Toxicity of Piper hispidinervum Essential Oil to Callosobruchus maculatus and Cowpea Bean Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Stock Colony
2.2. Characterization of the Cowpea Beans
2.3. Essential Oil Extraction
2.4. Essential Oil Composition
2.5. Absolute Quantification of Safrole
2.6. Toxicity Bioassays and Rates of Oviposition and Progeny
2.7. Statistical Analysis
3. Results
3.1. Essential Oil Composition
3.2. Toxicity Bioassays and Rates of Oviposition and Progeny
3.3. Quality Analyses of Cowpea Beans
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Nenaah, G.E.; Ibrahim, S.I.; Al-Assiuty, B.A. Chemical composition, insecticidal activity and persistence of three Asteraceae essential oils and their nanoemulsions against Callosobruchus maculatus (F.). J. Stored Prod. Res. 2015, 61, 9–16. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.T.; Feng, Y.X.; Zhang, D.; Guo, S.S.; Pang, X.; Du, S.S. Comparative evaluation of the chemical composition and bioactivities of essential oils from four spice plants (Lauraceae) against stored-product insects. Ind. Crops Prod. 2019, 140, 111640. [Google Scholar] [CrossRef]
- Idoko, J.E.; Ileke, K.D. Comparative evaluation of insecticidal properties of essential oils of some selected botanicals as bio-pesticides against Cowpea bruchid, Callosobruchus maculatus (Fabricius) [Coleoptera: Chrysomelidae]. Bull. Natl. Res. Cent. 2020, 44, 119. [Google Scholar] [CrossRef]
- Zimmermann, R.C.; de Carvalho Aragao, C.E.; de Araújo, P.J.P.; Benatto, A.; Chaaban, A.; Martins, C.E.N.; Zawadneak, M.A. Insecticide activity and toxicity of essential oils against two stored-product insects. Crop Prot. 2021, 144, 105575. [Google Scholar] [CrossRef]
- Cerón, D.A.C.; de Alencar, E.R.; Faroni, L.R.D.A.; Silva, M.V.D.A.; Salvador, D.V. Toxicity of allyl isothiocyanate applied in systems with or without recirculation for controlling Sitophilus zeamais, Rhyzopertha dominica, and Tribolium castaneum in corn grains. J. Sci. Food Agric. 2023, 103, 6373–6382. [Google Scholar] [CrossRef]
- Bumbulytė, G.; Būdienė, J.; Būda, V. Essential Oils and Their Components Control Behaviour of Yellow Mealworm (Tenebrio molitor) Larvae. Insects 2023, 14, 636. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Eleftheriadou, N.; Boukouvala, M.C.; Skourti, A.; Filintas, C.S.; Gidari, D.L.S.; Maggi, F.; Rossi, P.; Drenaggi, E.; Morshedloo, M.R.; et al. Exploring the efficacy of four apiaceae essential oils against nine stored-product pests in wheat protection. Plants 2024, 13, 533. [Google Scholar] [CrossRef]
- Araújo, A.M.N.; Faroni, L.R.D.A.; de Oliveira, J.V.; do Amaral Ferraz Navarro, D.M.; Breda, M.O.; França, S.M. Lethal and sublethal responses of Sitophilus zeamais populations to essential oils. J. Pest Sci. 2017, 90, 589–600. [Google Scholar] [CrossRef]
- Vilela, A.D.O.; Faroni, L.R.; Sousa, A.H.; Pimentel, M.A.; Gomes, J.L. Toxicological and physiological effects of allyl isothiocyanate upon Callosobruchus maculatus. J. Stored Prod. Res. 2020, 87, 101625. [Google Scholar] [CrossRef]
- Dutra, K.A.; de Oliveira, J.V.; Navarro, D.M.D.A.F.; Barbosa, D.R.S.; Santos, J.P.O. Control of Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae) in Vigna unguiculata (L.) WALP. with essential oils from four Citrus spp. plants. J. Stored Prod. Res. 2016, 68, 25–32. [Google Scholar] [CrossRef]
- Coitinho, R.L.B.D.C.; Oliveira, J.V.D.; Gondim Junior, M.G.C.; Câmara, C.A.G.D. Toxicidade por fumigação, contato e ingestão de óleos essenciais para Sitophilus zeamais Motschulsky, 1885 (Coleoptera: Curculionidae). Ciênc. Agrotecnol. 2011, 35, 172–178. [Google Scholar] [CrossRef]
- Oliveira, J.V.D.; França, S.M.D.; Barbosa, D.R.; Dutra, K.D.A.; Araujo, A.M.N.D.; Navarro, D.M.D.A.F. Fumigation and repellency of essential oils against Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae) in cowpea. Pesqui. Agropecuária Bras. 2017, 52, 10–17. [Google Scholar] [CrossRef]
- Giunti, G.; Palermo, D.; Laudani, F.; Algeri, G.M.; Campolo, O.; Palmeri, V. Repellence and acute toxicity of a nano-emulsion of sweet orange essential oil toward two major stored grain insect pests. Ind. Crops Prod. 2019, 142, 111869. [Google Scholar] [CrossRef]
- Santos, J.C.; Faroni, L.R.A.; Sousa, A.H.; Guedes, R.N.C. 2011. Fumigant toxicity of allyl isothiocyanate to populations of the red flour beetle Tribolium castaneum. J. Stored Prod. Res. 2011, 47, 238–243. [Google Scholar] [CrossRef]
- Souza, L.P.; Faroni, L.R.D.A.; Lopes, L.M.; de Sousa, A.H.; Prates, L.H.F. Toxicity and sublethal effects of allyl isothiocyanate to Sitophilus zeamais on population development and walking behavior. J. Pest Sci. 2018, 91, 761–770. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Smith, G.H.; Roberts, J.M.; Pope, T.W. Terpene based biopesticides as potential alternatives to synthetic insecticides for control of aphid pests on protected ornamentals. Crop Prot. 2018, 110, 125–130. [Google Scholar] [CrossRef]
- Ferraz, M.S.S.; Faroni, L.R.D.A.; Heleno, F.F.; de Sousa, A.H.; Prates, L.H.F.; Rodrigues, A.A.Z. Method validation and evaluation of safrole persistence in cowpea beans using headspace solid-phase microextraction and gas chromatography. Molecules 2021, 26, 6914. [Google Scholar] [CrossRef]
- Negreiros, J.R.D.S.; Miqueloni, D.P. Caracterização morfológica e fitoquímica de populações de Piper hispidinervum DC. e Piper aduncum L. no Acre. Ceres 2015, 62, 78–86. [Google Scholar] [CrossRef]
- Basak, S.; Guha, P. Use of predictive model to describe sporicidal and cell viability efficacy of betel leaf (Piper betle L.) essential oil on Aspergillus flavus and Penicillium expansum and its antifungal activity in raw apple juice. LWT-Food Sci. Techonol. 2017, 80, 510–516. [Google Scholar] [CrossRef]
- Branquinho, L.S.; Santos, J.A.; Cardoso, C.A.L.; da Silva Mota, J.; Junior, U.L.; Kassuya, C.A.L.; Arena, A.C. Anti-inflammatory and toxicological evaluation of essential oil from Piper glabratum leaves. J. Ethnopharmacol. 2017, 198, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, O.R.; Koketsu, M.; Magalhães, M.T.; Maia, J.G.S.; Mendes, P.H.; Da Rocha, A.I.; Wilberg, V.C. Óleos essenciais da Amazônia VII. Acta Amaz. 1981, 11, 143–148. [Google Scholar] [CrossRef]
- Rossa, G.E.; Almeida, R.N.; Vargas, R.M.F.; Cassel, E.; Moyna, G. Sequential extraction methods applied to Piper hispidinervum: An improvement in the processing of natural products. Can. J. Chem. Eng. 2018, 96, 756–762. [Google Scholar] [CrossRef]
- Andrés, M.F.; Rossa, G.E.; Cassel, E.; Vargas, R.M.F.; Santana, O.; Díaz, C.E.; González-Coloma, A. Biocidal effects of Piper hispidinervum (Piperaceae) essential oil and synergism among its main components. Food Chem. Toxicol. 2017, 109, 1086–1092. [Google Scholar] [CrossRef]
- Ramos, C.S.; Barbosa, Q.P. Metabolism of safrole by Heraclides thoas brasiliensis (Papilionidae). J. Lepid. Soc. 2014, 68, 283–285. [Google Scholar] [CrossRef]
- Sohilait, H.J.; Kainama, H. Synthesis of 1-(3, 4-methylenedioxyphenyl)-1-butene-3-one from safrole. Eur. J. Pure Appl. Chem. 2016, 3, 66–70. [Google Scholar]
- Ahn, J.E.; Zhou, X.; Dowd, S.E.; Chapkin, R.S.; Zhu-Salzman, K. Insight into hypoxia tolerance in cowpea bruchid: Metabolic repression and heat shock protein regulation via hypoxia-inducible factor 1. PLoS ONE 2013, 8, e57267. [Google Scholar] [CrossRef]
- Akami, M.; Chakira, H.; Andongma, A.A.; Khaeso, K.; Gbaye, O.A.; Nicolas, N.Y.; Nukenine, E.N.; Niu, C.Y. Essential oil optimizes the susceptibility of Callosobruchus maculatus and enhances the nutritional qualities of stored cowpea Vigna unguiculata. R. Soc. Open Sci. 2017, 4, 170692. [Google Scholar] [CrossRef]
- Opit, G.P.; Thoms, E.; Phillips, T.W.; Payton, M.E. Effectiveness of sulfuryl fluoride fumigation for the control of phosphine-resistant grain insects infesting stored wheat. J. Econ. Entomol. 2016, 109, 930–941. [Google Scholar] [CrossRef]
- Arora, S.; Srivastava, C. Locational dynamics of concentration and efficacy of phosphine against pulse beetle, Callosobruchus maculatus (Fab). Crop Prot. 2021, 143, 105475. [Google Scholar] [CrossRef]
- Pimentel, M.A.G.; Faroni, L.R.D.A.; Tótola, M.R.; Guedes, R.N.C. Phosphine resistance, respiration rate and fitness consequences in stored-product insects. Pest Manag. Sci. 2007, 63, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Holloway, J.C.; Falk, M.G.; Emery, R.N.; Collins, P.J.; Nayak, M.K. Resistance to phosphine in Sitophilus oryzae in Australia: A national analysis of trends and frequencies over time and geographical spread. J. Stored Prod. Res. 2016, 69, 129–137. [Google Scholar] [CrossRef]
- Tay, W.T.; Beckett, S.J.; De Barro, P.J. Phosphine resistance in Australian Cryptolestes species (Coleoptera: Laemophloeidae): Perspectives from mitochondrial DNA cytochrome oxidase I analysis. Pest Manag. Sci. 2016, 72, 1250–1259. [Google Scholar] [CrossRef]
- Nayak, M.K.; Jagadeesan, R.; Singarayan, V.T.; Nath, N.S.; Pavic, H.; Dembowski, B.; Ebert, P.R. First report of strong phosphine resistance in stored grain insects in a far northern tropical region of Australia, combining conventional and genetic diagnostics. J. Stored Prod. Res. 2021, 92, 101813. [Google Scholar] [CrossRef]
- Santos, J.C.; Faroni, L.R.D.A.; de Oliveira Simões, R.; Pimentel, M.A.G.; Sousa, A.H. Toxicity of pyrethroids and organophosphorus insecticides to Brazilian populations of Sitophilus zeamais (Coleoptera: Curculionidae). Biosci. J. 2009, 25, 75–81. [Google Scholar]
- Gbaye, O.A.; Oyeniyi, E.A.; Ojo, O.B. Resistance of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) populations in Nigeria to dichlorvos. Jordan J. Biol. Sci. 2016, 9, 41–46. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Phillips, T.W. Evolution of stored-product entomology: Protecting the world food supply. Annu. Rev. Entomol. 2017, 62, 379–397. [Google Scholar] [CrossRef]
- Mir, S.A.; Mir, M.B.; Shah, M.A.; Hamdani, A.M.; Sunooj, K.V.; Phimolsiripol, Y.; Khaneghah, A.M. New prospective approaches in controlling the insect infestation in stored grains. J. Asia-Pac. Entomol. 2023, 26, 102058. [Google Scholar]
- Sutar, S.A.; Thirumdas, R.; Chaudhari, B.B.; Deshmukh, R.R.; Annapure, U.S. Effect of cold plasma on insect infestation and keeping quality of stored wheat flour. J. Stored Prod. Res. 2021, 92, 101774. [Google Scholar] [CrossRef]
- Nasr, G.M.; Taha, E.K.A.; Hamza, A.M.; Negm, E.A.; Eryan, N.L.; Noureldeen, A.; Darwish, H.; Zayed, M.Z.; Elnabawy, E.S.M. Gamma radiation: An eco-friendly control method for the rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Biology 2022, 11, 1295. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Rojas, N.Z.; Cerón-García, A.; Salas-Araiza, M.D.; Estrada-García, H.J.; Rojas-Laguna, R.; Sosa-Morales, M.E. Radio frequency heating against Sitophilus zeamais Motschulsky in white maize. J. Stored Prod. Res. 2020, 89, 101730. [Google Scholar] [CrossRef]
- Brasil Ministério da Agricultura. Pecuária e Abastecimento. In Regras Para Análise de Sementes, 1st ed.; MAPA/ACS: Brasília, DF, Brazil, 2009; Volume 1, pp. 147–224. [Google Scholar]
- Abbott, W.S. A method for computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; pp. 9–52. [Google Scholar]
- Paes, J.L.; Faroni, L.R.; Martins, M.A.; Dhingra, O.D.; Silva, T.A. Diffusion and sorption of allyl isothiocyanate in the process of fumigation of maize. Rev. Bras. Eng. Agrícola Ambient. 2011, 15, 296–301. [Google Scholar] [CrossRef]
- Lu, Y.; Zhong, J.; Wang, Z.; Liu, F.; Wan, Z. Fumigation toxicity of allicin against three stored product pests. J. Stored Prod. Res. 2013, 55, 48–54. [Google Scholar] [CrossRef]
- Mossi, A.J.; Zanella, C.A.; Kubiak, G.; Lerin, L.A.; Cansian, R.L.; Frandoloso, F.S.; Treichel, H. Essential oil of Ocotea odorifera: An alternative against Sitophilus zeamais. Renew. Agric. Food Syst. 2014, 29, 161–166. [Google Scholar] [CrossRef]
- Huang, Y.; Ho, S.H.; Kini, R.M. Bioactivities of safrole and isosafrole on Sitophilus zeamais (Coleoptera: Curculionidae) and Tribolium castaneum (Coleoptera: Tenebrionidae). J. Econ. Entomol. 1999, 92, 676–683. [Google Scholar] [CrossRef]
- Sauter, I.P.; Rossa, G.E.; Lucas, A.M.; Cibulski, S.P.; Roehe, P.M.; da Silva, L.A.A.; von Poser, G.L. Chemical composition and amoebicidal activity of Piper hispidinervum (Piperaceae) essential oil. Ind. Crops Prod. 2012, 40, 292–295. [Google Scholar] [CrossRef]
- Clemes, S.M.; Santos, T.G.; Rebelo, R.A.; Laps, R.R.; Pescador, R. Seasonality and hydrodistillation time effects on the yield and chemical composition of leaves essential oil of Piper mikanianum (Kunth) Steudel. Eclét. Quím. J. 2015, 40, 117–125. [Google Scholar] [CrossRef]
- Rivera, P.N.; Mosquera, T.; Baldisserotto, A.; Abad, J.; Aillon, C.; Cabezas, D.; Manfredini, S. Chemical composition and in-vitro biological activities of the essential oil from leaves of Peperomia inaequalifolia Ruiz & Pav. Am. J. Essent. Oils Nat. Prod. 2015, 2, 29–31. [Google Scholar]
- Simić, A.; Soković, M.D.; Ristić, M.; Grujić-Jovanović, S.; Vukojević, J.; Marin, P.D. The chemical composition of some Lauraceae essential oils and their antifungal activities. Phytother. Res. 2004, 18, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.C.; Choong, Y.M.; Weng, S.H. Rapid Method for The Gas Chromatographic quantitative analysis to determinate safrole in commercial essential oils. J. Cosmet. Sci. 2018, 69, 145–156. [Google Scholar] [PubMed]
- Song, X.; Yin, Z.; Ye, K.; Wei, Q.; Jia, R.; Zhou, L.; Lv, C. Anti-hepatoma effect of safrole from Cinnamomum longepaniculatum leaf essential oil in vitro. Int. J. Clin. Exp. Pathol. 2014, 7, 2265. [Google Scholar] [PubMed]
- Shaaya, E.; Kostyukovysky, M. Essential oils: Potency against stored product insects and mode of action. Stewart Postharvest Rev. 2006, 4, 1–6. [Google Scholar] [CrossRef]
- ANVISA. Agência Nacional de Vigilância Sanitária; Resolução RDC No. 2, de 15 de janeiro de 2007; Ministério da Saúde—MS: Brasília, DF, Brazil, 2007. [Google Scholar]
- European Union. Regulation (EC) No. 1334, 16 de dezembro de 2008 of the European Parliament and of the Council. Off. J. Eur. Union 2008, L354, 34–50. [Google Scholar]
- Babarinde, S.A.; Esan, E.O.; Olatunde, O.Z.; Ajayi, D.S.; Olaniyi, J.P. Combination of Piper guineense essential oil with cowpea varietal resistance in control of cowpea seed beetle, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae). J. Northeast Agric. Univ. 2017, 24, 10–18. [Google Scholar]
- Mutungi, C.; Affognon, H.D.; Njoroge, A.W.; Manono, J.; Baributsa, D.; Murdock, L.L. Triple-layer plastic bags protect dry common beans (Phaseolus vulgaris) against damage by Acanthoscelides obtectus (Coleoptera: Chrysomelidae) during storage. J. Econ. Entomol. 2015, 108, 2479–2488. [Google Scholar] [CrossRef]
- Freitas, R.S.; Faroni, L.R.A.; Sousa, A.H. Hermetic storage for control of common bean weevil, Acanthoscelides obtectus (Say). J. Stored Prod. Res. 2016, 66, 1–5. [Google Scholar] [CrossRef]
- Silva, M.G.; Silva, G.N.; Sousa, A.H.; Freitas, R.S.; Silva, M.S.; Abreu, A.O. Hermetic storage as an alternative for controlling Callosobruchus maculatus (Coleoptera: Chrysomelidae) and preserving the quality of cowpeas. J. Stored Prod. Res. 2018, 78, 27–31. [Google Scholar] [CrossRef]
- Njoroge, A.W.; Affognon, H.D.; Mutungi, C.M.; Manono, J.; Lamuka, P.O.; Murdock, L.L. Triple bag hermetic storage delivers a lethal punch to Prostephanus truncatus (Horn)(Coleoptera: Bostrichidae) in stored maize. J. Stored Prod. Res. 2014, 58, 12–19. [Google Scholar] [CrossRef]
- Vales, M.I.; Rao, G.R.; Sudini, H.; Patil, S.B.; Murdock, L.L. Effective and economic storage of pigeonpea seed in triple layer plastic bags. J. Stored Prod. Res. 2014, 58, 29–38. [Google Scholar] [CrossRef]
- Hamdi, S.H.; Abidi, S.; Sfayhi, D.; Dhraief, M.Z.; Amri, M.; Boushih, E.; Jemâa, J.M.B. Nutritional alterations and damages to stored chickpea in relation with the pest status of Callosobruchus maculatus (Chrysomelidae). J. Asia-Pac. Entomol. 2017, 20, 1067–1076. [Google Scholar] [CrossRef]
- McKenzie, C.L.; Byford, R.L. Continuous, alternating, and mixed insecticides affect development of resistance in the horn fly (Diptera: Muscidae). J. Econ. Entomol. 1993, 86, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Bogusz, M.J.; Al-tufail, M. Toxicological aspects of herbal remedies. In Forensic Science: Handbook of Analytical Separations, 1st ed.; Bogusz, M.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 6, pp. 589–610. [Google Scholar]
- Clarke, S. Families of compounds that occur in essential oils. In Essential Chemistry for Aromatherapy, 2nd ed.; Clarke, S., Ed.; Churchill Livingstone: London, UK, 2008; Volume 3, pp. 41–77. [Google Scholar]
- FDA—Food Drug and Administration. PART 189—Substances Prohibited from Use in Human Food. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=189.180 (accessed on 2 November 2024).
Compound | RI a (Literature) | RI b (Calculated) | Relative % |
---|---|---|---|
p-Cymen-8-ol | 1179 | 1184 | 1.20 ± 0.02 |
Safrole | 1285 | 1292 | 93.00 ± 0.72 |
(E)-Caryophyllene | 1417 | 1415 | 0.69 ± 0.02 |
Bicyclogermacrene | 1500 | 1493 | 2.05 ± 0.04 |
n-Pentadecane | 1500 | 1498 | 1.60 ± 0.30 |
Spatulenol | 1577 | 1573 | 1.46 ± 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraz, M.S.S.; Faroni, L.R.D.; de Sousa, A.H.; Heleno, F.F.; Silva, M.V.d.A.; de Alencar, E.R. Toxicity of Piper hispidinervum Essential Oil to Callosobruchus maculatus and Cowpea Bean Quality. Plants 2024, 13, 3148. https://doi.org/10.3390/plants13223148
Ferraz MSS, Faroni LRD, de Sousa AH, Heleno FF, Silva MVdA, de Alencar ER. Toxicity of Piper hispidinervum Essential Oil to Callosobruchus maculatus and Cowpea Bean Quality. Plants. 2024; 13(22):3148. https://doi.org/10.3390/plants13223148
Chicago/Turabian StyleFerraz, Maria Suely Siqueira, Lêda Rita D’Antonino Faroni, Adalberto Hipólito de Sousa, Fernanda Fernandes Heleno, Marcus Vinicius de Assis Silva, and Ernandes Rodrigues de Alencar. 2024. "Toxicity of Piper hispidinervum Essential Oil to Callosobruchus maculatus and Cowpea Bean Quality" Plants 13, no. 22: 3148. https://doi.org/10.3390/plants13223148
APA StyleFerraz, M. S. S., Faroni, L. R. D., de Sousa, A. H., Heleno, F. F., Silva, M. V. d. A., & de Alencar, E. R. (2024). Toxicity of Piper hispidinervum Essential Oil to Callosobruchus maculatus and Cowpea Bean Quality. Plants, 13(22), 3148. https://doi.org/10.3390/plants13223148