Comparative Lipidomics Analysis Provides New Insights into the Metabolic Basis of Color Formation in Green Cotton Fiber
Abstract
:1. Introduction
2. Results
2.1. Color Transformation During the Development of Green Fiber
2.2. Multivariate Statistical Analysis
2.3. Identification of DTLs and Venn Diagram Analysis
2.4. Components of DTLs in GF and WF at Different Developmental Stages
2.5. Cluster and Volcano Plot Analysis of DTLs
2.6. Correlation Analysis of DTLs
2.7. Lipid Metabolism Pathway of Fibers
3. Discussion
3.1. Lipid Profiles of WF and GF
3.2. Conserved Lipid Metabolic Pathways with Differential Components in GF and WF
3.3. Effect of Lipid on Color Formation of Green Cotton
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Determination of Green Fiber Color
4.3. Lipid Extraction
4.4. The Chromatographic Conditions
4.5. Mass Spectrometry Conditions
4.6. Data Processing
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vreeland, J.M. The revival of colored cotton. Sci. Am. 1999, 280, 112–118. [Google Scholar] [CrossRef]
- Dutt, Y.; Wang, X.D.; Zhu, Y.G.; Li, Y.Y. Breeding for high yield and fibre quality in coloured cotton. Plant Breed. 2004, 123, 145–151. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhang, X.Y.; Wang, F.X.; Yang, C.L.; Liu, F.; Xia, G.X.; Sun, J. A comparative proteomic analysis provides insights into pigment biosynthesis in brown color fiber. J. Proteom. 2013, 78, 374–388. [Google Scholar] [CrossRef] [PubMed]
- Murthy, M.S.S. Never say dye: The story of coloured cotton. Resonance 2001, 6, 29–35. [Google Scholar] [CrossRef]
- Yuan, S.; Hua, S.; Malik, W.; Bibi, N.; Wang, X. Physiological and biochemical dissection of fiber development in colored cotton. Euphytica 2012, 187, 215–226. [Google Scholar] [CrossRef]
- Kohel, R.J. Genetic analysis of fiber color variants in cotton 1. Crop Sci. 1985, 25, 793–797. [Google Scholar] [CrossRef]
- Xiao, Y.H.; Zhang, Z.S.; Yin, M.H.; Luo, M.; Li, X.B.; Hou, L.; Pei, Y. Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochem. Biophys. Res. Commun. 2007, 358, 73–78. [Google Scholar] [CrossRef]
- Hua, S.; Wang, X.; Yuan, S.; Shao, M.; Zhao, X.; Zhu, S.; Jiang, L. Characterization of pigmentation and cellulose synthesis in colored cotton fibers. Crop Sci. 2007, 47, 1540–1546. [Google Scholar] [CrossRef]
- Feng, H.; Tian, X.; Liu, Y.; Li, Y.; Zhang, X.; Jones, B.J.; Sun, Y.; Sun, J. Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton. PLoS ONE 2013, 8, e58820. [Google Scholar] [CrossRef]
- Xiao, Y.H.; Yan, Q.; Ding, H.; Luo, M.; Hou, L.; Zhang, M.; Yao, D.; Liu, H.S.; Li, X.; Zhao, J.; et al. Transcriptome and biochemical analyses revealed a detailed proanthocyanidin biosynthesis pathway in brown cotton fiber. PLoS ONE 2014, 9, e86344. [Google Scholar] [CrossRef]
- Feng, H.; Li, Y.; Wang, S.; Zhang, L.; Liu, Y.; Xue, F.; Sun, Y.; Wang, Y.; Sun, J. Molecular analysis of proanthocyanidins related to pigmentation in brown cotton fibre (Gossypium hirsutum L.). J. Exp. Bot. 2014, 65, 5759–5769. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Wang, Y.; Li, Q.; Zhang, Z.; Ding, H.; Zhang, Y.; Liu, H.; Luo, M.; Liu, D.; Song, W.; et al. Up-regulation of GhTT2-3A in cotton fibres during secondary wall thickening results in brown fibres with improved quality. Plant Biotechnol. J. 2018, 16, 1735–1747. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Tu, L.; Deng, F.; Hu, H.; Nie, Y.; Zhang, X. A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. Plant Physiol. 2013, 162, 86–95. [Google Scholar] [CrossRef]
- Gao, J.; Shen, L.; Yuan, J.; Zheng, H.; Su, Q.; Yang, W.; Zhang, L.; Nnaemeka, V.E.; Sun, J.; Ke, L.; et al. Functional analysis of GhCHS, GhANR and GhLAR in colored fiber formation of Gossypium hirsutum L. BMC Plant Biol. 2019, 19, 455. [Google Scholar] [CrossRef]
- Ryser, U.; Meier, H.; Holloway, P.J. Identification and localization of suberin in the cell walls of green cotton fibres (Gossypium hirsutum L.; var. green lint). Protoplasma 1983, 117, 196–205. [Google Scholar] [CrossRef]
- Ryser, U.; Holloway, P.J. Ultrastructure and chemistry of soluble and polymeric lipids in cell walls from seed coats and fibres of Gossypium species. Planta 1985, 163, 151–163. [Google Scholar] [CrossRef]
- Yatsu, L.Y.; Espelie, K.E.; Kolattukudy, P.E. Ultrastructural and Chemical Evidence of the Suberisation of the Cell Wall of Green Cotton. Plant Physiol. 1983, 73, 521–524. [Google Scholar] [CrossRef]
- Feng, H.; Yang, Y.; Sun, S.; Li, Y.; Zhang, L.; Tian, J.; Zhu, Q.; Feng, Z.; Zhu, H.; Sun, J. Molecular analysis of caffeoyl residues related to pigmentation in green cotton fibers. J. Exp. Bot. 2017, 68, 4559–4569. [Google Scholar] [CrossRef]
- Schmutz, A.; Jenny, T.; Ryser, U. A caffeoyl-fatty acid-glycerol ester from wax associated with green cotton fibre suberin. Phytochemistry 1994, 36, 1343–1346. [Google Scholar] [CrossRef]
- Schmutz, A.; Jenny, T.; Amrhein, N.; Ryser, U. Caffeic acid and glycerol are constituents of the suberin layers in green cotton fibres. Planta 1993, 189, 453–460. [Google Scholar] [CrossRef]
- Cuvillier, O.; Andrieu-Abadie, N.; Ségui, B.; Malagarie-Cazenave, S.; Tardy, C.; Bonhoure, E.; Levade, T. Voies de signalisation de l’apoptose médiées par les sphingolipides. J. Société Biol. 2003, 197, 217–221. [Google Scholar] [CrossRef]
- Sun, S.; Xiong, X.P.; Zhu, Q.; Li, Y.J.; Sun, J. Transcriptome Sequencing and Metabolome Analysis Reveal Genes Involved in Pigmentation of Green-Colored Cotton Fibers. Int. J. Mol. Sci. 2019, 20, 4838. [Google Scholar] [CrossRef] [PubMed]
- Hooker, T.S.; Millar, A.A.; Kunst, L. Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol. 2002, 129, 1568–1580. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Fan, Y.; Zhang, L.; Zheng, C.; Chen, A.; Sun, Y.; Guo, H.; Wu, J.; Li, T.; Fan, Y.; et al. Quantitative metabolome and transcriptome analysis reveals complex regulatory pathway underlying photoinduced fiber color formation in cotton. Gene 2021, 767, 145180. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Miao, H.; Cheng, X.L.; Wei, F. Lipidomics: Novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease. Chem.-Biol. Interact. 2015, 240, 220–238. [Google Scholar] [CrossRef]
- Röhrig, F.; Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nature reviews. Cancer 2016, 16, 732–749. [Google Scholar]
- Quehenberger, O.; Armando, A.M.; Dennis, E.A. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim. Biophys. Acta 2011, 1811, 648–656. [Google Scholar] [CrossRef]
- Huse, M.; Le Floc’h, A.; Liu, X. From lipid second messengers to molecular motors: Microtubule-organizing center reorientation in T cells. Immunol. Rev. 2013, 256, 95–106. [Google Scholar] [CrossRef]
- Qin, Y.M.; Hu, C.Y.; Pang, Y.; Kastaniotis, A.J.; Hiltunen, J.K.; Zhu, Y.X. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 2007, 19, 3692–3704. [Google Scholar] [CrossRef]
- Shi, Y.H.; Zhu, S.W.; Mao, X.Z.; Feng, J.X.; Qin, Y.M.; Zhang, L.; Cheng, J.; Wei, L.P.; Wang, Z.Y.; Zhu, Y.X. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 2006, 18, 651–664. [Google Scholar] [CrossRef]
- Shi, Y.Z.; Du, X.M.; Liu, G.Q.; Qiang, A.D.; Zhou, Z.L.; Pan, Z.E.; Sun, J.L. Genetic analysis of naturally colored lint and fuzz of cotton. Cotton Sci. 2002, 14, 242–248. [Google Scholar]
- Yang, M.; Gu, L.Q.; Qian, H.S.; Zha, L.S. Comparative study on trace elements in natural colored cotton and white cotton. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 2008, 28, 203–205. [Google Scholar] [PubMed]
- Branen, J.K.; Shintani, D.K.; Engeseth, N.J. Expression of antisense acyl carrier protein-4 reduces lipid content in Arabidopsis leaf tissue. Plant Physiol. 2003, 132, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Kay, J.G.; Fairn, G.D. Distribution, dynamics and functional roles of phosphatidylserine within the cell. Cell Commun. Signal. CCS 2019, 17, 126. [Google Scholar] [CrossRef]
- Bilmeyer, F.W.; Saltzman, M. Principles of color technology. In Color and Color Difference Measurement, 2nd ed.; Wiley: New York, NY, USA, 1981; pp. 67–109. [Google Scholar]
- Schmitzer, V.; Osterc, G.; Veberic, R.; Stampar, F. Correlation between chromaticity values and major anthocyanins in seven Acer palmatum Thunb. cultivars. Sci. Hortic. 2009, 119, 442–446. [Google Scholar] [CrossRef]
- Narváez-Rivas, M.; Zhang, Q. Comprehensive untargeted lipidomic analysis using core–shell C30 particle column and high field orbitrap mass spectrometer. J. Chromatogr. A 2016, 1440, 123–134. [Google Scholar] [CrossRef]
- Duan, Y.; Shang, X.; He, Q.; Zhu, L.; Li, W.; Song, X.; Guo, W. LIPID TRANSFER PROTEIN4 regulates cotton ceramide content and activates fiber cell elongation. Plant Physiol. 2023, 193, 1816–1833. [Google Scholar] [CrossRef]
- Triebl, A.; Trötzmüller, M.; Hartler, J.; Stojakovic, T.; Köfeler, H.C. Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1053, 72–80. [Google Scholar] [CrossRef]
- Taguchi, R.; Ishikawa, M. Precise and global identification of phospholipid molecular species by an Orbitrap mass spectrometer and automated search engine Lipid Search. J. Chromatogr. A 2010, 1217, 4229–4239. [Google Scholar] [CrossRef]
- Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H., Jr.; Murphy, R.C.; Raetz, C.R.; Russell, D.W.; Seyama, Y.; Shaw, W.; et al. A comprehensive classification system for lipids. J. Lipid Res. 2005, 46, 839–861. [Google Scholar] [CrossRef]
- Thévenot, E.A.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. J. Proteome Res. 2015, 14, 3322–3335. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
Cultivars | Color Value | Days Past Anthesis (D) | |||||
---|---|---|---|---|---|---|---|
25 D | 30 D | 35 D | 40 D | 45 D | 50 D | ||
Upland cotton 1-4560 | L* | 90.35 | 89.90 | 90.19 | 83.13 | 75.65 | 68.74 |
a* | −0.61 | −1.43 | −2.31 | −2.55 | −2.48 | −4.87 | |
b* | 5.89 | 7.79 | 9.50 | 12.53 | 16.55 | 16.91 |
Group | Type | PRE | R2X | R2Y | Q2 |
---|---|---|---|---|---|
GF35 vs. GF30 | PCA | 2 | 0.678 | ||
PLS-DA | 2 | 0.612 | 0.997 | 0.89 | |
OPLS-DA | 2 | 0.61 | 0.997 | 0.892 | |
WF35 vs. WF30 | PCA | 2 | 0.737 | ||
PLS-DA | 2 | 0.73 | 0.996 | 0.95 | |
OPLS-DA | 2 | 0.727 | 0.996 | 0.923 |
Simple | Control | Upregulated Lipids | Downregulated Lipids | Differential Types of Lipids |
---|---|---|---|---|
GF35 | GF30 | 122 | 17 | 139 |
WF35 | WF30 | 18 | 209 | 227 |
Group | Lipid Name | Category | Log2 (Fold Change) |
---|---|---|---|
Specific DTLs (GF35 vs. GF30) | PS (16:0_18:3) | GP | 24.44 |
PC (60:1) | GP | 4.55 | |
PMe (18:0_18:3) | GP | −4.55 | |
DG (36:1) | GL | 4.20 | |
BisMePA (17:0_18:3) | GP | −4.14 | |
PC (18:0_14:2) | GP | −4.13 | |
TG (6:0_18:3_18:3) | GL | 3.76 | |
TG (18:1_18:1_24:0) | GL | 3.54 | |
TG (6:0_12:0_18:1) | GL | 3.49 | |
PC (20:1_13:0) | GP | 3.38 | |
Specific DTLs (WF35 vs. WF30) | TG (18:3_14:2_18:3) | GL | −5.97 |
TG (52:8) | GL | −5.74 | |
TG (18:3_14:3_18:3) | GL | −5.30 | |
PC (40:3) | GP | −5.25 | |
DG (18:4) | GL | −5.10 | |
TG (17:0_18:3_24:2) | GL | −5.00 | |
Cer (d18:0_25:0) | SP | 4.64 | |
TG (54:7) | GL | −4.56 | |
WE (26:0_18:3) | ST | −4.50 | |
PI (44:4) | GP | −4.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Zheng, C.; Wu, J.; Xu, W.; Yan, T.; Liu, J.; Zhang, L.; Tang, Z.; Fan, Y.; Guo, H.; et al. Comparative Lipidomics Analysis Provides New Insights into the Metabolic Basis of Color Formation in Green Cotton Fiber. Plants 2024, 13, 3063. https://doi.org/10.3390/plants13213063
Li T, Zheng C, Wu J, Xu W, Yan T, Liu J, Zhang L, Tang Z, Fan Y, Guo H, et al. Comparative Lipidomics Analysis Provides New Insights into the Metabolic Basis of Color Formation in Green Cotton Fiber. Plants. 2024; 13(21):3063. https://doi.org/10.3390/plants13213063
Chicago/Turabian StyleLi, Tongtong, Congcong Zheng, Jianfei Wu, Wei Xu, Tongdi Yan, Junchen Liu, Li Zhang, Zhengmin Tang, Yupeng Fan, Huihui Guo, and et al. 2024. "Comparative Lipidomics Analysis Provides New Insights into the Metabolic Basis of Color Formation in Green Cotton Fiber" Plants 13, no. 21: 3063. https://doi.org/10.3390/plants13213063
APA StyleLi, T., Zheng, C., Wu, J., Xu, W., Yan, T., Liu, J., Zhang, L., Tang, Z., Fan, Y., Guo, H., & Zeng, F. (2024). Comparative Lipidomics Analysis Provides New Insights into the Metabolic Basis of Color Formation in Green Cotton Fiber. Plants, 13(21), 3063. https://doi.org/10.3390/plants13213063