.C. The MLO1 Powdery Mildew Susceptibility Gene in Lathyrus Species: The Power of High-Density Linkage Maps in Comparative Mapping and Synteny Analysis. Plant Genom. 2021, 14, e20090. [Google Scholar] [CrossRef]
- Martins, D.C.; Rubiales, D.; Vaz Patto, M.C. Association Mapping of Lathyrus sativus Disease Response to Uromyces Pisi Reveals Novel Loci Underlying Partial Resistance. Front. Plant Sci. 2022, 13, 842545. [Google Scholar] [CrossRef]
- Sampaio, A.M.; Alves, M.L.; Pereira, P.; Valiollahi, E.; Santos, C.; Šatović, Z.; Rubiales, D.; de Sousa Araújo, S.; van Eeuwijk, F.; Vaz Patto, M.C. Grass Pea Natural Variation Reveals Oligogenic Resistance to Fusarium oxysporum f. sp. Pisi. Plant Genom. 2021, 14, e20154. [Google Scholar] [CrossRef]
- Emmrich, P.M.F.; Sarkar, A.; Njaci, I.; Kaithakottil, G.G.; Ellis, N.; Moore, C.; Edwards, A.; Heavens, D.; Waite, D.; Cheema, J.; et al. A Draft Genome of Grass Pea (Lathyrus sativus), a Resilient Diploid Legume. bioRxiv 2020. [Google Scholar] [CrossRef]
- Edwards, A.; Njaci, I.; Sarkar, A.; Jiang, Z.; Kaithakottil, G.G.; Moore, C.; Cheema, J.; Stevenson, C.E.M.; Rejzek, M.; Novák, P.; et al. Genomics and Biochemical Analyses Reveal a Metabolon Key to β-L-ODAP Biosynthesis in Lathyrus sativus. Nat. Commun. 2023, 14, 876. [Google Scholar] [CrossRef]
- Rajarammohan, S.; Kaur, L.; Verma, A.; Singh, D.; Mantri, S.; Roy, J.K.; Sharma, T.R.; Pareek, A.; Kandoth, P.K. Genome Sequencing and Assembly of Lathyrus sativus—A Nutrient-Rich Hardy Legume Crop. Sci. Data 2023, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Flood, P.J.; Nowrousian, M.; Huettel, B.; Woehle, C.; Becker, K.; Wollenweber, T.E.; Begerow, D.; Grefen, C. Draft Genome of the Aardaker (Lathyrus tuberosus L.), a Tuberous Legume. BMC Genom. Data 2022, 23, 70. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.Y.; Xing, G.Y.; Zhou, G.M.; Li, F.M.; Hu, W.T.; Lambein, F.; Xiong, J.L.; Zhang, S.X.; Kong, H.Y.; Zhu, H.; et al. Plant Toxin β-ODAP Activates Integrin Β1 and Focal Adhesion: A Critical Pathway to Cause Neurolathyrism. Sci. Rep. 2017, 7, 40677. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, A.; Subba, P.; Pandey, A.; Bhushan, D.; Kumar, R.; Datta, A.; Chakraborty, S.; Chakraborty, N. Analysis of the Grasspea Proteome and Identification of Stress-Responsive Proteins upon Exposure to High Salinity, Low Temperature, and Abscisic Acid Treatment. Phytochemistry 2011, 72, 1293–1307. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.T.; Ryu, J.; Kang, B.C.; Kim, J.S.; Kim, S.G. CRISPR/Cpf1-Mediated DNA-Free Plant Genome Editing. Nat. Commun. 2017, 8, 14406. [Google Scholar] [CrossRef]
- Lin, Q.; Zong, Y.; Xue, C.; Wang, S.; Jin, S.; Zhu, Z.; Wang, Y.; Anzalone, A.V.; Raguram, A.; Doman, J.L.; et al. Prime Genome Editing in Rice and Wheat. Nat. Biotechnol. 2020, 38, 582–585. [Google Scholar] [CrossRef]
- Warsame, A.O.; O’Sullivan, D.M.; Tosi, P. Seed Storage Proteins of Faba Bean (Vicia Faba L): Current Status and Prospects for Genetic Improvement. J. Agric. Food Chem. 2018, 66, 12617–12626. [Google Scholar] [CrossRef]
- Emmrich, P.M.F. Genetic Improvement of Grass Pea (Lathyrus sativus) for Low β-L-ODAP Content. Food Chem. Toxicol. 2017, 49, 589–600. [Google Scholar]
- Bekele-Alemu, A.; Girma-Tola, D.; Ligaba-osena, A. The Potential of CRISPR/Cas9 to Circumvent the Risk Factor Neurotoxin β-ODAP Limiting Wide Acceptance of the Underutilized Grass Pea (Lathyrus sativus L.). Curr. Issues Mol. Biol. 2024, 46, 10570–10589. [Google Scholar] [CrossRef]
- Riepe, M.; Spencer, P.S.; Lambein, F.; Ludolph, A.C.; Allen, C.N. In Vitro Toxicological Investigations of Isoxazolinone Amino Acids of Lathyrus sativus. Nat. Toxins 1995, 3, 58–64. [Google Scholar] [CrossRef]
- Saha, T.; Shee, R.; Sahid, S.; Shee, D.; Roy, C.; Sharma, R.; Pandey, A.; Paul, S.; Datta, R. Designer Grass Pea for Transgene-Free Minimal Neurotoxin-Containing Seeds with CRISPR-Cas9. bioRxiv 2023. [Google Scholar] [CrossRef]
- Verma, A.; Kaur, L.; Kaur, N.; Bhardwaj, A.; Pandey, A.K.; Kandoth, P.K. An Efficient Hairy Root System for Genome Editing of a β-ODAP Pathway Gene in Lathyrus sativus. bioRxiv 2023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.; Balech, R.; Barpete, S.; Gupta, P.; Bouhlal, O.; Tawkaz, S.; Kaul, S.; Tripathi, K.; Amri, A.; Maalouf, F.; et al. Wild Lathyrus—A Treasure of Novel Diversity. Plants 2024, 13, 3028. https://doi.org/10.3390/plants13213028
Singh A, Balech R, Barpete S, Gupta P, Bouhlal O, Tawkaz S, Kaul S, Tripathi K, Amri A, Maalouf F, et al. Wild Lathyrus—A Treasure of Novel Diversity. Plants. 2024; 13(21):3028. https://doi.org/10.3390/plants13213028
Chicago/Turabian StyleSingh, Akanksha, Rind Balech, Surendra Barpete, Priyanka Gupta, Outmane Bouhlal, Sawsan Tawkaz, Smita Kaul, Kuldeep Tripathi, Ahmed Amri, Fouad Maalouf, and et al. 2024. "Wild Lathyrus—A Treasure of Novel Diversity" Plants 13, no. 21: 3028. https://doi.org/10.3390/plants13213028
APA StyleSingh, A., Balech, R., Barpete, S., Gupta, P., Bouhlal, O., Tawkaz, S., Kaul, S., Tripathi, K., Amri, A., Maalouf, F., Gupta, S., & Kumar, S. (2024). Wild Lathyrus—A Treasure of Novel Diversity. Plants, 13(21), 3028. https://doi.org/10.3390/plants13213028