Seasonal Variation of Polyphenols and Pigments in Ginkgo (Ginkgo biloba L.) Leaves: Focus on 3′,8″-Biflavones
Abstract
:1. Introduction
2. Results and Discussion
2.1. Seasonal Variation of Pigments in Ginkgo Leaves
2.2. Seasonal Variation of Total Polyphenols, Total Flavonoids, and Total Phenolic Acids in Ginkgo Leaves
2.3. Seasonal Variation of 3′–8″ Biflavones in Ginkgo Leaves
2.4. Seasonal Variation of Antioxidant Activity in Ginkgo Leaves
2.5. Correlation Analysis of Measured Parameters
3. Materials and Methods
3.1. Chemicals, Reagents, and Instruments
3.2. Plant Material and Sample Preparation
3.3. Determination of Pigments
3.4. Determination of Total Polyphenols, Total Flavonoids, and Phenolic Acids
3.5. Determination of 3′,8″-Biflavones with HPLC-DAD
3.6. Antioxidant Activity
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J.; et al. Flavonoid Biosynthetic Pathways in Plants: Versatile Targets for Metabolic Engineering. Biotechnol. Adv. 2020, 38, 107316. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Šamec, D.; Karalija, E.; Dahija, S.; Hassan, S.T.S. Biflavonoids: Important Contributions to the Health Benefits of Ginkgo (Ginkgo biloba L.). Plants 2022, 11, 1381. [Google Scholar] [CrossRef] [PubMed]
- Stanković, M. Biology and Ecology of Ginkgo biloba L. (Ginkgoaceae); Nova Science Publishers: Hauppauge, NY, USA, 2016. [Google Scholar]
- Guo, Y.; Gao, C.; Wang, M.; Fu, F.; El-Kassaby, Y.A.; Wang, T.; Wang, G. Metabolome and Transcriptome Analyses Reveal Flavonoids Biosynthesis Differences in Ginkgo biloba Associated with Environmental Conditions. Ind. Crop. Prod. 2020, 158, 112963. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Zhang, J.; Wang, S. Advances in the Chemical Constituents and Chemical Analysis of Ginkgo biloba Leaf, Extract, and Phytopharmaceuticals. J. Pharm. Biomed. Anal. 2021, 193, 113704. [Google Scholar] [CrossRef]
- Akaberi, M.; Baharara, H.; Amiri, M.S.; Moghadam, A.T.; Sahebkar, A.; Emami, S.A. Ginkgo biloba: An Updated Review on Pharmacological, Ethnobotanical, and Phytochemical Studies. Pharmacol. Res.—Mod. Chin. Med. 2023, 9, 100331. [Google Scholar] [CrossRef]
- Jurčević Šangut, I.; Šarkanj, B.; Karalija, E.; Šamec, D. A Comparative Analysis of Radical Scavenging, Antifungal and Enzyme Inhibition Activity of 3′-8″-Biflavones and Their Monomeric Subunits. Antioxidants 2023, 12, 1854. [Google Scholar] [CrossRef]
- He, X.; Yang, F.; Huang, X. Proceedings of Chemistry, Pharmacology, Pharmacokinetics and Synthesis of Biflavonoids. Molecules 2021, 26, 6088. [Google Scholar] [CrossRef]
- Tatlı Çankaya, İ.İ.; Devkota, H.P.; Zengin, G.; Šamec, D. Neuroprotective Potential of Biflavone Ginkgetin: A Review. Life 2023, 13, 562. [Google Scholar] [CrossRef]
- Šamec, D.; Jurčević-Šangut, I.; Karalija, E. Ginkgetin: Advances on Resources, Bioactivity, and Pharmacology. In Handbook of Dietary Flavonoids; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–26. [Google Scholar]
- Šamec, D.; Jurčević-Šangut, I. Isoginkgetin: Advances on Resources, Bioactivity, and Pharmacology. In Handbook of Dietary Flavonoids; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–15. [Google Scholar]
- Kovač Tomas, M.; Jurčević, I.; Šamec, D. Tissue-Specific Profiling of Biflavonoids in Ginkgo (Ginkgo biloba L.). Plants 2022, 12, 147. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Y.; Li, J.; Zhang, J.; Wu, Y.; Wang, G. Overview and Recent Progress on the Biosynthesis and Regulation of Flavonoids in Ginkgo biloba L. Int. J. Mol. Sci. 2023, 24, 14604. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Xu, F.; Li, L.; Cheng, H.; Zhang, W. Seasonal Pattern of Flavonoid Content and Related Enzyme Activities in Leaves of Ginkgo biloba L. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 98. [Google Scholar] [CrossRef]
- Kaur, P.; Chaudhary, A.; Singh, R.D.; Gopichand; Prasad, R.; Singh, B. Spatial and Temporal Variation of Secondary Metabolite Profiles in Ginkgo biloba Leaves. Chem. Biodivers. 2012, 9, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Rimkiene, L.; Kubiliene, A.; Zevzikovas, A.; Kazlauskiene, D.; Jakstas, V. Variation in Flavonoid Composition and Radical-Scavenging Activity in Ginkgo biloba L. Due to the Growth Location and Time of Harvest. J. Food Qual. 2017, 2017, 6840397. [Google Scholar] [CrossRef]
- Lin, Y.; Lou, K.; Wu, G.; Wu, X.; Zhou, X.; Feng, Y.; Zhang, H.; Yu, P. Bioactive Metabolites in of Ginkgo biloba Leaves: Variations by Seasonal, Meteorological and Soil. Braz. J. Biol. 2020, 80, 790–797. [Google Scholar] [CrossRef]
- Zheng, J.; Long, X.; Wang, X. Chemical Profiling and Anticoagulant Activity of Ginkgo biloba Leaves under the Influence of Harvesting Time. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 55–62. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, T.; Fu, F.-F.; El-Kassaby, Y.A.; Wang, G. Temporospatial Flavonoids Metabolism Variation in Ginkgo biloba Leaves. Front. Genet. 2020, 11, 589326. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Dziedziński, M.; Szczepaniak, O.; Kusek, W.; Kmiecik, D.; Ligaj, M.; Telichowska, A.; Byczkiewicz, S.; Szulc, P.; Szwajgier, D. Phytocomponents and Evaluation of Acetylcholinesterase Inhibition by Ginkgo biloba L. Leaves Extract Depending on Vegetation Period. CyTA—J. Food 2020, 18, 606–615. [Google Scholar] [CrossRef]
- Li, W.; Yang, S.; Lu, Z.; He, Z.; Ye, Y.; Zhao, B.; Wang, L.; Jin, B. Cytological, Physiological, and Transcriptomic Analyses of Golden Leaf Coloration in Ginkgo biloba L. Hortic. Res. 2018, 5, 12. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, J.; Wang, T.; Cao, F.; Wang, G. Metabolomic and Transcriptomic Analyses of Mutant Yellow Leaves Provide Insights into Pigment Synthesis and Metabolism in Ginkgo biloba. BMC Genom. 2020, 21, 858. [Google Scholar] [CrossRef]
- Tanaka, R.; Ito, H.; Tanaka, A. Chapter 4 Regulation and Functions of the Chlorophyll Cycle. In The Chloroplast: Basics and Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 55–78. [Google Scholar]
- Zhang, H.; Yu, P.; Song, M.; Li, D.; Sheng, Q.; Cao, F.; Zhu, Z. Leaf Color Changes and Photosynthetic Characteristics of Five Superior Late-Deciduous Ginkgo biloba Cultivars. HortScience 2021, 56, 1416–1422. [Google Scholar] [CrossRef]
- Solovchenko, A.; Yahia, E.M.; Chen, C. Pigments. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2019; pp. 225–252. [Google Scholar]
- Chen, M.; Chang, C.; Li, H.; Huang, L.; Zhou, Z.; Zhu, J.; Liu, D. Metabolome Analysis Reveals Flavonoid Changes during the Leaf Color Transition in Populus × Euramericana ‘Zhonghuahongye’. Front. Plant Sci. 2023, 14, 1162893. [Google Scholar] [CrossRef] [PubMed]
- Zou, K.; Liu, X.; Zhang, D.; Yang, Q.; Fu, S.; Meng, D.; Chang, W.; Li, R.; Yin, H.; Liang, Y. Flavonoid Biosynthesis Is Likely More Susceptible to Elevation and Tree Age than other Branch Pathways Involved in Phenylpropanoid Biosynthesis in Ginkgo Leaves. Front. Plant Sci. 2019, 10, 983. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, G.; Cao, F.; Zhu, C.; Wang, G.; El-Kassaby, Y.A. Light Intensity Affects the Growth and Flavonol Biosynthesis of Ginkgo (Ginkgo biloba L.). New For. 2014, 45, 765–776. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, L.; Pang, S.; Jia, Z.; Wang, L.; Li, W.; Jin, B. UV-B Promotes Flavonoid Synthesis in Ginkgo biloba Leaves. Ind. Crop. Prod. 2020, 151, 112483. [Google Scholar] [CrossRef]
- Mao, D.; Zhong, L.; Zhao, X.; Wang, L. Function, Biosynthesis, and Regulation Mechanisms of Flavonoids in Ginkgo biloba. Fruit Res. 2023, 3, 18. [Google Scholar] [CrossRef]
- Bouafia, M.; Colak, N.; Ayaz, F.A.; Gourine, N.; Yousfi, M. The Chemical Profile and Seasonal Variation of the Composition of the Phenolic Acids in Different Plant Parts of Centaurea sp. J. Pharm. Biomed. Anal. 2023, 236, 115686. [Google Scholar] [CrossRef]
- Solar, A.; Colarič, M.; Usenik, V.; Stampar, F. Seasonal Variations of Selected Flavonoids, Phenolic Acids and Quinones in Annual Shoots of Common Walnut (Juglans regia L.). Plant Sci. 2006, 170, 453–461. [Google Scholar] [CrossRef]
- Gontijo, V.S.; dos Santos, M.H.; Viegas, C., Jr. Biological and Chemical Aspects of Natural Biflavonoids from Plants: A Brief Review. Mini-Rev. Med. Chem. 2017, 17, 834–862. [Google Scholar] [CrossRef]
- Šamec, D.; Jurčević Šangut, I.; Karalija, E.; Šarkanj, B.; Zelić, B.; Šalić, A. 3′-8″-Biflavones: A Review of Their Structural Diversity, Natural Occurrence, Role in Plants, Extraction and Identification. Molecules 2024, 29, 4634. [Google Scholar] [CrossRef]
- Jurčević Šangut, I.; Pavličević, L.; Šamec, D. Influence of Air Drying, Freeze Drying and Oven Drying on the Biflavone Content in Yellow Ginkgo (Ginkgo biloba L.) Leaves. Appl. Sci. 2024, 14, 2330. [Google Scholar] [CrossRef]
- Šalić, A.; Bajo, M.; Cvjetko Bubalo, M.; Radović, M.; Jurinjak Tušek, A.; Zelić, B.; Šamec, D. Extraction of Polyphenolic Compounds from Ginkgo Leaves Using Deep Eutectic Solvents: A Potential Solution for the Sustainable and Environmentally Friendly Isolation of Biflavonoids. Ind. Crop. Prod. 2024, 219, 119068. [Google Scholar] [CrossRef]
- Šalić, A.; Šepić, L.; Turkalj, I.; Zelić, B.; Šamec, D. Comparative Analysis of Enzyme-, Ultrasound-, Mechanical-, and Chemical-Assisted Extraction of Biflavonoids from Ginkgo Leaves. Processes 2024, 12, 982. [Google Scholar] [CrossRef]
- Wang, L.-T.; Fan, X.-H.; Jian, Y.; Dong, M.-Z.; Yang, Q.; Meng, D.; Fu, Y.-J. A Sensitive and Selective Multiple Reaction Monitoring Mass Spectrometry Method for Simultaneous Quantification of Flavonol Glycoside, Terpene Lactones, and Biflavonoids in Ginkgo biloba Leaves. J. Pharm. Biomed. Anal. 2019, 170, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Jiang, Y.; Luo, X.; Zheng, Y.; Zhu, L.; Sun, C.; Linghu, L.; Qin, C.; Gang, W. Ultrasonic-Assisted Ionic Liquid Extraction of Four Biflavonoids from Ginkgo biloba L. ChemistrySelect 2021, 6, 3297–3307. [Google Scholar] [CrossRef]
- Sati, P.; Pandey, A.; Rawat, S.; Rani, A. Phytochemicals and Antioxidants in Leaf Extracts of Ginkgo biloba with Reference to Location, Seasonal Variation and Solvent System. J. Pharm. Res. 2013, 7, 804–809. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, Z.-S.; Cheng, F.; Ruan, X.; Jiang, D.-A.; Pan, C.-D.; Wang, Q. Seasonal Dynamics of Metabolites in Needles of Taxus Wallichiana Var. Mairei. Molecules 2016, 21, 1403. [Google Scholar] [CrossRef]
- Aguilar, M.I.; Benítez, W.V.; Colín, A.; Bye, R.; Ríos-Gómez, R.; Calzada, F. Evaluation of the Diuretic Activity in Two Mexican Medicinal Species: Selaginella Nothohybrida and Selaginella Lepidophylla and Its Effects with Ciclooxigenases Inhibitors. J. Ethnopharmacol. 2015, 163, 167–172. [Google Scholar] [CrossRef]
- Beck, S.; Stengel, J. Mass Spectrometric Imaging of Flavonoid Glycosides and Biflavonoids in Ginkgo biloba L. Phytochemistry 2016, 130, 201–206. [Google Scholar] [CrossRef]
- Šamec, D.; Pierz, V.; Srividya, N.; Wüst, M.; Lange, B.M. Assessing Chemical Diversity in Psilotum nudum (L.) Beauv., a Pantropical Whisk Fern That Has Lost Many of Its Fern-Like Characters. Front. Plant Sci. 2019, 10, 868. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Zovko Končić, M.; Kremer, D.; Gruz, J.; Strnad, M.; Biševac, G.; Kosalec, I.; Šamec, D.; Piljac-Žegarac, J.; Karlović, K. Antioxidant and Antimicrobial Properties of Moltkia Petraea (Tratt.) Griseb. Flower, Leaf and Stem Infusions. Food Chem. Toxicol. 2010, 48, 1537–1542. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
Season 2020 | Chlorophyll a (mg g −1 dw) | Chlorophyll b (mg g−1 dw) | Total Chlorophylls (mg g−1 dw) | Total Carotenoids (mg g−1 dw) | Chlorophyll a/Chlorophyll b | Chlorophylls/ Carotenoids |
---|---|---|---|---|---|---|
May | 0.68 ± 0.04 c | 0.15 ± 0.04 bc | 0.84 ± 0.08 c | 0.02 ± 0.00 e | 4.73 ± 0.91 a | 56.65 ± 18.03 a |
June | 0.96 ± 0.04 b | 0.18 ± 0.02 b | 1.13 ± 0.06 b | 0.03 ± 0.00 de | 5.42 ± 0.29 a | 34.09 ± 0.65 ab |
July | 1.71 ± 0.06 a | 0.35 ± 0.01 a | 2.07 ± 0.07 a | 0.24 ± 0.01 a | 4.83 ± 0.09 a | 8.57 ± 0.06 c |
August | 0.87 ± 0.01 b | 0.17 ± 0.01 b | 1.04 ± 0.02 b | 0.05 ± 0.01 d | 5.08 ± 0.21 a | 20.35 ± 2.12 bc |
September | 0.73 ± 0.01 c | 0.13 ± 0.0 bcd | 0.86 ± 0.01 c | 0.05 ± 0.00 d | 5.62 ± 0.17 a | 17.26 ± 0.61 bc |
October | 0.20 ± 0.01 d | 0.09 ± 0.01 cd | 0.29 ± 0.02 d | 0.08 ± 0.00 c | 2.14 ± 0.21 b | 3.69 ± 0.39 c |
November | 0.07 ± 0.00 e | 0.08 ± 0.01 d | 0.15 ± 0.01 d | 0.11 ± 0.01 b | 0.80 ± 0.08 c | 1.32 ± 0.16 c |
chl a | chl b | Total chls | Total car | DPPH | TP | TF | TPA | a | b | g | i | s | TB | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
chl a | 1 | |||||||||||||
chl b | 0.961 | 1 | ||||||||||||
total chls | 0.999 | 0.971 | 1 | |||||||||||
total car | 0.504 | 0.696 | 0.53 | 1 | ||||||||||
DPPH | 0.551 | 0.508 | 0.547 | −0.016 | 1 | |||||||||
TP | −0.637 | −0.576 | −0.631 | −0.007 | −0.992 | 1 | ||||||||
TF | −0.592 | −0.619 | −0.598 | −0.432 | −0.730 | 0.744 | 1 | |||||||
TPA | 0.133 | 0.100 | 0.129 | −0.334 | 0.851 | −0.796 | −0.330 | 1 | ||||||
a | −0.899 | −0.808 | −0.890 | −0.207 | −0.464 | 0.556 | 0.289 | −0.163 | 1 | |||||
b | −0.743 | −0.669 | −0.736 | 0.006 | −0.840 | 0.877 | 0.496 | −0.647 | 0.829 | 1 | ||||
g | −0.622 | −0.551 | −0.614 | 0.093 | −0.948 | 0.960 | 0.581 | −0.807 | 0.658 | 0.961 | 1 | |||
i | −0.759 | −0.671 | −0.750 | 0.024 | −0.822 | 0.865 | 0.470 | −0.625 | 0.853 | 0.997 | 0.950 | 1 | ||
s | −0.674 | −0.584 | −0.664 | 0.100 | −0.921 | 0.945 | 0.541 | −0.767 | 0.726 | 0.975 | 0.991 | 0.973 | 1 | |
TB | −0.702 | −0.617 | −0.693 | 0.067 | −0.898 | 0.927 | 0.530 | −0.728 | 0.766 | 0.990 | 0.987 | 0.987 | 0.997 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurčević Šangut, I.; Šamec, D. Seasonal Variation of Polyphenols and Pigments in Ginkgo (Ginkgo biloba L.) Leaves: Focus on 3′,8″-Biflavones. Plants 2024, 13, 3044. https://doi.org/10.3390/plants13213044
Jurčević Šangut I, Šamec D. Seasonal Variation of Polyphenols and Pigments in Ginkgo (Ginkgo biloba L.) Leaves: Focus on 3′,8″-Biflavones. Plants. 2024; 13(21):3044. https://doi.org/10.3390/plants13213044
Chicago/Turabian StyleJurčević Šangut, Iva, and Dunja Šamec. 2024. "Seasonal Variation of Polyphenols and Pigments in Ginkgo (Ginkgo biloba L.) Leaves: Focus on 3′,8″-Biflavones" Plants 13, no. 21: 3044. https://doi.org/10.3390/plants13213044
APA StyleJurčević Šangut, I., & Šamec, D. (2024). Seasonal Variation of Polyphenols and Pigments in Ginkgo (Ginkgo biloba L.) Leaves: Focus on 3′,8″-Biflavones. Plants, 13(21), 3044. https://doi.org/10.3390/plants13213044