Advances in Soybean Genetic Improvement
Abstract
:1. Introduction
2. Biotic Stress in Soybean Cultivars
3. Abiotic Stress in Soybean Cultivars
3.1. Molecular Mechanisms and Signaling Pathways to Cope with Abiotic Stress
3.2. Impact of Abiotic Stress on Crop Productivity and Sustainability
4. Genetic Improvement of Soybeans
4.1. Conventional Breeding
4.2. Marker-Assisted Selection (MAS)
4.3. Genetic Engineering
4.4. Genome Editing
5. Overview of Soybean Genetic Transformation
5.1. Agrobacterium-Mediated Transformation
Soybean Cultivar | Method | A. tumefaciens Strain | Co-Culture | Remarks | TrF (%) | Ref. | ||
---|---|---|---|---|---|---|---|---|
T (°C) | Pp | Time (days) | ||||||
A3237 | CN | EHA101 and EHA105 | 24 | 18:6 | 3 | Selection with ammonium glufosinate | 3.0%. | [173] |
Bert | CN 5–7 d | LBA4404 and EHA105 | 25 | 0:24 | 5 | Addition of sodium thiosulfate, cysteine and DTT to the co-culture media | 16.4% | [174] |
Bert, Harosoy, Jack, Peking, Thorne, Williams 79 and 82, Clark, Essex and Ogden | CN 5–6 d | EHA101 | 24 | 24:0 0:24 | 3 or 5 | Including cysteine and DTT during cocultivation increased the transformation efficiency. | 8.3% | [168] |
Thorne, Williams 79 and 82 | HS | EHA101 | 24 | 16:8 | 5 | Injured explants in the CN may present oxidative stress reducing TF | 3.8% | [169] |
Hefeng 25, Dongnong 42, Heinong 37, Jilin 39, and Jiyu 58 | CN | EHA105 | 19–28 | 0:24 | 5 | Silwet L-77 (0.02%), cysteine (600 mg/L) and low temperature during the co-culture increased TF | 11% | [175] |
Tianlong 1, Yuechun 03–3 and 04–5 | HS | EHA101 | 23 | 0:24 | 3–5 | Similar TF among cultivars | 4.5% | [176] |
Thorne, Williams 79 and 82 | HS | EHA101 | 24 | 16:8 | 3–5 | Low TF but reproducible, it does not require specific technical manipulation. The use of bar gene decreased the number of chimeric plants. | 5.0% | [177] |
Pk 416, Js 90–41, Hara-soy, Co1 and Co 2 | CN 7 d | LBA4404, EHA101, and EHA105 | 27 | 0:24 | 5 | Explants micro-wounded by sonication and vacuum application of vacuum | 18.6% | [178] |
Kwangan | HS | EHA105 OD: 0.6–0.8 | 24 | 18:6 | 5 | Explants wounded with a scalpel and then sonicated for 20 s, additionally a vacuum was applied for 30 s | 3.0% | [179] |
Heihe 19 and 25, Heinong 37, Ha 03–3, YC-1, YC-2, Zhonghuang 39 | HS | EHA101 OD: 0.8–1.0 | 23 | 16:8 | 4 | Cocultivation at 233 °C °C for 4 days shows better TF with the addition of silver nitrate and lipoic acid | 14.7% | [180] |
Tianlong 1, Jack, Purple, DLH, NN419, Williams 82, HZM, NN34, and NN88–1 | HS | EHA101 OD: 0.6- 1 | 23 | 18:6 | 3–5 | Addition of cysteine to de co culture media increased TF to 36% | 7–10% | [181] |
Maverick | HS | EHA101 and EHA105 | 24 | 16:8 | 5 | Explants exposed to dehydration show better TF. Strain EHA105 shows higher TF | 18.7% | [182] |
Jack | HS | EHA105 O.D: 0.6 | 22 | 0:24 | 3–5 | Co-culture under dehydrating conditions can increase the acceptance of Agrobacterium T-DNA | 22.9% | [163] |
JS335 | HS | EHA105 OD: 0.6- 1.0 | 27 | 0:24 | 3 | Application of sonication and vacuum for 10 min results in higher TF | 38.0% | [183] |
5.2. Biolistic-Mediated Transformation
5.3. Alternative Transformation Techniques
6. Challenges and Perspectives in Developing Stress-Resistant Soybean Cultivars
6.1. Microbiome
6.2. Polyploidy
6.3. Epigenetics and Memory
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, P.; Kumar, R.; Sabapathy, S.N.; Bawa, A.S. Functional and Edible Uses of Soy Protein Products. Comp. Rev. Food Sci. Food Safe 2008, 7, 14–28. [Google Scholar] [CrossRef]
- De, O. Milfont, M.; Rocha, E.E.M.; Lima, A.O.N.; Freitas, B.M. Higher Soybean Production Using Honeybee and Wild Pollinators, a Sustainable Alternative to Pesticides and Autopollination. Environ. Chem. Lett. 2013, 11, 335–341. [Google Scholar] [CrossRef]
- Cunha, N.L.D.; Chacoff, N.P.; Sáez, A.; Schmucki, R.; Galetto, L.; Devoto, M.; Carrasco, J.; Mazzei, M.P.; Castillo, S.E.; Palacios, T.P.; et al. Soybean Dependence on Biotic Pollination Decreases with Latitude. Agric. Ecosyst. Environ. 2023, 347, 108376. [Google Scholar] [CrossRef]
- Ahmad, A.; Hayat, I.; Arif, S.; Masud, T.; Khalid, N.; Ahmed, A. Mechanisms Involved in the Therapeutic Effects of Soybean (Glycine max). Int. J. Food Prop. 2014, 17, 1332–1354. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Singh, N.; Kaur, A. Saponins in Pulses and Their Health Promoting Activities: A Review. Food Chem. 2017, 233, 540–549. [Google Scholar] [CrossRef]
- Modgil, R.; Tanwar, B.; Goyal, A.; Kumar, V. Soybean (Glycine max). In Oilseeds: Health Attributes and Food Applications; Tanwar, B., Goyal, A., Eds.; Springer: Singapore, 2021; pp. 1–46. ISBN 9789811541933. [Google Scholar]
- Anderson, E.J.; Ali, M.L.; Beavis, W.D.; Chen, P.; Clemente, T.E.; Diers, B.W.; Graef, G.L.; Grassini, P.; Hyten, D.L.; McHale, L.K.; et al. Soybean [Glycine max (L.) Merr.] Breeding: History, Improvement, Production and Future Opportunities. In Advances in Plant Breeding Strategies: Legumes; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 431–516. ISBN 978-3-030-23399-0. [Google Scholar]
- Vasconcelos, M.W.; Grusak, M.A.; Pinto, E.; Gomes, A.; Ferreira, H.; Balázs, B.; Centofanti, T.; Ntatsi, G.; Savvas, D.; Karkanis, A.; et al. The Biology of Legumes and Their Agronomic, Economic, and Social Impact. In The Plant Family Fabaceae; Hasanuzzaman, M., Araújo, S., Gill, S.S., Eds.; Springer: Singapore, 2020; pp. 3–25. ISBN 9789811547515. [Google Scholar]
- Grassini, P.; Cafaro La Menza, N.; Rattalino Edreira, J.I.; Monzón, J.P.; Tenorio, F.A.; Specht, J.E. Soybean. In Crop Physiology Case Histories for Major Crops; Elsevier: Amsterdam, The Netherlands, 2021; pp. 282–319. ISBN 978-0-12-819194-1. [Google Scholar]
- Snyder, C.L.; Yurchenko, O.P.; Siloto, R.M.P.; Chen, X.; Liu, Q.; Mietkiewska, E.; Weselake, R.J. Acyltransferase Action in the Modification of Seed Oil Biosynthesis. New Biotechnol. 2009, 26, 11–16. [Google Scholar] [CrossRef]
- Granja-Salcedo, Y.T.; De Souza, V.C.; Dias, A.V.L.; Gomez-Insuasti, A.S.; Messana, J.D.; Berchielli, T.T. Diet Containing Glycerine and Soybean Oil Can Reduce Ruminal Biohydrogenation in Nellore Steers. Anim. Feed. Sci. Technol. 2017, 225, 195–204. [Google Scholar] [CrossRef]
- Pratap, A.; Gupta, S.K.; Kumar, J.; Solanki, R.K. Soybean. In Technological Innovations in Major World Oil Crops, Volume 1; Gupta, S.K., Ed.; Springer: New York, NY, USA, 2012; pp. 293–321. ISBN 978-1-4614-0355-5. [Google Scholar]
- Dilawari, R.; Kaur, N.; Priyadarshi, N.; Prakash, I.; Patra, A.; Mehta, S.; Singh, B.; Jain, P.; Islam, M.A. Soybean: A Key Player for Global Food Security. In Soybean Improvement; Wani, S.H., Sofi, N.U.R., Bhat, M.A., Lin, F., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–46. ISBN 978-3-031-12231-6. [Google Scholar]
- USDA Foreign Agricultural Service. U.S. Department of Agriculture. Available online: https://fas.usda.gov/ (accessed on 4 September 2024).
- Chen, K.-I.; Erh, M.-H.; Su, N.-W.; Liu, W.-H.; Chou, C.-C.; Cheng, K.-C. Soyfoods and Soybean Products: From Traditional Use to Modern Applications. Appl. Microbiol. Biotechnol. 2012, 96, 9–22. [Google Scholar] [CrossRef]
- Shurtleff, W.; Aoyagi, A. History of Research on Nitrogen Fixation in Soybeans (1887–2018); Extensively Annotated Bibliography and Sourcebook; Soyinfo Center: Lafayette, CA, USA, 2018; ISBN 978-1-948436-00-7. [Google Scholar]
- Wen, K.; Pan, H.; Li, X.; Huang, R.; Ma, Q.; Nian, H. Identification of an ATP-Binding Cassette Transporter Implicated in Aluminum Tolerance in Wild Soybean (Glycine soja). Int. J. Mol. Sci. 2021, 22, 13264. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, L.; Lin, C.; Shen, Z.; Xu, C. Transgenic Soybean Expressing a Thermostable Phytase as Substitution for Feed Additive Phytase. Sci. Rep. 2019, 9, 14390. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, M.; Feng, F.; Tian, Z. Toward a “Green Revolution” for Soybean. Mol. Plant 2020, 13, 688–697. [Google Scholar] [CrossRef]
- Hartman, G.L.; Rupe, J.C.; Sikora, E.J.; Domier, L.L.; Davis, J.A.; Steffey, K.I. Compendium of Soybean Diseases and Pests, 5th ed.; Disease Compendium Series; APS Press, American Phytopathological Society: St. Paul, MN, USA, 2015; ISBN 978-0-89054-473-0. [Google Scholar]
- Hosseini, B.; Voegele, R.T.; Link, T.I. Diagnosis of Soybean Diseases Caused by Fungal and Oomycete Pathogens: Existing Methods and New Developments. J. Fungi 2023, 9, 587. [Google Scholar] [CrossRef]
- Tripathi, N.; Tripathi, M.K.; Tiwari, S.; Payasi, D.K. Molecular Breeding to Overcome Biotic Stresses in Soybean: Update. Plants 2022, 11, 1967. [Google Scholar] [CrossRef]
- Elmore, M.G.; Groves, C.L.; Hajimorad, M.R.; Stewart, T.P.; Gaskill, M.A.; Wise, K.A.; Sikora, E.; Kleczewski, N.M.; Smith, D.L.; Mueller, D.S.; et al. Detection and Discovery of Plant Viruses in Soybean by Metagenomic Sequencing. Virol. J. 2022, 19, 149. [Google Scholar] [CrossRef]
- Universidad de Minnesota. Soybean Pest Management; Universidad de Minnesota: Minneapolis, MN, USA, 2024. [Google Scholar]
- Ratnaparkhe, M.B.; Satpute, G.K.; Kumawat, G.; Chandra, S.; Kamble, V.G.; Kavishwar, R.; Singh, V.; Singh, J.; Singh, A.K.; Ramesh, S.V.; et al. Genomic Designing for Abiotic Stress Tolerant Soybean. In Genomic Designing for Abiotic Stress Resistant Oilseed Crops; Kole, C., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–73. ISBN 978-3-030-90043-4. [Google Scholar]
- Rutledge, C.E.; O’Neil, R.J.; Fox, T.B.; Landis, D.A. Soybean Aphid Predators and Their Use in Integrated Pest Management. Ann. Entomol. Soc. Am. 2004, 97, 240–248. [Google Scholar] [CrossRef]
- Musser, F.R.; Catchot, A.L.; Conley, S.P.; Davis, J.A.; DiFonzo, C.; Graham, S.H.; Greene, J.K.; Koch, R.L.; Owens, D.; Reisig, D.D.; et al. 2020 Soybean Insect Losses in the United States. Midsouth Entomol. 2021, 12, 1–24. [Google Scholar]
- Scott, I.M.; McDowell, T.; Renaud, J.B.; Krolikowski, S.W.; Chen, L.; Dhaubhadel, S. Soybean (Glycine max L. Merr) Host-Plant Defenses and Resistance to the Two-Spotted Spider Mite (Tetranychus Urticae Koch). PLoS ONE 2021, 16, e0258198. [Google Scholar] [CrossRef]
- Paredes, E.; Barroso, G. Efectividad Biológica de Los Herbicidas Imazethapyr y Clorimuron Etyl Contra Arvenses En El Cultivo de La Soya (Glycine max). Fitosanidad 2012, 16, 167–173. [Google Scholar]
- Kamara, A.Y.; Menkir, A.; Chikoye, D.; Tofa, A.I.; Fagge, A.A.; Dahiru, R.; Solomon, R.; Ademulegun, T.; Omoigui, L.; Aliyu, K.T.; et al. Mitigating Striga Hermonthica Parasitism and Damage in Maize Using Soybean Rotation, Nitrogen Application, and Striga -Resistant Varieties in the Nigerian Savannas. Exp. Agric. 2020, 56, 620–632. [Google Scholar] [CrossRef]
- Roth, M.G.; Webster, R.W.; Mueller, D.S.; Chilvers, M.I.; Faske, T.R.; Mathew, F.M.; Bradley, C.A.; Damicone, J.P.; Kabbage, M.; Smith, D.L. Integrated Management of Important Soybean Pathogens of the United States in Changing Climate. J. Integr. Pest. Manag. 2020, 11, 17. [Google Scholar] [CrossRef]
- Bueno, A.F.; Panizzi, A.R.; Hunt, T.E.; Dourado, P.M.; Pitta, R.M.; Gonçalves, J. Challenges for Adoption of Integrated Pest Management (IPM): The Soybean Example. Neotrop. Entomol. 2021, 50, 5–20. [Google Scholar] [CrossRef]
- Leisner, C.P.; Potnis, N.; Sanz-Saez, A. Crosstalk and Trade-offs: Plant Responses to Climate Change-associated Abiotic and Biotic Stresses. Plant Cell Environ. 2023, 46, 2946–2963. [Google Scholar] [CrossRef]
- Staniak, M.; Szpunar-Krok, E.; Kocira, A. Responses of Soybean to Selected Abiotic Stresses—Photoperiod, Temperature and Water. Agriculture 2023, 13, 146. [Google Scholar] [CrossRef]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The Physiology of Plant Responses to Drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- Desclaux, D.; Huynh, T.-T.; Roumet, P. Identification of Soybean Plant Characteristics That Indicate the Timing of Drought Stress. Crop Sci. 2000, 40, 716–722. [Google Scholar] [CrossRef]
- Wei, Y.; Jin, J.; Jiang, S.; Ning, S.; Liu, L. Quantitative Response of Soybean Development and Yield to Drought Stress during Different Growth Stages in the Huaibei Plain, China. Agronomy 2018, 8, 97. [Google Scholar] [CrossRef]
- Montalvo-Hernández, L.; Piedra-Ibarra, E.; Gómez-Silva, L.; Lira-Carmona, R.; Acosta-Gallegos, J.A.; Vazquez-Medrano, J.; Xoconostle-Cázares, B.; Ruíz-Medrano, R. Differential Accumulation of mRNAs in Drought-tolerant and Susceptible Common Bean Cultivars in Response to Water Deficit. New Phytol. 2008, 177, 102–113. [Google Scholar] [CrossRef]
- Montero-Tavera, V.; Ruiz-Medrano, R.; Xoconostle-Cázares, B. Systemic Nature of Drought-Tolerance in Common Bean. Plant Signal. Behav. 2008, 3, 663–666. [Google Scholar] [CrossRef]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef]
- Barrera-Figueroa, B.E.; Peña-Castro, J.M.; Acosta-Gallegos, J.A.; Ruiz-Medrano, R.; Xoconostle-Cázares, B. Isolation of Dehydration-Responsive Genes in a Drought Tolerant Common Bean Cultivar and Expression of a Group 3 Late Embryogenesis Abundant mRNA in Tolerant and Susceptible Bean Cultivars. Funct. Plant Biol. 2007, 34, 368. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.; Li, Y.; Hou, J.; Huang, J.; Liang, W. Involvement of ABA- and H2O2 -Dependent Cytosolic Glucose-6-Phosphate Dehydrogenase in Maintaining Redox Homeostasis in Soybean Roots under Drought Stress. Plant Physiol. Biochem. 2016, 107, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Waadt, R.; Seller, C.A.; Hsu, P.-K.; Takahashi, Y.; Munemasa, S.; Schroeder, J.I. Plant Hormone Regulation of Abiotic Stress Responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 680–694. [Google Scholar] [CrossRef] [PubMed]
- Haverroth, E.J.; Oliveira, L.A.; Andrade, M.T.; Taggart, M.; McAdam, S.A.M.; Zsögön, A.; Thompson, A.J.; Martins, S.C.V.; Cardoso, A.A. Abscisic Acid Acts Essentially on Stomata, Not on the Xylem, to Improve Drought Resistance in Tomato. Plant Cell Environ. 2023, 46, 3229–3241. [Google Scholar] [CrossRef]
- Castro, P.; Puertolas, J.; Dodd, I.C. Stem Girdling Uncouples Soybean Stomatal Conductance from Leaf Water Potential by Enhancing Leaf Xylem ABA Concentration. Environ. Exp. Bot. 2019, 159, 149–156. [Google Scholar] [CrossRef]
- Merilo, E.; Jalakas, P.; Laanemets, K.; Mohammadi, O.; Hõrak, H.; Kollist, H.; Brosché, M. Abscisic Acid Transport and Homeostasis in the Context of Stomatal Regulation. Mol. Plant 2015, 8, 1321–1333. [Google Scholar] [CrossRef]
- Mutava, R.N.; Prince, S.J.K.; Syed, N.H.; Song, L.; Valliyodan, B.; Chen, W.; Nguyen, H.T. Understanding Abiotic Stress Tolerance Mechanisms in Soybean: A Comparative Evaluation of Soybean Response to Drought and Flooding Stress. Plant Physiol. Biochem. 2015, 86, 109–120. [Google Scholar] [CrossRef]
- Cohen, I.; Zandalinas, S.I.; Fritschi, F.B.; Sengupta, S.; Fichman, Y.; Azad, R.K.; Mittler, R. The Impact of Water Deficit and Heat Stress Combination on the Molecular Response, Physiology, and Seed Production of Soybean. Physiol. Plant. 2021, 172, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Iram, A. Drought Stress Induced Changes in Some Organic Substances in Nodules and Other Plant Parts of Two Potential Legumes Differing in Salt Tolerance. Flora-Morphol. Distrib. Funct. Ecol. Plants 2005, 200, 535–546. [Google Scholar] [CrossRef]
- Silvente, S.; Sobolev, A.P.; Lara, M. Metabolite Adjustments in Drought Tolerant and Sensitive Soybean Genotypes in Response to Water Stress. PLoS ONE 2012, 7, e38554. [Google Scholar] [CrossRef]
- Kido, E.A.; Ferreira Neto, J.R.; Silva, R.L.; Belarmino, L.C.; Bezerra Neto, J.P.; Soares-Cavalcanti, N.M.; Pandolfi, V.; Silva, M.D.; Nepomuceno, A.L.; Benko-Iseppon, A.M. Expression Dynamics and Genome Distribution of Osmoprotectants in Soybean: Identifying Important Components to Face Abiotic Stress. BMC Bioinform. 2013, 14, S7. [Google Scholar] [CrossRef]
- Kanase, T.; Guhey, A.; Gawas, D. Activity of Antioxidant Enzymes in Soybean Genotypes under Drought Stress. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 2323–2330. [Google Scholar] [CrossRef]
- Arya, H.; Singh, M.B.; Bhalla, P.L. Towards Developing Drought-Smart Soybeans. Front. Plant Sci. 2021, 12, 750664. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Singh, M.B.; Bhalla, P.L. Molecular Characterization of a Soybean FT Homologue, GmFT7. Sci. Rep. 2021, 11, 3651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ali, S.; Zhang, T.; Wang, W.; Xie, L. Identification, Evolutionary and Expression Analysis of PYL-PP2C-SnRK2s Gene Families in Soybean. Plants 2020, 9, 1356. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.M.; Ali, M.; Feng, X.; Li, X. The Essence of NAC Gene Family to the Cultivation of Drought-Resistant Soybean (Glycine max L. Merr.) Cultivars. BMC Plant Biol. 2017, 17, 55. [Google Scholar] [CrossRef]
- Chen, L.; Yang, H.; Fang, Y.; Guo, W.; Chen, H.; Zhang, X.; Dai, W.; Chen, S.; Hao, Q.; Yuan, S.; et al. Overexpression of GmMYB14 Improves High-density Yield and Drought Tolerance of Soybean through Regulating Plant Architecture Mediated by the Brassinosteroid Pathway. Plant Biotechnol. J. 2021, 19, 702–716. [Google Scholar] [CrossRef]
- Shi, W.-Y.; Du, Y.-T.; Ma, J.; Min, D.-H.; Jin, L.-G.; Chen, J.; Chen, M.; Zhou, Y.-B.; Ma, Y.-Z.; Xu, Z.-S.; et al. The WRKY Transcription Factor GmWRKY12 Confers Drought and Salt Tolerance in Soybean. Int. J. Mol. Sci. 2018, 19, 4087. [Google Scholar] [CrossRef]
- Fuganti-Pagliarini, R.; Ferreira, L.C.; Rodrigues, F.A.; Molinari, H.B.C.; Marin, S.R.R.; Molinari, M.D.C.; Marcolino-Gomes, J.; Mertz-Henning, L.M.; Farias, J.R.B.; De Oliveira, M.C.N.; et al. Characterization of Soybean Genetically Modified for Drought Tolerance in Field Conditions. Front. Plant Sci. 2017, 8, 448. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Vu, L.T.K.; Nguyen, L.T.N.; Pham, N.T.T.; Nguyen, Y.T.H.; Le, S.V.; Chu, M.H. Overexpression of the GmDREB6 Gene Enhances Proline Accumulation and Salt Tolerance in Genetically Modified Soybean Plants. Sci. Rep. 2019, 9, 19663. [Google Scholar] [CrossRef] [PubMed]
- Ning, W.; Zhai, H.; Yu, J.; Liang, S.; Yang, X.; Xing, X.; Huo, J.; Pang, T.; Yang, Y.; Bai, X. Overexpression of Glycine Soja WRKY20 Enhances Drought Tolerance and Improves Plant Yields under Drought Stress in Transgenic Soybean. Mol. Breed. 2017, 37, 19. [Google Scholar] [CrossRef]
- Wei, W.; Liang, D.; Bian, X.; Shen, M.; Xiao, J.; Zhang, W.; Ma, B.; Lin, Q.; Lv, J.; Chen, X.; et al. GmWRKY54 Improves Drought Tolerance through Activating Genes in Abscisic Acid and Ca2+ Signaling Pathways in Transgenic Soybean. Plant J. 2019, 100, 384–398. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, L.; Qu, Y.; Chen, J.; Liu, X.; Hong, H.; Liu, Z.; Chang, R.; Gilliham, M.; Qiu, L.; et al. GmSALT3, Which Confers Improved Soybean Salt Tolerance in the Field, Increases Leaf Cl- Exclusion Prior to Na+ Exclusion but Does Not Improve Early Vigor under Salinity. Front. Plant Sci. 2016, 7, 1485. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Parvin, K.; Islam Anee, T.; Awal Chowdhury Masud, A.; Nowroz, F. Salt Stress Responses and Tolerance in Soybean. In Physiology; Hasanuzzaman, M., Nahar, K., Eds.; IntechOpen: London, UK, 2022; Volume 11, ISBN 978-1-83969-866-8. [Google Scholar]
- Singh, V.; Singh, J.; Singh, A. Salinity Tolerance in Soybeans: Physiological, Molecular, and Genetic Perspectives. In Soybean Improvement; Wani, S.H., Sofi, N.U.R., Bhat, M.A., Lin, F., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 99–108. ISBN 978-3-031-12231-6. [Google Scholar]
- Li, B.; Gao, K.; Ren, H.; Tang, W. Molecular Mechanisms Governing Plant Responses to High Temperatures. J. Integr. Plant Biol. 2018, 60, 757–779. [Google Scholar] [CrossRef] [PubMed]
- Rejeb, I.; Pastor, V.; Mauch-Mani, B. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants 2014, 3, 458–475. [Google Scholar] [CrossRef]
- Ali, M.S.; Baek, K.-H. Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants. Int. J. Mol. Sci. 2020, 21, 621. [Google Scholar] [CrossRef]
- Chaudhary, J.; Shivaraj, S.; Khatri, P.; Ye, H.; Zhou, L.; Klepadlo, M.; Dhakate, P.; Kumawat, G.; Patil, G.; Sonah, H.; et al. Approaches, Applicability, and Challenges for Development of Climate-Smart Soybean. In Genomic Designing of Climate-Smart Oilseed Crops; Kole, C., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–74. ISBN 978-3-319-93535-5. [Google Scholar]
- Masuda, T.; Goldsmith, P.D. World Soybean Production: Area Harvested, Yield, and Long-Term Projections. Int. Food Agribus. Manag. Rev. 2009, 12, 1–20. [Google Scholar] [CrossRef]
- Kezar, S.; Ballagh, A.; Kankarla, V.; Sharma, S.; Sharry, R.; Lofton, J. Response of Soybean Yield and Certain Growth Parameters to Simulated Reproductive Structure Removal. Agronomy 2023, 13, 927. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Wright-Morton, L.; Hall, B. Vulnerability of Grain Crops and Croplands in the Midwest to Climatic Variability and Adaptation Strategies. Clim. Change 2018, 146, 263–275. [Google Scholar] [CrossRef]
- Goulart, H.M.D.; Van Der Wiel, K.; Folberth, C.; Boere, E.; Van Den Hurk, B. Increase of Simultaneous Soybean Failures Due to Climate Change. Earth’s Future 2023, 11, e2022EF003106. [Google Scholar] [CrossRef]
- Xoconostle-Cázares, B.; Claret Triana Vidal, L.; Guadalupe Domínguez-Fernández, Y.; Obando-González, R.; Padilla-Viveros, A.; Ruiz-Medrano, R. Harvesting in Progress: The Crucial Role of Genetically Improved Crops in Latin America. In Genetically Modified Organisms; IntechOpen: London, UK, 2024. [Google Scholar]
- Lee, H.; Park, S.-Y.; Zhang, Z.J. An Overview of Genetic Transformation of Soybean. In A Comprehensive Survey of International Soybean Research–Genetics, Physiology, Agronomy and Nitrogen Relationships; Board, J., Ed.; InTech: London, UK, 2013; ISBN 978-953-51-0876-4. [Google Scholar]
- Shea, Z.; Singer, W.M.; Zhang, B. Soybean Production, Versatility, and Improvement. In Legume Crops; IntechOpen: London, UK, 2020. [Google Scholar]
- Fang, Q.; Cao, Y.; Oo, T.H.; Zhang, C.; Yang, M.; Tang, Y.; Wang, M.; Zhang, W.; Zhang, L.; Zheng, Y.; et al. Overexpression of Cry1c* Enhances Resistance against to Soybean Pod Borer (Leguminivora Glycinivorella) in Soybean. Plants 2024, 13, 630. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.U.; McCoy, E.; Raza, G.; Ali, Z.; Mansoor, S.; Amin, I. Improvement of Soybean; A Way Forward Transition from Genetic Engineering to New Plant Breeding Technologies. Mol. Biotechnol. 2023, 65, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Khalid, S.; Abdullah, M.; Ahmed, Z.; Shah, M.K.N.; Ghafoor, A.; Du, X. Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance. Cells 2019, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Wang, Z.; Ma, H.; Liu, T.; Ji, J.; Duan, K. Multiplex CRISPR/Cas9-Mediated Raffinose Synthase Gene Editing Reduces Raffinose Family Oligosaccharides in Soybean. Front. Plant Sci. 2022, 13, 1048967. [Google Scholar] [CrossRef] [PubMed]
- Swallah, M.S.; Yang, X.; Li, J.; Korese, J.K.; Wang, S.; Fan, H.; Yu, H.; Huang, Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. Food Rev. Int. 2023, 39, 5104–5131. [Google Scholar] [CrossRef]
- Jeong, N.; Kim, K.-S.; Jeong, S.; Kim, J.-Y.; Park, S.-K.; Lee, J.S.; Jeong, S.-C.; Kang, S.-T.; Ha, B.-K.; Kim, D.-Y.; et al. Korean Soybean Core Collection: Genotypic and Phenotypic Diversity Population Structure and Genome-Wide Association Study. PLoS ONE 2019, 14, e0224074. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Z.; Gao, X.; Zhang, H.; Bai, D.; Wang, Q.; Zheng, T.; Li, Y.-H.; Qiu, L.-J. The Elite Variations in Germplasms for Soybean Breeding. Mol. Breed. 2023, 43, 37. [Google Scholar] [CrossRef]
- Zhuang, Y.; Li, X.; Hu, J.; Xu, R.; Zhang, D. Expanding the Gene Pool for Soybean Improvement with Its Wild Relatives. aBIOTECH 2022, 3, 115–125. [Google Scholar] [CrossRef]
- Fang, X.; Sun, Y.; Li, J.; Li, M.; Zhang, C. Male Sterility and Hybrid Breeding in Soybean. Mol. Breed. 2023, 43, 47. [Google Scholar] [CrossRef]
- Li, J.; Nadeem, M.; Sun, G.; Wang, X.; Qiu, L. Male Sterility in Soybean: Occurrence, Molecular Basis and Utilization. Plant Breed. 2019, 138, 659–676. [Google Scholar] [CrossRef]
- Hwang, E.-Y.; Song, Q.; Jia, G.; Specht, J.E.; Hyten, D.L.; Costa, J.; Cregan, P.B. A Genome-Wide Association Study of Seed Protein and Oil Content in Soybean. BMC Genom. 2014, 15, 1. [Google Scholar] [CrossRef]
- Samanfar, B.; Molnar, S.J.; Charette, M.; Schoenrock, A.; Dehne, F.; Golshani, A.; Belzile, F.; Cober, E.R. Mapping and Identification of a Potential Candidate Gene for a Novel Maturity Locus, E10, in Soybean. Theor. Appl. Genet. 2017, 130, 377–390. [Google Scholar] [CrossRef]
- Islam, S.; Mir, J.I.; Kudesia, R. Evaluation of Genetic Diversity in Vigna Radiata (L.) Using Protein Profiling and Molecular Marker (RFLP). Int. J. Plant Breed. Genet. 2015, 9, 238–246. [Google Scholar] [CrossRef]
- Bisen, A.; Khare, D.; Nair, P.; Tripathi, N. SSR Analysis of 38 Genotypes of Soybean (Glycine Max (L.) Merr.) Genetic Diversity in India. Physiol. Mol. Biol. Plants 2015, 21, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Gwata, E.T.; Wofford, D.S. Potential of RAPD Analysis of the Promiscuous Nodulation Trait in Soybean (Glycine Max L). Biol. Fertil. Soils 2013, 49, 241–244. [Google Scholar] [CrossRef]
- Khare, D.; Bisen, A.; Nair, P.; Tripathi, N. Genetic Diversity in Soybean Germplasm Identified by RAPD Markers. Asia-Pac. J. Mol. Biol. Biotechnol. 2013, 21, 114–120. [Google Scholar]
- Shi, Z.; Bachleda, N.; Pham, A.T.; Bilyeu, K.; Shannon, G.; Nguyen, H.; Li, Z. High-Throughput and Functional SNP Detection Assays for Oleic and Linolenic Acids in Soybean. Mol. Breed. 2015, 35, 176. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Hu, Z.; Xu, C. Genomic Selection Methods for Crop Improvement: Current Status and Prospects. Crop J. 2018, 6, 330–340. [Google Scholar] [CrossRef]
- Miller, M.J.; Song, Q.; Li, Z. Genomic Selection of Soybean (Glycine Max) for Genetic Improvement of Yield and Seed Composition in a Breeding Context. Plant Genome 2023, 16, e20384. [Google Scholar] [CrossRef]
- Zhu, X.; Leiser, W.L.; Hahn, V.; Würschum, T. Training Set Design in Genomic Prediction with Multiple Biparental Families. Plant Genome 2021, 14, e20124. [Google Scholar] [CrossRef]
- Bélanger, J.G.; Copley, T.R.; Hoyos-Villegas, V.; Charron, J.-B.; O’Donoughue, L. A Comprehensive Review of in Planta Stable Transformation Strategies. Plant Methods 2024, 20, 79. [Google Scholar] [CrossRef]
- Homrich, M.S.; Wiebke-Strohm, B.; Weber, R.L.M.; Bodanese-Zanettini, M.H. Soybean Genetic Transformation: A Valuable Tool for the Functional Study of Genes and the Production of Agronomically Improved Plants. Genet. Mol. Biol. 2012, 35, 998–1010. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Guo, Y.; Qiu, L.; Ran, Y. Progress in Soybean Genetic Transformation Over the Last Decade. Front. Plant Sci. 2022, 13, 900318. [Google Scholar] [CrossRef] [PubMed]
- Freitas-Alves, N.S.; Moreira-Pinto, C.E.; Távora, F.T.P.K.; Paes-de-Melo, B.; Arraes, F.B.M.; Lourenço-Tessutti, I.T.; Moura, S.M.; Oliveira, A.C.; Morgante, C.V.; Qi, Y.; et al. CRISPR/Cas Genome Editing in Soybean: Challenges and New Insights to Overcome Existing Bottlenecks. J. Adv. Res. 2024. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.-T.; Ryu, J.; Kang, B.-C.; Kim, J.-S.; Kim, S.-G. CRISPR/Cpf1-Mediated DNA-Free Plant Genome Editing. Nat. Commun. 2017, 8, 14406. [Google Scholar] [CrossRef]
- Liang, D.; Liu, Y.; Li, C.; Wen, Q.; Xu, J.; Geng, L.; Liu, C.; Jin, H.; Gao, Y.; Zhong, H.; et al. CRISPR/LbCas12a-Mediated Genome Editing in Soybean. In Plant Genome Engineering; Methods in Molecular Biology; Yang, B., Harwood, W., Que, Q., Eds.; Springer: New York, NY, USA, 2023; Volume 2653, pp. 39–52. ISBN 978-1-07-163130-0. [Google Scholar]
- Chen, L.; Cai, Y.; Hou, W. Targeted Base Editing in Soybean Using a CRISPR-Cas9 Cytidine Deaminase Fusion. In CRISPR-Cas Methods; Springer Protocols Handbooks; Islam, M.T., Molla, K.A., Eds.; Springer: New York, NY, USA, 2021; pp. 137–148. ISBN 978-1-07-161656-7. [Google Scholar]
- Duan, K.; Cheng, Y.; Ji, J.; Wang, C.; Wei, Y.; Wang, Y. Large Chromosomal Segment Deletions by CRISPR/LbCpf1-mediated Multiplex Gene Editing in Soybean. J. Integr. Plant Biol. 2021, 63, 1620–1631. [Google Scholar] [CrossRef]
- Zhong, X.; Hong, W.; Shu, Y.; Li, J.; Liu, L.; Chen, X.; Islam, F.; Zhou, W.; Tang, G. CRISPR/Cas9 Mediated Gene-Editing of GmHdz4 Transcription Factor Enhances Drought Tolerance in Soybean (Glycine max [L.] Merr.). Front. Plant Sci. 2022, 13, 988505. [Google Scholar] [CrossRef]
- Wang, T.; Xun, H.; Wang, W.; Ding, X.; Tian, H.; Hussain, S.; Dong, Q.; Li, Y.; Cheng, Y.; Wang, C.; et al. Mutation of GmAITR Genes by CRISPR/Cas9 Genome Editing Results in Enhanced Salinity Stress Tolerance in Soybean. Front. Plant Sci. 2021, 12, 779598. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Karikari, B.; Wang, L.; Chang, F.; Zhao, T. Structure Characterization and Potential Role of Soybean Phospholipases A Multigene Family in Response to Multiple Abiotic Stress Uncovered by CRISPR/Cas9 Technology. Environ. Exp. Bot. 2021, 188, 104521. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Wang, R.; Cui, R.; Xu, H.; Sun, C.; Wang, J.; Zhang, H.; Chen, H.; Zhang, D. GmWRKY46, a WRKY Transcription Factor, Negatively Regulates Phosphorus Tolerance Primarily through Modifying Root Morphology in Soybean. Plant Sci. 2022, 315, 111148. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Ali, S.; Luo, X.; Xie, L. CRISPR/Cas9-Mediated Multiple Knockouts in Abscisic Acid Receptor Genes Reduced the Sensitivity to ABA during Soybean Seed Germination. Int. J. Mol. Sci. 2022, 23, 16173. [Google Scholar] [CrossRef]
- Wang, K.; Bu, T.; Cheng, Q.; Dong, L.; Su, T.; Chen, Z.; Kong, F.; Gong, Z.; Liu, B.; Li, M. Two Homologous LHY Pairs Negatively Control Soybean Drought Tolerance by Repressing the Abscisic Acid Responses. New Phytol. 2021, 229, 2660–2675. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Yang, H.; Yuan, X.; Dong, X.; Mai, S.; Zhang, Q.; Chen, L.; Cao, D.; Chen, H.; Guo, W.; et al. CRISPR/Cas9-Mediated Editing of GmDWF1 Brassinosteroid Biosynthetic Gene Induces Dwarfism in Soybean. Plant Cell Rep. 2024, 43, 116. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Kuang, H.; Hou, Z.; Gong, P.; Bai, M.; Zhou, S.; Yao, X.; Song, S.; Yan, L.; et al. Elimination of an Unfavorable Allele Conferring Pod Shattering in an Elite Soybean Cultivar by CRISPR/Cas9. aBIOTECH 2022, 3, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Dong, L.; Su, T.; Li, T.; Gan, Z.; Nan, H.; Lu, S.; Fang, C.; Kong, L.; Li, H.; et al. CRISPR/Cas9-Mediated Targeted Mutagenesis of GmLHY Genes Alters Plant Height and Internode Length in Soybean. BMC Plant Biol. 2019, 19, 562. [Google Scholar] [CrossRef]
- Bao, A.; Chen, H.; Chen, L.; Chen, S.; Hao, Q.; Guo, W.; Qiu, D.; Shan, Z.; Yang, Z.; Yuan, S.; et al. CRISPR/Cas9-Mediated Targeted Mutagenesis of GmSPL9 Genes Alters Plant Architecture in Soybean. BMC Plant Biol. 2019, 19, 131. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Xian, P.; Cheng, Y.; Ma, Q.; Lian, T.; Nian, H.; Ge, L. CRISPR/Cas9-mediated Gene Editing of GmJAGGED1 Increased Yield in the Low-latitude Soybean Variety Huachun 6. Plant Biotechnol. J. 2021, 19, 1898–1900. [Google Scholar] [CrossRef]
- Wu, S.; Chen, L.; Guo, M.; Cai, Y.; Gao, Y.; Yuan, S.; Sun, S.; Zhang, Y.; Hou, W.; Han, T. CRISPR/Cas9-Mediated Knockout of E4 Gene Promotes Maturation in Soybean. Oil Crop Sci. 2024, 9, 170–176. [Google Scholar] [CrossRef]
- Campbell, B.W.; Hoyle, J.W.; Bucciarelli, B.; Stec, A.O.; Samac, D.A.; Parrott, W.A.; Stupar, R.M. Functional Analysis and Development of a CRISPR/Cas9 Allelic Series for a CPR5 Ortholog Necessary for Proper Growth of Soybean Trichomes. Sci. Rep. 2019, 9, 14757. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Schmidt, M.A.; Collet, K.H.; Liu, Z.-B.; Coy, M.; Abbitt, S.; Molloy, L.; Frank, M.; Everard, J.D.; Booth, R.; et al. RNAi and CRISPR–Cas Silencing E3-RING Ubiquitin Ligase AIP2 Enhances Soybean Seed Protein Content. J. Exp. Bot. 2022, 73, 7285–7297. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, J.; Chen, L.; Wu, T.; Jiang, B.; Xu, C.; Cai, Y.; Dong, J.; Han, T.; Sun, S.; et al. CRISPR/Cas9-Mediated Targeted Mutagenesis of GmEOD1 Enhances Seed Size of Soybean. Agronomy 2023, 13, 2359. [Google Scholar] [CrossRef]
- Xie, H.; Su, F.; Niu, Q.; Geng, L.; Cao, X.; Song, M.; Dong, J.; Zheng, Z.; Guo, R.; Zhang, Y.; et al. Knockout of miR396 Genes Increases Seed Size and Yield in Soybean. J. Integr. Plant Biol. 2024, 66, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.X.; Paddock, K.J.; Zhang, Z.; Stacey, M.G. GmKIX8-1 Regulates Organ Size in Soybean and Is the Causative Gene for the Major Seed Weight QTL qSw17-1. New Phytol. 2021, 229, 920–934. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Du, H.; Wang, J.; Pu, Y.; Yang, C.; Yan, R.; Yang, H.; Cheng, H.; Yu, D. Multiplex CRISPR/Cas9-mediated Metabolic Engineering Increases Soya Bean Isoflavone Content and Resistance to Soya Bean Mosaic Virus. Plant Biotechnol. J. 2020, 18, 1384–1395. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, W.; Chen, L.; Shen, X.; Yang, H.; Fang, Y.; Ouyang, W.; Mai, S.; Chen, H.; Chen, S.; et al. CRISPR/Cas9-Mediated Targeted Mutagenesis of GmUGT Enhanced Soybean Resistance Against Leaf-Chewing Insects Through Flavonoids Biosynthesis. Front. Plant Sci. 2022, 13, 802716. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, D.; Cai, L.; Wang, H.; Liu, X.; Du, H.; Yang, Z.; Zhang, H.; Hu, Z.; Huang, F.; et al. CALCIUM-DEPENDENT PROTEIN KINASE38 Regulates Flowering Time and Common Cutworm Resistance in Soybean. Plant Physiol. 2022, 190, 480–499. [Google Scholar] [CrossRef]
- Liu, T.; Ji, J.; Cheng, Y.; Zhang, S.; Wang, Z.; Duan, K.; Wang, Y. CRISPR/Cas9-mediated Editing of GmTAP1 Confers Enhanced Resistance to Phytophthora Sojae in Soybean. JIPB 2023, 65, 1609–1612. [Google Scholar] [CrossRef]
- Luo, T.; Ma, C.; Fan, Y.; Qiu, Z.; Li, M.; Tian, Y.; Shang, Y.; Liu, C.; Cao, Q.; Peng, Y.; et al. CRISPR-Cas9-Mediated Editing of GmARM Improves Resistance to Multiple Stresses in Soybean. Plant Sci. 2024, 346, 112147. [Google Scholar] [CrossRef]
- Usovsky, M.; Gamage, V.A.; Meinhardt, C.G.; Dietz, N.; Triller, M.; Basnet, P.; Gillman, J.D.; Bilyeu, K.D.; Song, Q.; Dhital, B.; et al. Loss-of-Function of an α-SNAP Gene Confers Resistance to Soybean Cyst Nematode. Nat. Commun. 2023, 14, 7629. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Y.; Yang, J.; He, H.; Zhang, X.; Liu, J.; Yang, X. Multiplex CRISPR-Cas9 Knockout of EIL3, EIL4, and EIN2L Advances Soybean Flowering Time and Pod Set. BMC Plant Biol. 2023, 23, 519. [Google Scholar] [CrossRef]
- Han, J.; Guo, B.; Guo, Y.; Zhang, B.; Wang, X.; Qiu, L.-J. Creation of Early Flowering Germplasm of Soybean by CRISPR/Cas9 Technology. Front. Plant Sci. 2019, 10, 1446. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, Q.; Gan, Z.; Hou, Z.; Zhang, Y.; Li, Y.; Li, H.; Nan, H.; Yang, C.; Chen, L.; et al. Multiplex CRISPR/Cas9-Mediated Knockout of Soybean LNK2 Advances Flowering Time. Crop J. 2021, 9, 767–776. [Google Scholar] [CrossRef]
- Wan, Z.; Liu, Y.; Guo, D.; Fan, R.; Liu, Y.; Xu, K.; Zhu, J.; Quan, L.; Lu, W.; Bai, X.; et al. CRISPR/Cas9-Mediated Targeted Mutation of the E1 Decreases Photoperiod Sensitivity, Alters Stem Growth Habits, and Decreases Branch Number in Soybean. Front. Plant Sci. 2022, 13, 1066820. [Google Scholar] [CrossRef]
- Li, H.; Du, H.; He, M.; Wang, J.; Wang, F.; Yuan, W.; Huang, Z.; Cheng, Q.; Gou, C.; Chen, Z.; et al. Natural Variation of FKF1 Controls Flowering and Adaptation during Soybean Domestication and Improvement. New Phytol. 2023, 238, 1671–1684. [Google Scholar] [CrossRef]
- Li, H.; Du, H.; Huang, Z.; He, M.; Kong, L.; Fang, C.; Chen, L.; Yang, H.; Zhang, Y.; Liu, B.; et al. The AP2/ERF Transcription Factor TOE4b Regulates Photoperiodic Flowering and Grain Yield per Plant in Soybean. Plant Biotechnol. J. 2023, 21, 1682–1694. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, Y.; Ma, C.; Chen, Y.; Liu, C.; Wang, Y.; Wang, S.; Chen, X. Editing the Nuclear Localization Signals of E1 and E1Lb Enables the Production of Tropical Soybean in Temperate Growing Regions. Plant Biotechnol. J. 2024, 22, 2145–2156. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Chen, L.; Sun, S.; Wu, C.; Yao, W.; Jiang, B.; Han, T.; Hou, W. CRISPR/Cas9-Mediated Deletion of Large Genomic Fragments in Soybean. Int. J. Mol. Sci. 2018, 19, 3835. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, L.; Chen, L.; Wu, T.; Liu, L.; Sun, S.; Wu, C.; Yao, W.; Jiang, B.; Yuan, S.; et al. Mutagenesis of GmFT2a and GmFT5a Mediated by CRISPR/Cas9 Contributes for Expanding the Regional Adaptability of Soybean. Plant Biotechnol. J. 2020, 18, 298–309. [Google Scholar] [CrossRef]
- Chen, L.; Cai, Y.; Qu, M.; Wang, L.; Sun, H.; Jiang, B.; Wu, T.; Liu, L.; Sun, S.; Wu, C.; et al. Soybean Adaption to High-latitude Regions Is Associated with Natural Variations of GmFT2b, an Ortholog of FLOWERING LOCUS T. Plant Cell Environ. 2020, 43, 934–944. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z.; Hou, W.; Chen, L.; Jiang, B.; Liu, W.; Feng, Y.; Wu, C. GmNMHC5, A Neoteric Positive Transcription Factor of Flowering and Maturity in Soybean. Plants 2020, 9, 792. [Google Scholar] [CrossRef]
- Kou, K.; Yang, H.; Li, H.; Fang, C.; Chen, L.; Yue, L.; Nan, H.; Kong, L.; Li, X.; Wang, F.; et al. A Functionally Divergent SOC1 Homolog Improves Soybean Yield and Latitudinal Adaptation. Curr. Biol. 2022, 32, 1728–1742. [Google Scholar] [CrossRef]
- Wei, T.; Jiang, L.; You, X.; Ma, P.; Xi, Z.; Wang, N.N. Generation of Herbicide-Resistant Soybean by Base Editing. Biology 2023, 12, 741. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Chen, L.; Yang, C.; Wu, T.; Yuan, S.; Wu, C.; Zhang, M.; Gai, J.; Han, T.; Hou, W.; et al. The Cloning and CRISPR/Cas9-mediated Mutagenesis of a Male Sterility Gene MS1 of Soybean. Plant Biotechnol. J. 2021, 19, 1098–1100. [Google Scholar] [CrossRef]
- Nadeem, M.; Chen, A.; Hong, H.; Li, D.; Li, J.; Zhao, D.; Wang, W.; Wang, X.; Qiu, L. GmMs1 Encodes a Kinesin-like Protein Essential for Male Fertility in Soybean (Glycine max L.). J. Integr. Plant Biol. 2021, 63, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, S.; Zhang, Y.; Zhu, X.; Yang, X.; Zhang, C.; Li, H.; Feng, X. Generation of Male-Sterile Soybean Lines with the CRISPR/Cas9 System. Crop J. 2021, 9, 1270–1277. [Google Scholar] [CrossRef]
- Bai, M.; Yuan, J.; Kuang, H.; Gong, P.; Li, S.; Zhang, Z.; Liu, B.; Sun, J.; Yang, M.; Yang, L.; et al. Generation of a Multiplex Mutagenesis Population via Pooled CRISPR-Cas9 in Soya Bean. Plant Biotechnol. J. 2020, 18, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Wang, J.; Shi, X.; Bai, M.; Yuan, C.; Cai, C.; Wang, N.; Zhu, X.; Kuang, H.; Wang, X.; et al. Genetically Optimizing Soybean Nodulation Improves Yield and Protein Content. Nat. Plants 2024, 10, 736–742. [Google Scholar] [CrossRef]
- Bai, M.; Yuan, C.; Kuang, H.; Sun, Q.; Hu, X.; Cui, L.; Lin, W.; Peng, C.; Yue, P.; Song, S.; et al. Combination of Two Multiplex Genome-Edited Soybean Varieties Enables Customization of Protein Functional Properties. Mol. Plant 2022, 15, 1081–1083. [Google Scholar] [CrossRef]
- Song, B.; Luo, T.; Fan, Y.; Li, M.; Qiu, Z.; Tian, Y.; Shang, Y.; Ma, C.; Liu, C.; Cao, Q.; et al. Generation of New β-Conglycinin-Deficient Soybean Lines by Editing the lincRNA lincCG1 Using the CRISPR/Cas9 System. J. Agric. Food Chem. 2024, 72, 15013–15026. [Google Scholar] [CrossRef]
- Lin, W.; Kuang, H.; Bai, M.; Jiang, X.; Zhou, P.; Li, Y.; Chen, B.; Li, H.; Guan, Y. Multiplex Genome Editing Targeting Soybean with Ultra-Low Anti-Nutritive Oligosaccharides. Crop J. 2023, 11, 825–831. [Google Scholar] [CrossRef]
- Song, J.H.; Shin, G.; Kim, H.J.; Lee, S.B.; Moon, J.Y.; Jeong, J.C.; Choi, H.-K.; Kim, I.A.; Song, H.J.; Kim, C.Y.; et al. Mutation of GmIPK1 Gene Using CRISPR/Cas9 Reduced Phytic Acid Content in Soybean Seeds. Int. J. Mol. Sci. 2022, 23, 10583. [Google Scholar] [CrossRef]
- Lin, W.; Bai, M.; Peng, C.; Kuang, H.; Kong, F.; Guan, Y. Genome Editing toward Biofortified Soybean with Minimal Trade-off between Low Phytic Acid and Yield. aBIOTECH 2024, 5, 196–201. [Google Scholar] [CrossRef]
- Wang, J.; Kuang, H.; Zhang, Z.; Yang, Y.; Yan, L.; Zhang, M.; Song, S.; Guan, Y. Generation of Seed Lipoxygenase-Free Soybean Using CRISPR-Cas9. Crop J. 2020, 8, 432–439. [Google Scholar] [CrossRef]
- Wang, Z.; Shea, Z.; Rosso, L.; Shang, C.; Li, J.; Bewick, P.; Li, Q.; Zhao, B.; Zhang, B. Development of New Mutant Alleles and Markers for KTI1 and KTI3 via CRISPR/Cas9-Mediated Mutagenesis to Reduce Trypsin Inhibitor Content and Activity in Soybean Seeds. Front. Plant Sci. 2023, 14, 1111680. [Google Scholar] [CrossRef]
- Kim, W.-S.; Gillman, J.D.; Kim, S.; Liu, J.; Janga, M.R.; Stupar, R.M.; Krishnan, H.B. Bowman–Birk Inhibitor Mutants of Soybean Generated by CRISPR-Cas9 Reveal Drastic Reductions in Trypsin and Chymotrypsin Inhibitor Activities. Int. J. Mol. Sci. 2024, 25, 5578. [Google Scholar] [CrossRef]
- Qian, L.; Jin, H.; Yang, Q.; Zhu, L.; Yu, X.; Fu, X.; Zhao, M.; Yuan, F. A Sequence Variation in GmBADH2 Enhances Soybean Aroma and Is a Functional Marker for Improving Soybean Flavor. Int. J. Mol. Sci. 2022, 23, 4116. [Google Scholar] [CrossRef] [PubMed]
- Do, P.T.; Nguyen, C.X.; Bui, H.T.; Tran, L.T.N.; Stacey, G.; Gillman, J.D.; Zhang, Z.J.; Stacey, M.G. Demonstration of Highly Efficient Dual gRNA CRISPR/Cas9 Editing of the Homeologous GmFAD2–1A and GmFAD2–1B Genes to Yield a High Oleic, Low Linoleic and α-Linolenic Acid Phenotype in Soybean. BMC Plant Biol. 2019, 19, 311. [Google Scholar] [CrossRef] [PubMed]
- Al Amin, N.; Ahmad, N.; Wu, N.; Pu, X.; Ma, T.; Du, Y.; Bo, X.; Wang, N.; Sharif, R.; Wang, P. CRISPR-Cas9 Mediated Targeted Disruption of FAD2–2 Microsomal Omega-6 Desaturase in Soybean (Glycine max L.). BMC Biotechnol. 2019, 19, 9. [Google Scholar] [CrossRef]
- Wu, N.; Lu, Q.; Wang, P.; Zhang, Q.; Zhang, J.; Qu, J.; Wang, N. Construction and Analysis of GmFAD2-1A and GmFAD2-2A Soybean Fatty Acid Desaturase Mutants Based on CRISPR/Cas9 Technology. Int. J. Mol. Sci. 2020, 21, 1104. [Google Scholar] [CrossRef]
- Fu, M.; Chen, L.; Cai, Y.; Su, Q.; Chen, Y.; Hou, W. CRISPR/Cas9-Mediated Mutagenesis of GmFAD2-1A and/or GmFAD2-1B to Create High-Oleic-Acid Soybean. Agronomy 2022, 12, 3218. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Z.; Li, Y.; Zhao, Q.; Luan, X.; Wang, L.; Liu, Y.; Liu, H.; Zhang, J.; Yao, D. Effects of Different Gene Editing Modes of CRISPR/Cas9 on Soybean Fatty Acid Anabolic Metabolism Based on GmFAD2 Family. Int. J. Mol. Sci. 2023, 24, 4769. [Google Scholar] [CrossRef]
- Li, H.; Zhou, R.; Liu, P.; Yang, M.; Xin, D.; Liu, C.; Zhang, Z.; Wu, X.; Chen, Q.; Zhao, Y. Design of High-monounsaturated Fatty Acid Soybean Seed Oil Using GmPDCTsKnockout via a CRISPR-Cas9 System. Plant Biotechnol. J. 2023, 21, 1317–1319. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, L.; Zhang, K.; Ran, Y. Progresses, Challenges, and Prospects of Genome Editing in Soybean (Glycine max). Front. Plant Sci. 2020, 11, 571138. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.U.; Khan, M.O.; Ullah, R.; Ahmad, F.; Raza, G. Agrobacterium-Mediated Transformation for the Development of Transgenic Crops; Present and Future Prospects. Mol. Biotechnol. 2023, 66, 1836–1852. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Chen, X.; Gu, Y.; Zhang, L.; Qiu, L. An Efficient Soybean Transformation Protocol for Use with Elite Lines. Plant Cell Tiss. Organ. Cult. 2022, 151, 457–466. [Google Scholar] [CrossRef]
- Azizi-Dargahlou, S.; Pouresmaeil, M. Agrobacterium Tumefaciens-Mediated Plant Transformation: A Review. Mol. Biotechnol. 2023, 66, 1563–1580. [Google Scholar] [CrossRef] [PubMed]
- Paes De Melo, B.; Lourenço-Tessutti, I.T.; Morgante, C.V.; Santos, N.C.; Pinheiro, L.B.; De Jesus Lins, C.B.; Silva, M.C.M.; Macedo, L.L.P.; Fontes, E.P.B.; Grossi-de-Sa, M.F. Soybean Embryonic Axis Transformation: Combining Biolistic and Agrobacterium-Mediated Protocols to Overcome Typical Complications of In Vitro Plant Regeneration. Front. Plant Sci. 2020, 11, 1228. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Xu, M.; Radani, Y.; Yang, L. Technological Development and Application of Plant Genetic Transformation. Int. J. Mol. Sci. 2023, 24, 10646. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Moy, Y.; Rudnick, N.A.; Klein, T.M.; Yin, J.; Bolar, J.; Hendrick, C.; Beatty, M.; Castañeda, L.; Kinney, A.J.; et al. Development of an Efficient Marker-free Soybean Transformation Method Using the Novel Bacterium Ochrobactrum Haywardense H1. Plant Biotechnol. J. 2022, 20, 977–990. [Google Scholar] [CrossRef] [PubMed]
- Paz, M.M.; Shou, H.; Guo, Z.; Zhang, Z.; Banerjee, A.K.; Wang, K. Assessment of Conditions Affecting Agrobacterium-Mediated Soybean Transformation Using the Cotyledonary Node Explant. Euphytica 2004, 136, 167–179. [Google Scholar] [CrossRef]
- Paz, M.M.; Martinez, J.C.; Kalvig, A.B.; Fonger, T.M.; Wang, K. Improved Cotyledonary Node Method Using an Alternative Explant Derived from Mature Seed for Efficient Agrobacterium-Mediated Soybean Transformation. Plant Cell Rep. 2006, 25, 206–213. [Google Scholar] [CrossRef]
- Hinchee, M.A.W.; Connor-Ward, D.V.; Newell, C.A.; McDonnell, R.E.; Sato, S.J.; Gasser, C.S.; Fischhoff, D.A.; Re, D.B.; Fraley, R.T.; Horsch, R.B. Production of Transgenic Soybean Plants Using Agrobacterium-Mediated DNA Transfer. Nat. Biotechnol. 1988, 6, 915–922. [Google Scholar] [CrossRef]
- Mangena, P. Effect of Agrobacterium Co-Cultivation Stage on Explant Response for Subsequent Genetic Transformation in Soybean (Glycine max (L.) Merr.). Plant Sci. Today 2021, 8, 905–911. [Google Scholar] [CrossRef]
- Trinh, D.D.; Le, N.T.; Bui, T.P.; Le, T.N.T.; Nguyen, C.X.; Chu, H.H.; Do, P.T. A Sequential Transformation Method for Validating Soybean Genome Editing by CRISPR/Cas9 System. Saudi J. Biol. Sci. 2022, 29, 103420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xing, A.; Staswick, P.; Clemente, T.E. The Use of Glufosinate as a Selective Agent in Agrobacterium-Mediated Transformation of Soybean. Plant Cell Tissue Organ Cult. 1999, 56, 37–46. [Google Scholar] [CrossRef]
- Olhoft, P.M.; Flagel, L.E.; Donovan, C.M.; Somers, D.A. Efficient Soybean Transformation Using Hygromycin B Selection in the Cotyledonary-Node Method. Planta 2003, 216, 723–735. [Google Scholar] [CrossRef]
- Liu, S.-J.; Wei, Z.-M.; Huang, J.-Q. The Effect of Co-Cultivation and Selection Parameters on Agrobacterium-Mediated Transformation of Chinese Soybean Varieties. Plant Cell Rep. 2008, 27, 489–498. [Google Scholar] [CrossRef]
- Song, Z.; Tian, J.; Fu, W.; Li, L.; Lu, L.; Zhou, L.; Shan, Z.; Tang, G.; Shou, H. Screening Chinese Soybean Genotypes for Agrobacterium-Mediated Genetic Transformation Suitability. J. Zhejiang Univ. Sci. B 2013, 14, 289–298. [Google Scholar] [CrossRef]
- Luth, D.; Warnberg, K.; Wang, K. Soybean [Glycine max (L.) Merr.]. In Agrobacterium Protocols; Methods in Molecular Biology; Wang, K., Ed.; Springer: New York, NY, USA, 2015; Volume 1223, pp. 275–284. ISBN 978-1-4939-1694-8. [Google Scholar]
- Arun, M.; Subramanyam, K.; Mariashibu, T.S.; Theboral, J.; Shivanandhan, G.; Manickavasagam, M.; Ganapathi, A. Application of Sonication in Combination with Vacuum Infiltration Enhances the Agrobacterium-Mediated Genetic Transformation in Indian Soybean Cultivars. Appl. Biochem. Biotechnol. 2015, 175, 2266–2287. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, M.-J.; Pak, J.H.; Im, H.H.; Lee, D.H.; Kim, K.-H.; Lee, J.-H.; Kim, D.-H.; Choi, H.K.; Jung, H.W.; et al. RNAi-Mediated Soybean Mosaic Virus (SMV) Resistance of a Korean Soybean Cultivar. Plant Biotechnol. Rep. 2016, 10, 257–267. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.; Zhou, Z.; Ma, W.-J.; Tang, G. A High-Efficiency Agrobacterium Tumefaciens Mediated Transformation System Using Cotyledonary Node as Explants in Soybean (Glycine max L.). Acta Physiol. Plant 2016, 38, 60. [Google Scholar] [CrossRef]
- Li, S.; Cong, Y.; Liu, Y.; Wang, T.; Shuai, Q.; Chen, N.; Gai, J.; Li, Y. Optimization of Agrobacterium-Mediated Transformation in Soybean. Front. Plant Sci. 2017, 8, 246. [Google Scholar] [CrossRef] [PubMed]
- Pareddy, D.; Chennareddy, S.; Anthony, G.; Sardesai, N.; Mall, T.; Minnicks, T.; Karpova, O.; Clark, L.; Griffin, D.; Bishop, B.; et al. Improved Soybean Transformation for Efficient and High Throughput Transgenic Production. Transgenic Res. 2020, 29, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, K.; Vidya, N.; Appunu, C.; Gurusaravanan, P.; Arun, M. A Simple and Efficient Genetic Transformation System for Soybean (Glycine max (L.) Merrill) Targeting Apical Meristem of Modified Half-Seed Explant. 3 Biotech. 2023, 13, 293. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, B.; Citovsky, V. Biolistic Approach for Transient Gene Expression Studies in Plants. In Biolistic DNA Delivery in Plants; Methods in Molecular Biology; Rustgi, S., Luo, H., Eds.; Springer: New York, NY, USA, 2020; Volume 2124, pp. 125–139. ISBN 978-1-07-160355-0. [Google Scholar]
- Ozyigit, I.I.; Yucebilgili Kurtoglu, K. Particle Bombardment Technology and Its Applications in Plants. Mol. Biol. Rep. 2020, 47, 9831–9847. [Google Scholar] [CrossRef]
- Khalafalla, M.; El-Shemy, H.; Rahman, S.; Teraishi, M.; Hasegawa, H.; Terakawa, T.; Ishimoto, M. Efficient Production of Transgenic Soybean (Glycine max [L] Merrill) Plants Mediated via Whisker-Supersonic (WSS) Method. Afr. J. Biotechnol. 2006, 5, 1594–1599. [Google Scholar]
- Wu, F.; Hanzawa, Y. A Simple Method for Isolation of Soybean Protoplasts and Application to Transient Gene Expression Analyses. JoVE 2018, 131, 57258. [Google Scholar] [CrossRef]
- Subburaj, S.; Agapito-Tenfen, S.Z. Establishment of Targeted Mutagenesis in Soybean Protoplasts Using CRISPR/Cas9 RNP Delivery via Electro−transfection. Front. Plant Sci. 2023, 14, 1255819. [Google Scholar] [CrossRef]
- Zhong, H.; Li, C.; Yu, W.; Zhou, H.; Lieber, T.; Su, X.; Wang, W.; Bumann, E.; Lunny Castro, R.M.; Jiang, Y.; et al. A Fast and Genotype-Independent in Planta Agrobacterium-Mediated Transformation Method for Soybean. Plant Commun. 2024. [Google Scholar] [CrossRef]
- Liu, M.; Yang, J.; Cheng, Y.; An, L. Optimization of Soybean (Glycine max (L.) Merrill) in Planta Ovary Transformation Using a Linear Minimal Gus Gene Cassette. J. Zhejiang Univ. Sci. B 2009, 10, 870–876. [Google Scholar] [CrossRef]
- Mangena, P. A Simplified In-Planta Genetic Transformation in Soybean. Res. J. Biotechnol. 2019, 14, 9. [Google Scholar]
- Hu, C.-Y.; Wang, L. In Planta Soybean Transformation Technologies Developed in China: Procedure, Confirmation and Field Performance. Vitr. Cell. Dev. Biol.-Plant 1999, 35, 417–420. [Google Scholar] [CrossRef]
- Mangena, P. Genetic Transformation to Confer Drought Stress Tolerance in Soybean (Glycine max L.). In Sustainable Agriculture Reviews 45; Sustainable Agriculture Reviews; Guleria, P., Kumar, V., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 45, pp. 193–224. ISBN 978-3-030-53016-7. [Google Scholar]
- Rasheed, A.; Mahmood, A.; Maqbool, R.; Albaqami, M.; Sher, A.; Sattar, A.; Bakhsh, G.; Nawaz, M.; Hassan, M.U.; Al-Yahyai, R.; et al. Key Insights to Develop Drought-Resilient Soybean: A Review. J. King Saud. Univ.–Sci. 2022, 34, 102089. [Google Scholar] [CrossRef]
- Liu, F.; Hewezi, T.; Lebeis, S.L.; Pantalone, V.; Grewal, P.S.; Staton, M.E. Soil Indigenous Microbiome and Plant Genotypes Cooperatively Modify Soybean Rhizosphere Microbiome Assembly. BMC Microbiol. 2019, 19, 201. [Google Scholar] [CrossRef]
- Sugiyama, A. The Soybean Rhizosphere: Metabolites, Microbes, and beyond—A Review. J. Adv. Res. 2019, 19, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Ayilara, M.S.; Adeleke, B.S.; Babalola, O.O. Bioprospecting and Challenges of Plant Microbiome Research for Sustainable Agriculture, a Review on Soybean Endophytic Bacteria. Microb. Ecol. 2023, 85, 1113–1135. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Dubey, A. Rhizosphere Microbiome: Engineering Bacterial Competitiveness for Enhancing Crop Production. J. Adv. Res. 2020, 24, 337–352. [Google Scholar] [CrossRef]
- Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A. Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants 2020, 9, 97. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, H.; Xie, F. Cellular and Molecular Basis of Symbiotic Nodule Development. Curr. Opin. Plant Biol. 2023, 76, 102478. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Bobrecka-Jamro, D.; Pikuła, W.; Jańczak-Pieniążek, M. Effect of Nitrogen Fertilization and Inoculation with Bradyrhizobium Japonicum on Nodulation and Yielding of Soybean. Agronomy 2023, 13, 1341. [Google Scholar] [CrossRef]
- Bandara, A.Y.; Weerasooriya, D.K.; Trexler, R.V.; Bell, T.H.; Esker, P.D. Soybean Roots and Soil from High-and Low-Yielding Field Sites Have Different Microbiome Composition. Front. Microbiol. 2021, 12, 675352. [Google Scholar] [CrossRef]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome Sequence of the Palaeopolyploid Soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Wang, X.; Li, X.; Hu, J.; Fan, L.; Landis, J.B.; Cannon, S.B.; Grimwood, J.; Schmutz, J.; Jackson, S.A.; et al. Phylogenomics of the Genus Glycine Sheds Light on Polyploid Evolution and Life-Strategy Transition. Nat. Plants 2022, 8, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Nadon, B.; Jackson, S. The Polyploid Origins of Crop Genomes and Their Implications: A Case Study in Legumes. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2020; Volume 159, pp. 275–313. ISBN 978-0-12-820459-7. [Google Scholar]
- Yuan, J.; Song, Q. Polyploidy and Diploidization in Soybean. Mol. Breed. 2023, 43, 51. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Ali, K.; Yan, K.; Fiaz, S.; Dormatey, R.; Bi, Z.; Bai, J. Exploration of Epigenetics for Improvement of Drought and Other Stress Resistance in Crops: A Review. Plants 2021, 10, 1226. [Google Scholar] [CrossRef] [PubMed]
- Tonosaki, K.; Fujimoto, R.; Dennis, E.S.; Raboy, V.; Osabe, K. Will Epigenetics Be a Key Player in Crop Breeding? Front. Plant Sci. 2022, 13, 958350. [Google Scholar] [CrossRef]
- Keung, A.J.; Joung, J.K.; Khalil, A.S.; Collins, J.J. Chromatin Regulation at the Frontier of Synthetic Biology. Nat. Rev. Genet. 2015, 16, 159–171. [Google Scholar] [CrossRef]
Category | Gene Name | Gene Function | Phenotype | Reference |
---|---|---|---|---|
Abiotic stress | GmHdz4 | Homeodomain-leucine zipper TF | Enhanced drought tolerance, increased root length, area, and number of root tips | [105] |
GmAITR | ABA-induced transcription repressor | Enhanced salinity tolerance | [106] | |
GmPLA | Phospholipase A | Flooding and drought tolerance. Modified response in iron and phosphorus deficiency. | [107] | |
GmWRKY46 | WRKY TF family induced by phosphorous deprivation in roots. | Enhanced tolerance in phosphorous deficiency | [108] | |
GmPYL | Receptor involved in ABA signal transduction. | Reduction in ABA sensitivity. Higher seed germination rate, plant height and branch number. | [109] | |
GmLHY | TF that regulates the ABA signaling pathway | Improved drought tolerance | [110] | |
Architecture, plant morphology, and production | GmDWF1 | Synthesis of brassinosteroids | Increase in pod production | [111] |
GmPDH1 | Synthesis and distribution of lignin in the pod internal sclerenchyma. | Pod shattering resistance | [112] | |
GmLHY | MYB TF involved in the gibberellic acid pathway | Reduction in plant height and shortened internodes | [113] | |
GmSPL9 | TF involved in regulating plant architecture | Shorter plastochron length and increased node number | [114] | |
GmJAG | Homolog of JAGGED TF in Arabidopsis | Increase in number of seeds per pot and higher yield | [115] | |
GmE4 | Homolog of phytochrome A in Arabidopsis | Earlier maturation time | [116] | |
GmCPR5 | Regulation of the plant immune response, cell cycle, and development | Short trichomes with smaller nuclei | [117] | |
GmEOD and GmAIP2 | E3 ubiquitin ligases | Larger seed size with higher protein and oil content | [118,119] | |
GmmiR396 | Negative regulator of grain size | Enlarged seed size and increased yield | [120] | |
GmKIX8 | Negatively transcriptional regulator of cell proliferation | Increased seeds and leaves size | [121] | |
Biotic stress | GmF3H and GmFNSII-1 | Flavanone-3-hydroxylase and flavone synthase II | Increase in isoflavone content and resistance to SMV | [122] |
GmUGT | UDP-glycosyltransferase | Resistance to leaf-chewing insects | [123] | |
GmCDPK38 | Calcium-dependent protein kinase | Increased resistance to Spodoptera litura and late flowering | [124] | |
GmTAP1 | Histone acetyltransferase | Enhanced resistance to Phytophthora sojae | [125] | |
GmARM | ABA-related signaling pathway protein | Salt tolerance, alkali and Phytophthora sojae resistance | [126] | |
GmSNAP02 | Vesicle fusion in intracellular trafficking | Resistance to soybean cyst nematode | [127] | |
Flowering time | GmEIL and GmEIN | Ethylene signal perception and transduction | Early flowering and increased yield | [128] |
GmE1, GmFKF, GmTOE4b, and GmLNK | TF and regulators of GmFT2a y GmFT5a | Early flowering | [129,130,131,132,133,134] | |
GmFT, GmAP1, GmNMHC5, and GmSOC1 | Florigen protein and proteins related to identity of floral organs | Adaptation for planting in low latitudes (late flowering) | [135,136,137,138,139] | |
Herbicide resistance | GmAHAS | Biosynthesis of branched-chain amino acids | Resistance to five AHAS-inhibiting herbicides | [140] |
Male sterility | GmMS1 | Sporophytic controlling factor for anther and pollen development | Male sterility (useful trait for breeding applications) | [141,142] |
GmAMS | bHLH TF that affects tapetal development | [143] | ||
Nodulation | GmRIC | Nodule-enhanced CLE peptide | Increase in nodule number per plant | [144,145] |
Nutritional and organoleptic value | β-conglycinin (7S) and glycinin (11S) | Storage proteins | Changes in emulsion stability and gelling ability in soy protein | [146] |
GmlincCG1 | Long noncoding RNA mapped to the intergenic region of the 7S α-subunit locus | Deficiency of the allergenic α’, α, and β subunits of 7S | [147] | |
GmRS, GmSTS, and GmGOLS | Raffinose and stachyose biosynthesis | Reduction in anti-nutritive oligosaccharides | [80,148] | |
GmIPK1 and GmMRP5 | Synthesis and transport of phytic acid | Reduced phytic acid content in seeds | [149,150] | |
GmLOX | Lipoxygenases related with “beany” flavor | Beany flavor reduction | [151] | |
GmKTI and GmBBi | Kunitz and Bowman–Birk protease inhibitors | Low trypsin and chemotrypsin inhibitor content | [152,153] | |
GmBADH2 | Aminoaldehyde dehydrogenase, involved in the formation of 2-AP | Confers a “pandan-like” (high value quality trait) aroma | [154] | |
Oil profile | GmFAD2 | Conversion of oleic acid to linoleic acid | High oleic, low linoleic, and alfa-linoleic phenotype | [155,156,157,158,159] |
GmPDCT | Phosphatidylcholine: diacylglycerol cholinephosphotransferase | [160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Almendra, A.; Ruiz-Medrano, R.; Núñez-Muñoz, L.A.; Ramírez-Pool, J.A.; Calderón-Pérez, B.; Xoconostle-Cázares, B. Advances in Soybean Genetic Improvement. Plants 2024, 13, 3073. https://doi.org/10.3390/plants13213073
Vargas-Almendra A, Ruiz-Medrano R, Núñez-Muñoz LA, Ramírez-Pool JA, Calderón-Pérez B, Xoconostle-Cázares B. Advances in Soybean Genetic Improvement. Plants. 2024; 13(21):3073. https://doi.org/10.3390/plants13213073
Chicago/Turabian StyleVargas-Almendra, Adriana, Roberto Ruiz-Medrano, Leandro Alberto Núñez-Muñoz, José Abrahán Ramírez-Pool, Berenice Calderón-Pérez, and Beatriz Xoconostle-Cázares. 2024. "Advances in Soybean Genetic Improvement" Plants 13, no. 21: 3073. https://doi.org/10.3390/plants13213073
APA StyleVargas-Almendra, A., Ruiz-Medrano, R., Núñez-Muñoz, L. A., Ramírez-Pool, J. A., Calderón-Pérez, B., & Xoconostle-Cázares, B. (2024). Advances in Soybean Genetic Improvement. Plants, 13(21), 3073. https://doi.org/10.3390/plants13213073