Genome-Wide Identification of PR10 Family Members in Durum Wheat: Expression Profile and In Vitro Analyses of TdPR10.1 in Response to Various Stress Conditions
Abstract
:1. Introduction
2. Results
2.1. Genome-Wide Identification and Analysis of T. durum PR10 Family Members
2.2. Gene Structure and Physical Location of T. durum PR10 Genes
2.3. Phylogenetic Analysis of TdPR10 Proteins
2.4. In Silico Subcellular Localisation and Gene Ontology Analysis of the T. durum PR10
2.5. Tertiary Structure of TdPR10 Proteins
2.6. In Silico Analysis of Cis-Elements
2.7. Response of TdPR10 Genes to Several Abiotic Stress and Phytohormones
2.8. Expression of TdPR10.1 Protein in E. coli Strain
2.9. Functional Characterization of TdPR10.1 In Vitro
2.9.1. TdPR10.1 Protects LDH Activity Under Stress Conditions
2.9.2. TdPR10.1 Improves RNase Activity Under Stress Conditions
2.9.3. Antifungal Activity of TdPR10.1 Protein
3. Discussion
4. Materials and Methods
4.1. Identification of PR10 Family Members of T. durum
4.2. Characterization of T. durum PR10 Family Members
4.3. Phylogenetic Relationships Analysis of TdPR10
4.4. Prediction of Tridimensional Structure of TdPR10 Proteins
4.5. Analysis of Cis-Acting Regulatory Elements in the TdPR10 Promoter Regions
4.6. Plant Material and Stress Treatments
4.7. RNA Isolation and Real-Time Quantitative PCR
4.8. Production and Purification of TdPR10.1 Protein
4.9. In Vitro Analysis of TdPR10 Protein
4.9.1. LDH Protective Assay
4.9.2. Ribonuclease Activity
4.9.3. Antifungal Activity Tests/Evaluation of Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC)
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nykiel, M.; Gietler, M.; Fidler, J.; Prabucka, B.; Rybarczyk-Płońska, A.; Graska, J.; Boguszewska-Mańkowska, D.; Muszyńska, E.; Morkunas, I.; Labudda, M. Signal transduction in cereal plants struggling with environmental stresses: From perception to response. Plants 2022, 11, 1009. [Google Scholar] [CrossRef]
- Agarwal, P.; Agarwal, P.K. Pathogenesis related-10 proteins are small, structurally similar but with diverse role in stress signaling. Mol. Biol. Rep. 2014, 41, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Zribi, I.; Ghorbel, M.; Brini, F. Pathogenesis related proteins (PRs): From cellular mechanisms to plant defense. Curr. Protein Pep. Sci. 2021, 22, 396–412. [Google Scholar] [CrossRef]
- Sinha, R.K.; Verma, S.S.; Rastogi, A. Role of Pathogen-Related Protein 10 (PR 10) under abiotic and biotic stresses in plants. Phyton 2020, 89, 167. [Google Scholar] [CrossRef]
- Liu, X.; Huang, B.; Lin, J.; Fei, J.; Chen, Z.; Pang, Y.; Sun, X.; Tang, K. A novel pathogenesis-related protein (SsPR10) from Solanum surattense with ribonucleolytic and antimicrobial activity is stress-and pathogen-inducible. J. Plant Physiol. 2006, 163, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Qi, S.; Zhang, S.; Amin, B.; Yadav, V.; El-Sappah, A.H.; Zhang, F.; Liang, Y. Genome-wide identification and functions against tomato spotted wilt tospovirus of PR-10 in Solanum lycopersicum. Int. J. Mol. Sci. 2022, 23, 1502. [Google Scholar] [CrossRef] [PubMed]
- Longsaward, R.; Viboonjun, U. Genome-wide identification of rubber tree pathogenesis-related 10 (PR-10) proteins with biological relevance to plant defense. Sci. Rep. 2024, 14, 1072. [Google Scholar] [CrossRef]
- Breiteneder, H.; Pettenburger, K.; Bito, A.; Valenta, R.; Kraft, D.; Rumpold, H.; Scheiner, O.; Breitenbach, M. The gene coding for the major birch pollen allergen Betv1, is highly homologous to a pea disease resistance response gene. EMBO J. 1989, 8, 1935–1938. [Google Scholar] [CrossRef]
- Scheurer, S.; Son, D.Y.; Boehm, M.; Karamloo, F.; Franke, S.; Hoffmann, A.; Haustein, D.; Vieths, S. Cross-reactivity and epitope analysis of Pru a 1, the major cherry allergen. Mol. Immunol. 1999, 36, 155–167. [Google Scholar] [CrossRef]
- Vanekkrebitz, M.; Hoffmannsommergruber, K.; Machado, M.; Susani, M.; Ebner, C.; Kraft, D.; Scheiner, O.; Breiteneder, H. Cloning and sequencing of Mal d 1, the major allergen from apple (Malus domestica), and its immunological relationship to Bet v 1, the major birch pollen allergen. Biochem. Biophys. Res. Commun. 1995, 214, 538–551. [Google Scholar] [CrossRef]
- Marković-Housley, Z.; Basle, A.; Padavattan, S.; Maderegger, B.; Schirmer, T.; Hoffmann-Sommergruber, K. Structure of the major carrot allergen Dau c 1. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 1206–1212. [Google Scholar] [CrossRef]
- Balmeh, N.; Mahmoudi, S.; Pourhoseyni, H.; Fard, N.A. An in-silico approach of allergenicity reduction in PR10 and profilin families of pan allergens using allergen-IgE docking analysis. Rev. Fr. Allergol. 2022, 62, 521–528. [Google Scholar] [CrossRef]
- Morris, J.S.; Caldo, K.M.P.; Liang, S.; Facchini, P.J. PR10/Bet v1-like proteins as novel contributors to plant biochemical diversity. ChemBioChem 2021, 22, 264–287. [Google Scholar] [CrossRef] [PubMed]
- Rajendram, A.; Mostaffa, N.H.; Dumin, W.; Oke, M.A.; Simarani, K.; Somasundram, C.; Razali, Z.; Rejab, N.A.; Al-Idrus, A. Dual activity of Meloidogyne incognita-regulated Musa acuminata Pathogenesis-related-10 (MaPR-10) gene. Gene 2022, 809, 146041. [Google Scholar] [CrossRef] [PubMed]
- Dastmalchi, M.; Chen, X.; Hagel, J.M.; Chang, L.; Chen, R.; Ramasamy, S.; Yeaman, S.; Facchini, P.J. Neopinone isomerase is involved in codeine and morphine biosynthesis in opium poppy. Nat. Chem. Biol. 2019, 15, 384–390. [Google Scholar] [CrossRef]
- Aglas, L.; Soh, W.T.; Kraiem, A.; Wenger, M.; Brandstetter, H.; Ferreira, F. Ligand binding of PR-10 proteins with a particular focus on the Bet v 1 allergen family. Curr. Allergy Asthma Rep. 2020, 20, 25. [Google Scholar] [CrossRef]
- Pungartnik, C.; Da Silva, A.C.; de Melo, S.A.; Gramacho, K.P.; de Mattos Cascardo, J.C.; Brendel, M.; Micheli, F.; da Silva Gesteira, A. High-affinity copper transport and Snq2 export permease of Saccharomyces cerevisiae modulate cytotoxicity of PR-10 from Theobroma cacao. Mol. Plant-Microbe Interact. 2009, 22, 39–51. [Google Scholar] [CrossRef]
- Choi, D.S.; Hwang, I.S.; Hwang, B.K. Requirement of the cytosolic interaction between pathogenesis-related protein10 and leucine-rich repeat protein1 for cell death and defense signaling in pepper. Plant Cell Rep. 2012, 24, 1675–1690. [Google Scholar] [CrossRef]
- He, M.; Xu, Y.; Cao, J.; Zhu, Z.; Jiao, Y.; Wang, Y.; Guan, X.; Yang, Y.; Xu, W.; Fu, Z. Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection. Protoplasma 2013, 250, 129–140. [Google Scholar] [CrossRef]
- Fan, S.; Jiang, L.; Wu, J.; Dong, L.; Cheng, Q.; Xu, P.; Zhang, S. A novel pathogenesis-related class 10 protein Gly m 4l, increases resistance upon Phytophthora sojae infection in soybean (Glycine max [L.] Merr.). PLoS ONE 2015, 10, e0140364. [Google Scholar] [CrossRef]
- Fernandes, H.; Michalska, K.; Sikorski, M.; Jaskolski, M. Structural and functional aspects of PR-10 proteins. FEBS J. 2013, 280, 1169–1199. [Google Scholar] [CrossRef] [PubMed]
- Saraste, M.; Sibbald, P.R.; Wittinghofer, A. The P-loop—A common motif in ATP-and GTP-binding proteins. Trends Biochem. Sci. 1990, 15, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Michalska, K.; Fernandes, H.; Sikorski, M.; Jaskolski, M. Crystal structure of Hyp-1, a St. John’s wort protein implicated in the biosynthesis of hypericin. J. Struct. Biol. 2010, 169, 161–171. [Google Scholar] [CrossRef]
- Osmark, P.; Boyle, B.; Brisson, N. Sequential and structural homology between intracellular pathogenesis-related proteins and a group of latex proteins. Plant Mol. Biol. 1998, 38, 1243–1246. [Google Scholar] [CrossRef] [PubMed]
- Ruszkowski, M.; Sliwiak, J.; Ciesielska, A.; Barciszewski, J.; Sikorski, M.; Jaskolski, M. Specific binding of gibberellic acid by cytokinin-specific binding proteins: A new aspect of plant hormone-binding proteins with the PR-10 fold. Acta Crystallogr. Sect. D Biol. Crystallogr. 2014, 70, 2032–2041. [Google Scholar] [CrossRef]
- Samanani, N.; Liscombe, D.K.; Facchini, P.J. Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant J. 2004, 40, 302–313. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Dai, X.-F. Cloning and characterization of the Gossypium hirsutum major latex protein gene and functional analysis in Arabidopsis thaliana. Planta 2010, 231, 861–873. [Google Scholar] [CrossRef]
- Holmquist, L.; Dölfors, F.; Fogelqvist, J.; Cohn, J.; Kraft, T.; Dixelius, C. Major latex protein-like encoding genes contribute to Rhizoctonia solani defense responses in sugar beet. Mol. Genet. Genom. 2021, 296, 155–164. [Google Scholar] [CrossRef]
- Scheurer, S.; Metzner, K.; Haustein, D.; Vieths, S. Molecular cloning, expression and characterization of Pru a 1, the major cherry allergen. Mol. Immunol. 1997, 34, 619–629. [Google Scholar] [CrossRef]
- Jarolim, E.; Tejkl, M.; Rohac, M.; Schlerka, G.; Scheiner, O.; Kraft, D.; Breitenbach, M.; Rumpold, H. Monoclonal antibodies against birch pollen allergens: Characterization by immunoblotting and use for single-step affinity purification of the major allergen Bet v I. Int. Arch. Allergy Immunol. 1989, 90, 54–60. [Google Scholar] [CrossRef]
- Karamloo, F.; Scheurer, S.; Wangorsch, A.; May, S.; Haustein, D.; Vieths, S. Pyr c 1, the major allergen from pear (Pyrus communis), is a new member of the Bet v 1 allergen family. J. Chromatogr. B Biomed. Appl. 2001, 756, 281–293. [Google Scholar] [CrossRef]
- Breiteneder, H.; Hoffmann-Sommergruber, K.; O’Riordain, G.; Susani, M.; Ahorn, H.; Ebner, C.; Kraft, D.; Scheiner, O. Molecular Characterization of Api g 1, the Major Allergen of Celery (Apium graveolens), and Its Immumological and Structural Relationships to a Group of 17-kDa Tree Pollen Allergens. Eur. J. Biochem. 1995, 233, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Hirschwehr, R.; Valenta, R.; Ebner, C.; Ferreira, F.; Sperr, W.R.; Valent, P.; Rohac, M.; Rumpold, H.; Scheiner, O.; Kraft, D. Identification of common allergenic structures in hazel pollen and hazelnuts: A possible explanation for sensitivity to hazelnuts in patients allergic to tree pollen. J. Allergy Clin. Immunol. 1992, 90, 927–936. [Google Scholar] [CrossRef]
- Riecken, S.; Lindner, B.; Petersen, A.; Jappe, U.; Becker, W.-M. Purification and characterization of natural Ara h 8, the Bet v 1 homologous allergen from peanut, provides a novel isoform. Biol. Chem. 2008, 389, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-J.; Fernandes, H.; Zamany, A.; Sikorski, M.; Jaskolski, M.; Sniezko, R.A. In-vitro anti-fungal assay and association analysis reveal a role for the Pinus monticola PR10 gene (PmPR10-3.1) in quantitative disease resistance to white pine blister rust. Genome 2021, 64, 693–704. [Google Scholar] [CrossRef]
- Liu, J.-J.; Ekramoddoullah, A.K.; Hawkins, B.; Shah, S. Overexpression of a western white pine PR10 protein enhances cold tolerance in transgenic Arabidopsis. Plant Cell Tissue Organ Cult. (PCTOC) 2013, 114, 217–223. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, S.T.; Wang, Y.; Yu, S.; Choi, I.S.; Kim, Y.C.; Kim, W.T.; Agrawal, G.K.; Rakwal, R.; Kang, K.Y. The RNase activity of rice probenazole-induced protein1 (PBZ1) plays a key role in cell death in plants. Mol. Cell. 2011, 31, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Kisseleva, L.; Sawa, S.; Furukawa, T.; Komatsu, S.; Koshiba, T. A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol. 2004, 45, 550–559. [Google Scholar] [CrossRef]
- Zhang, N.; Li, R.; Shen, W.; Jiao, S.; Zhang, J.; Xu, W. Genome-wide evolutionary characterization and expression analyses of major latex protein (MLP) family genes in Vitis vinifera. Mol. Genet. Genom. 2018, 293, 1061–1075. [Google Scholar] [CrossRef]
- Zribi, I.; Ghorbel, M.; Haddaji, N.; Besbes, M.; Brini, F. Genome-wide identification and expression profiling of pathogenesis-related protein 1 (PR-1) genes in durum wheat (Triticum durum desf.). Plants 2023, 12, 1998. [Google Scholar] [CrossRef]
- Swoboda, I.; Hoffmann-Sommergruber, K.; O’Ríordáin, G.; Scheiner, O.; Heberle-Bors, E.; Vicente, O. Bet v 1 proteins, the major birch pollen allergens and members of a family of conserved pathogenesis-related proteins, show ribonuclease activity in vitro. Physiol. Plant. 1996, 96, 433–438. [Google Scholar] [CrossRef]
- Sinha, M.; Singh, R.P.; Kushwaha, G.S.; Iqbal, N.; Singh, A.; Kaushik, S.; Kaur, P.; Sharma, S.; Singh, T.P. Current overview of allergens of plant pathogenesis related protein families. Sci. World 2014, 2014, 543195. [Google Scholar] [CrossRef]
- Zhang, C.-x.; Tian, Y.; Cong, P.-h. Proteome analysis of pathogen-responsive proteins from apple leaves induced by the alternaria blotch Alternaria alternata. PLoS ONE 2015, 10, e0122233. [Google Scholar] [CrossRef]
- Puehringer, H.M.; Zinoecker, I.; Marzban, G.; Katinger, H.; Laimer, M. MdAP, a novel protein in apple, is associated with the major allergen Mal d 1. Gene 2003, 321, 173–183. [Google Scholar] [CrossRef]
- Prasad, G. Glycine rich P-loop motif in deoxyuridine pyrophosphatase. Curr. Protein Pept. Sci. 2001, 2, 301–311. [Google Scholar] [CrossRef]
- Feki, K.; Tounsi, S.; Jemli, S.; Boubakri, H.; Saidi, M.N.; Mrabet, M.; Brini, F.; Mhadhbi, H. Genome-wide identification of PR10 family members and expression profile analysis of PvPR10 in common bean (Phaseolus vulgaris L.) in response to hormones and several abiotic stress conditions. Plant Growth Regul. 2024, 102, 279–295. [Google Scholar] [CrossRef]
- Bastiaan-Net, S.; Pina-Pérez, M.C.; Dekkers, B.J.; Westphal, A.H.; America, A.H.; Ariëns, R.M.; de Jong, N.W.; Wichers, H.J.; Mes, J.J. Identification and in silico bioinformatics analysis of PR10 proteins in cashew nut. Protein Sci. 2020, 29, 1581–1595. [Google Scholar] [CrossRef]
- Feng, Y.; Ren, Y.; Zhang, H.; Heng, Y.; Wang, Z.; Wang, Y. Halostachys caspica pathogenesis-related protein 10 acts as a cytokinin reservoir to regulate plant growth and development. Front. Plant Sci. 2023, 14, 1116985. [Google Scholar] [CrossRef] [PubMed]
- Baudouin-Gonzalez, L.; Santos, M.A.; Tempesta, C.; Sucena, É.; Roch, F.; Tanaka, K. Diverse cis-regulatory mechanisms contribute to expression evolution of tandem gene duplicates. Mol. Biol. Evol. 2017, 34, 3132–3147. [Google Scholar] [CrossRef]
- Xu, L.-N.; Jiang, X.-R.; Lin, J.-X.; Li, J.; Javed, T.; Zhao, J.-Y.; Gao, S.-J. Pathogenesis-Related Protein 10 Family Genes Involved in Sugarcane Responses to Biotic Stressors and Salicylic Acid. J. Plant Growth Regul. 2024, 43, 3907–3919. [Google Scholar] [CrossRef]
- Lin, C.; Thomashow, M.F. A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem. Biophys. Res. Commun. 1992, 183, 1103–1108. [Google Scholar] [CrossRef]
- Kazuoka, T.; Oeda, K. Purification and characterization of COR85-oligomeric complex from cold-acclimated spinach. Plant Cell Physiol. 1994, 35, 601–611. [Google Scholar] [CrossRef]
- Thomashow, M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Biol. 1999, 50, 571–599. [Google Scholar] [CrossRef]
- Dave, R.S.; Mitra, R.K. A low temperature induced apoplastic protein isolated from Arachis hypogaea. Phytochem. 1998, 49, 2207–2213. [Google Scholar] [CrossRef]
- Ukaji, N.; Kuwabara, C.; Takezawa, D.; Arakawa, K.; Fujikawa, S. Accumulation of pathogenesis-related (PR) 10/Bet v 1 protein homologues in mulberry (Morus bombycis Koidz.) tree during winter. Plant Cell Environ. 2004, 27, 1112–1121. [Google Scholar] [CrossRef]
- Tamiya, T.; Okahashi, N.; Sakuma, R.; Aoyama, T.; Akahane, T.; Matsumoto, J.J. Freeze denaturation of enzymes and its prevention with additives. Cryobiology 1985, 22, 446–456. [Google Scholar] [CrossRef]
- Jain, D.; Khurana, J.P. Role of pathogenesis-related (PR) proteins in plant defense mechanism. In Molecular Aspects of Plant-Pathogen Interaction; Springer: Cham, Switzerland, 2018; pp. 265–281. [Google Scholar]
- Besbes, F.; Franz-Oberdorf, K.; Schwab, W. Phosphorylation-dependent ribonuclease activity of Fra a 1 proteins. J. Plant Physiol. 2019, 233, 1–11. [Google Scholar] [CrossRef]
- Wieczorek, P.; Wrzesińska, B.; Frąckowiak, P.; Przybylska, A.; Obrępalska-Stęplowska, A. Contribution of Tomato torrado virus Vp26 coat protein subunit to systemic necrosis induction and virus infectivity in Solanum lycopersicum. Virol. J. 2019, 16, 9. [Google Scholar] [CrossRef]
- Kaur, A.; Kaur, S.; Kaur, A.; Sarao, N.K.; Sharma, D. Pathogenesis-Related Proteins and Their Transgenic Expression for Developing Disease-Resistant Crops: Strategies Progress and Challenges; IntechOpen: London, UK, 2022. [Google Scholar]
- Mohan, C.; Santos Júnior, C.D.; Chandra, S. In silico characterisation and homology modelling of a pathogenesis-related protein from Saccharum arundinaceum. Arch. Phytopathol. Plant Protect. 2020, 53, 199–216. [Google Scholar] [CrossRef]
- McBride, J.K.; Cheng, H.; Maleki, S.J.; Hurlburt, B.K. Purification and characterization of pathogenesis related class 10 panallergens. Foods 2019, 8, 609. [Google Scholar] [CrossRef]
- Lee, O.R.; Pulla, R.K.; Kim, Y.-J.; Balusamy, S.R.D.; Yang, D.-C. Expression and stress tolerance of PR10 genes from Panax ginseng CA Meyer. Mol. Biol. Rep. 2012, 39, 2365–2374. [Google Scholar] [CrossRef]
- Gao, L. Structure Analysis of a Pathogenesis-Related 10 Protein from Gardenia jasminoides. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; p. 042005. [Google Scholar]
- Besbes, F.; Habegger, R.; Schwab, W. Induction of PR-10 genes and metabolites in strawberry plants in response to Verticillium dahliae infection. BMC Plant Biol. 2019, 19, 128. [Google Scholar] [CrossRef]
- Andrade, L.B.d.S.; Oliveira, A.S.; Ribeiro, J.K.; Kiyota, S.; Vasconcelos, I.M.; de Oliveira, J.T.A.; de Sales, M.P. Effects of a novel pathogenesis-related class 10 (PR-10) protein from Crotalaria pallida roots with papain inhibitory activity against root-knot nematode Meloidogyne incognita. J. Agric. Food. Chem. 2010, 58, 4145–4152. [Google Scholar] [CrossRef]
- Li, B.; Wang, R.; Wang, S.; Zhang, J.; Chang, L. Diversified regulation of cytokinin levels and signaling during Botrytis cinerea infection in Arabidopsis. Front. Plant Sci. 2021, 12, 584042. [Google Scholar] [CrossRef]
- Kanwar, M.K.; Yu, J.; Zhou, J. Phytomelatonin: Recent advances and future prospects. J. Pineal Res. 2018, 65, e12526. [Google Scholar] [CrossRef]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A. The conserved domain database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant. 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Horton, P.; Park, K.-J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Nicholas, K.; Nicholas, B. Genedoc: A Tool for Editing and Annoting Multiple Sequence Alignments. 1997. Available online: http://www.pscedu/biomed/genedoc (accessed on 22 February 2024).
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Mhamdi, R.; Jebara, M.; Aouani, M.; Ghrir, R.; Mars, M. Genotypic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in Tunisian soils. Biol. Fertil. Soils 1999, 28, 313–320. [Google Scholar] [CrossRef]
- Al Hassan, M.; Morosan, M.; López-Gresa, M.d.P.; Prohens, J.; Vicente, O.; Boscaiu, M. Salinity-induced variation in biochemical markers provides insight into the mechanisms of salt tolerance in common (Phaseolus vulgaris) and runner (P. coccineus) beans. Int. J. Mol. Sci. 2016, 17, 1582. [Google Scholar] [CrossRef] [PubMed]
- Wael, M.S.; Mostafa, M.R.; Taia, A.A.E.-M.; Saad, M.H.; Magdi, T.A. Alleviation of cadmium toxicity in common bean (Phaseolus vulgaris L.) plants by the exogenous application of salicylic acid. J Horti. Sci. Biotechnol. 2015, 90, 83–91. [Google Scholar] [CrossRef]
- Ghorbel, M.; Zribi, I.; Chihaoui, M.; Alghamidi, A.; Mseddi, K.; Brini, F. Genome-Wide Investigation and Expression Analysis of the Catalase Gene Family in Oat Plants (Avena sativa L.). Plants 2023, 12, 3694. [Google Scholar] [CrossRef]
- Pospíšilová, J. Interaction of cytokinins and abscisic acid during regulation of stomatal opening in bean leaves. Photosynthetica 2003, 41, 49–56. [Google Scholar] [CrossRef]
- Tounsi, S.; Kamoun, Y.; Feki, K.; Jemli, S.; Saïdi, M.N.; Ziadi, H.; Alcon, C.; Brini, F. Localization and expression analysis of a novel catalase from Triticum monococcum TmCAT1 involved in response to different environmental stresses. Plant Physiol. Biochem. 2019, 139, 366–378. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Bantignies, B.; Séguin, J.; Muzac, I.; Dédaldéchamp, F.; Gulick, P.; Ibrahim, R. Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol. Biol. 2000, 42, 871–881. [Google Scholar] [CrossRef]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef]
Gene Name | Transcript ID | Protein Length (aa) | Molecular Weight (Da) | Theoretical pI: | The Instability Index (II) | Aliphatic Index | GRAVY |
---|---|---|---|---|---|---|---|
TdPR10.1 | MK570865.1 | 160 | 17,113.47 | 5.19 | 41.79 unstable | 83.62 | 0.011 |
TdPR10.2 | TRITD4Bv1G117510.2 | 164 | 17,469.88 | 5.07 | 41.23 unstable | 87.50 | 0.016 |
TdPR10.3 | TRITD7Bv1G026790.1 | 160 | 17,078.41 | 5.19 | 38.27 stable | 86.00 | −0.034 |
TdPR10.4 | TRITD2Bv1G226310.3 | 163 | 17,372.76 | 5.94 | 31.33 stable | 81.47 | −0.067 |
TdPR10.5 | TRITD2Av1G263640.1 | 160 | 16,990.30 | 5.51 | 37.65 stable | 84.25 | −0.027 |
TdPR10.6 | TRITD7Av1G052120.1 | 164 | 17,538.95 | 5.06 | 37.12 stable | 86.34 | −0.024 |
TdPR10.7 | TRITD2Av1G263650.1 | 160 | 17,080.38 | 5.57 | 39.16 stable | 83.00 | −0.091 |
TdPR10.8 | TRITD5Av1G005340.2 | 184 | 19,821.80 | 5.22 | 41.08 unstable | 91.85 | 0.081 |
TdPR10.9 | TRITD2Bv1G209060.1 | 161 | 17,015.27 | 5.08 | 34.43 stable | 82.42 | 0.014 |
TdPR10.10 | TRITD5Av1G049040.1 | 166 | 17,127.53 | 4.62 | 30.23 stable | 94.16 | 0.213 |
TdPR10.11 | TRITD5Bv1G045600.1 | 171 | 17,701.17 | 4.70 | 23.12 stable | 97.08 | 0.184 |
TdPR10.12 | TRITD2Bv1G217530.1 | 163 | 17,983.73 | 4.98 | 27.50 stable | 101.78 | −0.001 |
TdPR10.13 | TRITD2Av1G253700.1 | 163 | 18,047.77 | 4.91 | 35.75 stable | 100.55 | −0.055 |
TdPR10.14 | TRITD2Av1G278210.1 | 165 | 17,996.20 | 4.59 | 35.79 stable | 88.55 | −0.255 |
TdPR10.15 | TRITD2Bv1G242310.1 | 165 | 18,180.48 | 4.84 | 25.76 stable | 92.06 | −0.251 |
Phytopathogens | CMI (µg/mL) | CMF (µg/mL) | CMF/CMI |
---|---|---|---|
F. oxysporum | >500 | 500 | |
F. culmorum | >500 | - | |
F. graminearum | 500 | 500 | 1 |
B. cinerea | >500 | 500 | |
A. niger | 500 | 500 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanfir, E.; Zribi, I.; Dhouib, H.; Ghorbel, M.; Hamdi, K.; Jrad, O.; Yacoubi, I.; Brini, F. Genome-Wide Identification of PR10 Family Members in Durum Wheat: Expression Profile and In Vitro Analyses of TdPR10.1 in Response to Various Stress Conditions. Plants 2024, 13, 3128. https://doi.org/10.3390/plants13223128
Khanfir E, Zribi I, Dhouib H, Ghorbel M, Hamdi K, Jrad O, Yacoubi I, Brini F. Genome-Wide Identification of PR10 Family Members in Durum Wheat: Expression Profile and In Vitro Analyses of TdPR10.1 in Response to Various Stress Conditions. Plants. 2024; 13(22):3128. https://doi.org/10.3390/plants13223128
Chicago/Turabian StyleKhanfir, Emna, Ikram Zribi, Hanen Dhouib, Mouna Ghorbel, Karama Hamdi, Olfa Jrad, Inès Yacoubi, and Faiçal Brini. 2024. "Genome-Wide Identification of PR10 Family Members in Durum Wheat: Expression Profile and In Vitro Analyses of TdPR10.1 in Response to Various Stress Conditions" Plants 13, no. 22: 3128. https://doi.org/10.3390/plants13223128
APA StyleKhanfir, E., Zribi, I., Dhouib, H., Ghorbel, M., Hamdi, K., Jrad, O., Yacoubi, I., & Brini, F. (2024). Genome-Wide Identification of PR10 Family Members in Durum Wheat: Expression Profile and In Vitro Analyses of TdPR10.1 in Response to Various Stress Conditions. Plants, 13(22), 3128. https://doi.org/10.3390/plants13223128