Chemodiversity and Antinociceptive Activity of Amorpha fruticosa L. Essential Oil
Abstract
:1. Introduction
- (1)
- Detailed chemical analysis of A. fruticosa fruit essential oil (from Serbia) by GC and GC-MS (gas chromatography–mass spectrometry).
- (2)
- Statistical chemotypification of the A. fruticosa essential oil using clustering analysis, based on current and previously published data.
- (3)
- An investigation of the antinociceptive activity of the oil in the acetic acid-induced writhing test. Despite the extensive data on the pharmacology of A. fruticosa, no study to date has addressed the analgesic activity of this species.
2. Results and Discussion
2.1. Chemical Composition of A. fruticosa Essential Oil
2.2. Clustering Analysis
- Monoterpene-dominated chemotype [18], major cluster contributors: α-pinene (centroid value = 21.6) and myrcene (16.6);
- Sesquiterpene-dominated chemotype I [16,17]; in our opinion, the A. fruticosa used in these two studies are of the same chemotype, and the difference in the clusters is caused only by different drying periods: samples K-N were obtained from fruit that was dried for over 6 months, while other samples were from fruit dried for a shorter period of time. Major cluster contributors: δ-cadinene, γ-muurolene, γ-cadinene;
- Sesquiterpene-dominated chemotype II [5], similar to chemotype A but with lower levels of δ- and γ-cadinene and higher contribution of α-zingiberene and α-eudesmol.
- (1)
- The profile of fresh material closely reflects the state of the plant at the time of collection. This is especially important for future studies dealing with the discovery of new chemotypes.
- (2)
- Another key reason was to ensure the reproducibility of the study. Any biological activity observed for A. fruticosa essential oil would be more reproducible when fresh fruit is used. Storage or drying introduces variability (e.g., loss of monoterpenes, oxidation), which is difficult to control. Even attempts to replicate the storage process would need to account for factors such as temperature and humidity. These variables are eliminated when fresh material is used.
2.3. Antinociceptive Activity
3. Conclusions
4. Materials and Methods
4.1. GC and GC-MS
4.2. Plant Material
4.3. Chemicals
4.4. Extraction of Essential Oils
4.5. Clustering Analysis
4.6. Animals and Treatment
4.7. Acetic Acid-Induced Abdominal Writhing
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Wang, E.T.; Chen, W.X. Diverse rhizobia associated with woody legumes Wisteria sinensis, Cercis racemosa and Amorpha fruticosa grown in the temperate zone of China. Syst. Appl. Microbiol. 2005, 28, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Kozuharova, E.; Matkowski, A.; Woźniak, D.; Simeonova, R.; Naychov, Z.; Malainer, C.; Mocan, A.; Nabavi, S.M.; Atanasov, A.G. Amorpha fruticosa—A noxious invasive alien plant in Europe or a medicinal plant against metabolic disease? Front. Pharmacol. 2017, 8, 333. [Google Scholar] [CrossRef] [PubMed]
- Straub, S.C.K. Molecular Phylogentics of Amorpha L. (Fabaceae) and Conservation Genetics of Rare Amorpha Species. Ph.D. Thesis, Cornell University, Ithaka, NY, USA, 2010. [Google Scholar]
- Blagojević, M.; Konstantinović, B.; Samardžić, N.; Kurjakov, A.; Orlović, S. Seed bank of Amorpha fruticosa L. on some ruderal sites in Serbia. J. Agri. Sci. Tech. B 2015, 5, 122–128. [Google Scholar] [CrossRef]
- Ivănescu, B.; Lungu, C.; Spac, A.; Tuchilus, C. Essential oils from Amorpha fruticosa L. fruits—Chemical characterization and antimicrobial activity. Analele Ştiinţifice Univ. Al. I. Cuza Iaşi S. II A. Biol. Veg. 2014, 60, 33–39. [Google Scholar]
- Cui, X.; Guo, J.; Lai, C.-S.; Pan, M.-H.; Ma, Z.; Guo, S.; Liu, Q.; Zhang, L.; Ho, C.-T.; Bai, N. Analysis of bioactive constituents from the leaves of Amorpha fruticosa L. J. Food Drug Anal. 2017, 25, 992–999. [Google Scholar] [CrossRef]
- Grabić, J.; Ljevnaić-Mašić, B.; Zhan, A.; Benka, P.; Heilmeier, H. A review on invasive false indigo bush (Amorpha fruticosa L.): Nuisance plant with multiple benefits. Ecol. Evol. 2022, 12, e9290. [Google Scholar] [CrossRef]
- Somleva, T.; Ognyanov, I. New rotenoids in Amorpha fruticosa fruits. Planta Med. 1985, 51, 219–221. [Google Scholar] [CrossRef]
- Hegnauer, R.; Hegnauer, M. Chemotaxonomie der Pflanzen: Band XIb-2: Leguminosae Teil 3: Papilionoideae; Springer Basel AG: Basel, Switzerland, 2001. [Google Scholar]
- Wu, X.; Liao, H.-B.; Li, G.-Q.; Liu, Y.; Cui, L.; Wu, K.-F.; Zhu, X.-H.; Zeng, X.-B. Cytotoxic rotenoid glycosides from the seeds of Amorpha fruticosa. Fitoterapia 2015, 100, 75–80. [Google Scholar] [CrossRef]
- Claisse, J.; Crombie, L.; Peace, R. Structure and stereochemistry of the vicianoside amorphin, the first rotenoid glycoside. J. Chem. Soc. 1964, 1162, 6023–6036. [Google Scholar] [CrossRef]
- Ohyama, M.; Tanaka, T.; Iinuma, M. A prenylated flavanone from roots of Amorpha fruticosa. Phytochemistry 1998, 48, 907–909. [Google Scholar] [CrossRef]
- Cho, J.Y.; Kim, P.S.; Park, J.; Yoo, E.S.; Baik, K.U.; Kim, Y.K.; Park, M.H. Inhibitor of tumor necrosis factor-alpha production in lipopolysaccharide-stimulated RAW264.7 cells from Amorpha fruticosa. J. Ethnopharmacol. 2000, 70, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Rózsa, Z.; Hohmann, J.; Szendrei, K.; Mester, I.; Reisch, J. Amoradin, amoradicin and amoradinin, three prenylflavanones from Amorpha fruticosa. Phytochemistry 1984, 23, 1818–1819. [Google Scholar] [CrossRef]
- Ognyanov, I.; Somleva, T. Rotenoids and 7,2′,4′,5′-tetramethoxyisoflavone in Amorpha fruticosa L. fruits. Planta Med. 1980, 38, 279–280. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Chen, Y.; Du, L. Isolation and purification of prenylated phenolics from Amorpha fruticosa by high-speed counter-current chromatography. J. Sep. Sci. 2015, 38, 2924–2929. [Google Scholar] [CrossRef]
- Stoyanova, A.; Georgiev, E.; Lis, A.; Majda, T.; Gora, J. Essential oil from stored fruits of Amorpha fruticosa L. J. Essent. Oil Bear. Plants 2003, 6, 195–197. [Google Scholar] [CrossRef]
- Lis, A.; Góra, J. Essential oil of Amorpha fruticosa L. J. Essent. Oil Res. 2001, 13, 340–342. [Google Scholar] [CrossRef]
- Motl, O.; Romaňuk, M.; Herout, V. On terpenes. CLXXVIII. Composition of the oil from Amorpha fruticosa L. fruits structure of (-)-γ-amorphene. Collect. Czech Chem. Commun. 1966, 31, 2025–2033. [Google Scholar] [CrossRef]
- Mitscher, L.A.; Park, Y.H.; Alshamma, A.; Hudson, P.B.; Haas, T. Amorfrutin A and B, bibenzyl antimicrobial agents from Amorpha fruticosa. Phytochemistry 1981, 20, 781–785. [Google Scholar] [CrossRef]
- Weidner, C.; de Groot, J.C.; Prasad, A.; Freiwald, A.; Quedenau, C.; Kliem, M.; Witzke, A.; Kodelja, V.; Han, C.T.; Giegold, S.; et al. Amorfrutins are potent antidiabetic dietary natural products. Proc. Natl. Acad. Sci. USA 2012, 109, 7257–7262. [Google Scholar] [CrossRef]
- Marinas, I.C.; Oprea, E.; Buleandra, M.; Badea, I.A.; Tihauan, B.M.; Marutescu, L.; Angheloiu, M.; Matei, E.; Chifiriuc, M.C. Chemical composition, antipathogenic and cytotoxic activity of the essential oil extracted from Amorpha fruticosa fruits. Molecules 2021, 26, 3146. [Google Scholar] [CrossRef]
- Kozuharova, E.; Benbassat, N.; Ionkova, I. The invasive alien species Amorpha fruticosa in Bulgaria and its potential as economically prospective source of valuable essential oil. Pharmacia 2020, 67, 357–362. [Google Scholar] [CrossRef]
- Radulović, N.S.; Zlatković, D.B.; Randjelović, P.J.; Stojanović, N.M.; Novaković, S.B.; Akhlaghi, H. Chemistry of spices: Bornyl 4-methoxybenzoate from Ferula ovina (Boiss.) Boiss. (Apiaceae) induces hyperalgesia in mice. Food Funct. 2013, 4, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Le Bars, D.; Gozariu, M.; Cadden, S.W. Animal models of nociception. Pharmacol. Rev. 2001, 53, 597–652. [Google Scholar] [PubMed]
- Shi, H.; Ma, J.; Mi, C.; Li, J.; Wang, F.; Lee, J.J.; Jina, X. Amorfrutin A inhibits TNF-α-induced NF-κB activation and NF-κB-regulated target gene products. Int. Immunopharmacol. 2014, 21, 56–62. [Google Scholar] [CrossRef]
- Radulović, N.S.; Randjelović, P.J.; Stojanović, N.M.; Blagojević, P.B.; Stojanović-Radić, Z.Z.; Ilić, I.R.; Vidosava, B.; Djordjević, V.B. Toxic essential oils. Part II: Chemical, toxicological, pharmacological and microbiological profiles of Artemisia annua L. volatiles. Food Chem. Toxicol. 2013, 58, 37–49. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Scikit-Learn. Available online: https://scikit-learn.org/stable/ (accessed on 2 September 2024).
- JupyterLab. Available online: https://jupyter.org/ (accessed on 2 September 2024).
- Plotly Express in Python. Available online: https://plotly.com/python/plotly-express/ (accessed on 2 September 2024).
No. a | Compound | RI b | Content [%] c | Compound Class d | Identification Method e |
---|---|---|---|---|---|
1 | 1-Pentanol | 764 | tr | O | MS, RI, CoI |
2 | Hexanal | 801 | 0.2 | O | MS, RI, CoI |
3 | 1-Hexanol | 863 | tr | O | MS, RI, CoI |
4 | Heptanal | 901 | tr | O | MS, RI, CoI |
5 | α-Thujene | 921 | tr | MT | MS, RI |
6 | α-Pinene | 930 | 4.2 | MT | MS, RI, CoI |
7 | Camphene | 948 | tr | MT | MS, RI, CoI |
8 | (E)-2-Heptenal | 948 | tr | O | MS, RI |
9 | Benzaldehyde | 959 | tr | O | MS, RI, CoI |
10 | Sabinene | 969 | tr | MT | MS, RI |
11 | 1-Octen-3-ol | 970 | tr | O | MS, RI |
12 | β-Pinene | 977 | 0.7 | MT | MS, RI, CoI |
13 | Myrcene | 982 | 1.0 | MT | MS, RI |
14 | 2-Pentylfuran | 983 | tr | O | MS, RI |
15 | α-Phellandrene | 1005 | tr | MT | MS, RI |
16 | α-Terpinene | 1015 | tr | MT | MS, RI, CoI |
17 | o-Cymene | 1021 | 0.1 | MT | MS, RI, CoI |
18 | Limonene | 1026 | 0.3 | MT | MS, RI, CoI |
19 | (Z)-β-Ocimene | 1028 | 1.4 | MT | MS, RI, CoI |
20 | 1,8-Cineole | 1030 | tr | MT * | MS, RI, CoI |
21 | (E)-β-Ocimene | 1039 | 0.2 | MT | MS, RI, CoI |
22 | Phenylacetaldehyde | 1039 | tr | O | MS, RI, CoI |
23 | γ-Terpinene | 1053 | 0.1 | MT | MS, RI, CoI |
24 | cis-Sabinene hydrate | 1066 | tr | MT | MS, RI |
25 | Terpinolene | 1083 | tr | MT | MS, RI, CoI |
26 | Linalool | 1094 | 0.3 | MT * | MS, RI, CoI |
27 | trans-Sabinene hydrate | 1100 | 0.1 | MT | MS, RI, CoI |
28 | Nonanal | 1100 | tr | O | MS, RI, CoI |
29 | Isopentyl isovalerate | 1102 | tr | O | MS, RI, CoI |
30 | trans-Pinocarveol | 1139 | tr | MT * | MS, RI |
31 | trans-Verbenol | 1143 | tr | MT * | MS, RI |
32 | Isopulegol | 1146 | tr | MT * | MS, RI |
33 | iso-Isopulegol | 1156 | tr | MT * | MS, RI |
34 | (E)- 2-Nonen-1-ol | 1164 | tr | O | MS, RI |
35 | Terpinen-4-ol | 1175 | 0.2 | MT * | MS, RI, CoI |
36 | α-Terpineol | 1192 | tr | MT * | MS, RI, CoI |
37 | Citronellol | 1220 | 0.3 | MT * | MS, RI, CoI |
38 | (2E,4E)-2,4-Decadienal | 1314 | tr | O | MS, RI |
39 | α-Cubebene | 1343 | 0.7 | ST | MS, RI |
40 | α-Ylangene | 1366 | 0.7 | ST | MS, RI |
41 | α-Copaene | 1372 | 2.6 | ST | MS, RI |
42 | β-Bourbonene | 1381 | tr | ST | MS, RI |
43 | 7-epi-Sesquithujene | 1382 | 1.2 | ST | MS, RI |
44 | β-Cubebene | 1384 | tr | ST | MS, RI |
45 | β-Elemene | 1385 | 1.1 | ST | MS, RI |
46 | Sesquithujene | 1396 | 0.1 | ST | MS, RI |
47 | α-Gurjunene | 1404 | 0.5 | ST | MS, RI |
48 | cis-α-Bergamotene | 1408 | tr | ST | MS, RI |
49 | β-Ylangene | 1415 | tr | ST | MS, RI |
50 | (E)-Caryophyllene | 1417 | 5.4 | ST | MS, RI, CoI |
51 | β-Copaene | 1427 | 1.4 | ST | MS, RI |
52 | trans-α-Bergamotene | 1428 | tr | ST | MS, RI |
53 | Aromadendrene | 1435 | 0.9 | ST | MS, RI |
54 | Cadina-3,5-diene | 1445 | tr | ST | MS, RI |
55 | (E)-β-Farnesene | 1446 | 0.5 | ST | MS, RI |
56 | α-Humulene | 1452 | 1.7 | ST | MS, RI, CoI |
57 | cis-Cadina-1(6),4-diene | 1456 | tr | ST | MS, RI |
58 | cis-Muurola-4(14),5-diene | 1458 | 0.3 | ST | MS, RI |
59 | trans-Cadina-1(6),4-diene | 1468 | 0.5 | ST | MS, RI |
60 | γ-Muurolene | 1471 | 6.5 | ST | MS, RI |
61 | ar-Curcumene | 1476 | tr | ST | MS, RI |
62 | Germacrene D | 1479 | 19.3 | ST | MS, RI |
63 | (Z,E)-α-Farnesene | 1484 | tr | ST | MS, RI |
64 | β-Selinene | 1486 | 1.3 | ST | MS, RI |
65 | α-Zingiberene | 1489 | 9.9 | ST | MS, RI |
66 | α-Muurolene | 1494 | tr | ST | MS, RI |
67 | (E,E)-α-Farnesene | 1497 | tr | ST | MS, RI |
68 | β-Bisabolene | 1502 | tr | ST | MS, RI |
69 | γ-Cadinene | 1509 | 4.2 | ST | MS, RI |
70 | Cubebol | 1511 | tr | ST * | MS, RI |
71 | δ-Amorphene | 1514 | 7.6 | ST | MS, RI |
72 | trans-Calamenene | 1516 | tr | ST | MS, RI |
73 | β-Sesquiphellandrene | 1518 | 2.3 | ST | MS, RI |
74 | (E)-γ-Bisabolene | 1521 | tr | ST | MS, RI |
75 | 10-epi-Cubebol | 1526 | 0.1 | ST * | MS, RI |
76 | trans-Cadina-1,4-diene | 1528 | 0.6 | ST | MS, RI |
77 | α-Cadinene | 1532 | 0.5 | ST | MS, RI |
78 | α-Calacorene | 1537 | tr | ST | MS, RI |
79 | cis-Sesquisabinene hydrate | 1537 | 0.7 | ST * | MS, RI |
80 | Elemol | 1543 | 0.9 | ST * | MS, RI |
81 | (E)-Nerolidol | 1553 | 0.3 | ST * | MS, RI |
82 | β-Calacorene | 1557 | tr | ST | MS, RI |
83 | 1α,10α-Epoxyamorph-4-ene | 1565 | tr | ST * | MS, RI |
84 | Germacrene D-4-ol | 1572 | tr | ST * | MS, RI |
85 | Spathulenol | 1573 | 2.0 | ST * | MS, RI |
86 | Caryophyllene oxide | 1579 | 0.5 | ST * | MS, RI, CoI |
87 | Salvial-4(14)-en-1-one | 1588 | tr | ST * | MS, RI |
88 | Globulol | 1591 | 0.6 | ST * | MS, RI |
89 | Ledol | 1601 | tr | ST * | MS, RI |
90 | Rosifoliol | 1603 | tr | ST * | MS, RI |
91 | Humulene epoxide II | 1606 | tr | ST * | MS, RI |
92 | Zingiberenol | 1608 | 0.3 | ST * | MS, RI |
93 | 1,10-di-epi-Cubenol | 1611 | tr | ST * | MS, RI |
94 | Muurola-4,10(14)-dien-1β-ol | 1621 | tr | ST * | MS, RI |
95 | 1-epi-Cubenol | 1623 | 0.3 | ST * | MS, RI |
96 | Eremoligenol | 1626 | tr | ST * | MS, RI |
97 | γ-Eudesmol | 1627 | 1.3 | ST * | MS, RI |
98 | epi-α-Cadinol (syn. τ-cadinol) | 1637 | 1.2 | ST * | MS, RI |
99 | epi-α-Murrolol (syn. τ-muurolol) | 1639 | tr | ST * | MS, RI |
100 | α-Muurolol (syn. torreyol) | 1642 | 0.2 | ST * | MS, RI |
101 | α-Eudesmol | 1651 | 4.5 | ST * | MS, RI |
102 | epi-β-Bisabolol | 1665 | 0.2 | ST * | MS, RI |
103 | Cadalene | 1667 | tr | ST | MS, RI |
104 | α-Bisabolol | 1679 | 0.9 | ST * | MS, RI, CoI |
105 | Amorpha-4,9-dien-2-ol | 1685 | tr | ST * | MS, RI |
Total identified [%] | 92.9 | ||||
MT—Monoterpenes | 8.1 | ||||
MT *—Oxygenated monoterpenes | 0.8 | ||||
ST—Sesquiterpenes | 69.8 | ||||
ST *—Oxygenated sesquiterpenes | 14.0 | ||||
O—Other | 0.2 |
Label | Reference | Description |
---|---|---|
A | Essential oil from this study | fresh ripe fruits/hydrodistillation Clevenger apparatus |
B | Ivănescu et al., 2014 [5] | air-dried fruits/hydrodistillation Clevenger apparatus |
C | air-dried fruits/hydrodistillation Clevenger apparatus | |
D | air-dried fruits/hydrodistillation Clevenger apparatus | |
E | Lis and Góra, 2001 [18] | fresh flowers/hydrodistillation |
F | fresh leaves/hydrodistillation | |
G | fresh crushed unripe fruits/hydrodistillation | |
H | fresh crushed ripe fruits/hydrodistillation | |
I | air-dried crushed ripe fruits/hydrodistillation | |
J | Stoyanova et al., 2003 [17] | air-dried crushed fruits stored for 0–6 months/hydrodistillation |
K | air-dried crushed fruits stored for 6 months/hydrodistillation | |
L | air-dried crushed fruits stored for 18 months/hydrodistillation | |
M | air-dried crushed fruits stored for 30 months/hydrodistillation | |
N | air-dried crushed fruits stored for 40 months/hydrodistillation | |
O | Chen et al., 2017 [16] | air-dried crushed fruits/MHD-LLE * |
P | air-dried crushed fruits/MHD-LLE ** | |
Q | air-dried crushed fruits/microwave-assisted hydrodistillation | |
R | air-dried crushed fruits/hydrodistillation Clevenger apparatus | |
S | Marinas et al., 2021 [22] | air-dried crushed fruits/hydrodistillation Clevenger apparatus |
T | Kozuharova et al., 2020 [23] | air-dried fruits/hydrodistillation Clevenger apparatus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đorđević Zlatković, M.R.; Stojanović, N.M.; Zlatković, D.B.; Randjelović, P.J.; Radulović, N.S. Chemodiversity and Antinociceptive Activity of Amorpha fruticosa L. Essential Oil. Plants 2024, 13, 3045. https://doi.org/10.3390/plants13213045
Đorđević Zlatković MR, Stojanović NM, Zlatković DB, Randjelović PJ, Radulović NS. Chemodiversity and Antinociceptive Activity of Amorpha fruticosa L. Essential Oil. Plants. 2024; 13(21):3045. https://doi.org/10.3390/plants13213045
Chicago/Turabian StyleĐorđević Zlatković, Miljana R., Nikola M. Stojanović, Dragan B. Zlatković, Pavle J. Randjelović, and Niko S. Radulović. 2024. "Chemodiversity and Antinociceptive Activity of Amorpha fruticosa L. Essential Oil" Plants 13, no. 21: 3045. https://doi.org/10.3390/plants13213045
APA StyleĐorđević Zlatković, M. R., Stojanović, N. M., Zlatković, D. B., Randjelović, P. J., & Radulović, N. S. (2024). Chemodiversity and Antinociceptive Activity of Amorpha fruticosa L. Essential Oil. Plants, 13(21), 3045. https://doi.org/10.3390/plants13213045