Quality Characteristics and Essential Oil Properties of Thymus capitatus, Mentha piperita, and Sideritis cypria Dried under Different Conditions
Abstract
:1. Introduction
2. Results
2.1. Effects on Moisture Content, Drying Time, Energy Consumption, and CO2 Production
2.2. Impact on Chlorophyll Content and Leaf Color
2.3. Impact on EO Yield and Composition
2.4. Impact on EOs Biological Activities
2.4.1. Antioxidant Activity
2.4.2. Antibacterial Activity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Drying Conditions
4.3. Measurements
4.3.1. Moisture Content, Drying Time, Energy Consumption, and CO2 Production
4.3.2. Chlorophyll Content and Leaf Color
4.3.3. Essential-Oil Extraction and Composition
4.3.4. Estimation of ΕOs Total Phenolic Content and Antioxidant Activity
4.3.5. Determination of Essential Oils Antibacterial Activity
4.4. Data and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaachouay, N.; Azeroual, A.; Ansari, M.K.; Zidane, L. Use of plants as medicines and aromatics by indigenous communities of Morocco: Pharmacognosy, ecology and conservation. In Plants as Medicine and Aromatics; CRC Press: Boca Raton, FL, USA, 2023; pp. 33–44. [Google Scholar]
- Manuel, J.; Matos, C.; Moutinho, C.; Queiroz, G.; Rebelo, L. Ethnopharmacological notes about ancient uses of medicinal plants in Trás-os-Montes (northern of Portugal). J. Ethnopharmacol. 2009, 124, 270–283. [Google Scholar]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Jovovic, Z.; Andjelkovic, V.; Przulj, N.; Mandic, D. Untapped genetic diversity of wild relatives for crop improvement. In Rediscovery of Genetic and Genomic Resources for Future Food Security; Salgotra, R., Zargar, S., Eds.; Springer: Singapore, 2020; pp. 25–65. [Google Scholar]
- de Souza, A.V.V.; de Britto, D.; Soares dos Santos, U.; dos Passos Bispo, L.; Cristina Casanova Turatti, I.; Peporine Lopes, N.; Paula de Oliveira, A.; Roberto Guedes da Silva Almeida, J. Influence of season, drying temperature and extraction time on the yield and chemical composition of ‘marmeleiro’ (Croton sonderianus) essential oil. J. Essent. Oil Res. 2017, 29, 76–84. [Google Scholar] [CrossRef]
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union One Health 2022 Zoonoses Report; EFSA: Parma, Italy, 2023; Volume 21.
- Xylia, P.; Botsaris, G.; Chrysargyris, A.; Skandamis, P.; Tzortzakis, N. Variation of microbial load and biochemical activity of ready-to-eat salads in Cyprus as affected by vegetable type, season, and producer. Food Microbiol. 2019, 83, 200–210. [Google Scholar] [CrossRef]
- Elbehiry, A.; Abalkhail, A.; Marzouk, E.; Elmanssury, A.E.; Almuzaini, A.M.; Alfheeaid, H.; Alshahrani, M.T.; Huraysh, N.; Ibrahem, M.; Alzaben, F.; et al. An Overview of the Public Health Challenges in Diagnosing and Controlling Human Foodborne Pathogens. Vaccines 2023, 11, 725. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Gholamipourfard, K.; Salehi, M.; Banchio, E. Mentha piperita phytochemicals in agriculture, food industry and medicine: Features and applications. S. Afr. J. Bot. 2021, 141, 183–195. [Google Scholar] [CrossRef]
- Curutchet, A.; Dellacassa, E.; Ringuelet, J.A.; Chaves, A.R.; Viña, S.Z. Nutritional and sensory quality during refrigerated storage of fresh-cut mints (Mentha × piperita and M. spicata). Food Chem. 2014, 143, 231–238. [Google Scholar] [CrossRef]
- Bouyahya, A.; Chamkhi, I.; Guaouguaou, F.E.; Benali, T.; Balahbib, A.; El Omari, N.; Taha, D.; El-Shazly, M.; El Menyiy, N. Ethnomedicinal use, phytochemistry, pharmacology, and food benefits of Thymus capitatus. J. Ethnopharmacol. 2020, 259, 112925. [Google Scholar] [CrossRef]
- Lardos, A.; Heinrich, M. Continuity and change in medicinal plant use: The example of monasteries on Cyprus and historical iatrosophia texts. J. Ethnopharmacol. 2013, 150, 202–214. [Google Scholar] [CrossRef]
- Karampoula, F.; Giaouris, E.; Deschamps, J.; Doulgeraki, A.I.; Nychas, G.J.E.; Dubois-Brissonnet, F. Hydrosol of Thymbra capitata is a highly efficient biocide against Salmonella enterica serovar Typhimurium biofilms. Appl. Environ. Microbiol. 2016, 82, 5309–5319. [Google Scholar] [CrossRef] [PubMed]
- Maniki, E.; Kostoglou, D.; Paterakis, N.; Nikolaou, A.; Kourkoutas, Y.; Papachristoforou, A.; Giaouris, E. Chemical Composition, Antioxidant, and Antibiofilm Properties of Essential Oil from Thymus capitatus Plants Organically Cultured on the Greek Island of Lemnos. Molecules 2023, 28, 1154. [Google Scholar] [CrossRef] [PubMed]
- Lytra, K.; Tomou, E.; Chrysargyris, A.; Drouza, C.; Skaltsa, H.; Tzortzakis, N. Traditionally Used Sideritis cypria Post.: Phytochemistry, Nutritional Content, Bioactive Compounds of Cultivated Populations. Front. Pharmacol. 2020, 11, 650. [Google Scholar] [CrossRef]
- Karousou, R.; Deirmentzoglou, S. The herbal market of Cyprus: Traditional links and cultural exchanges. J. Ethnopharmacol. 2011, 133, 191–203. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Tomou, E.M.; Goula, K.; Dimakopoulou, K.; Tzortzakis, N.; Skaltsa, H. Sideritis L. essential oils: A systematic review. Phytochemistry 2023, 209, 113607. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á.A.; Figiel, A. Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef]
- Nurhaslina, C.R.; Andi Bacho, S.; Mustapa, A.N. Review on drying methods for herbal plants. Mater. Today Proc. 2022, 63, S122–S139. [Google Scholar] [CrossRef]
- Torki-Harchegani, M.; Ghanbarian, D.; Ghasemi Pirbalouti, A.; Sadeghi, M. Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments. Renew. Sustain. Energy Rev. 2016, 58, 407–418. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Mahdad, E.; Craker, L. Effects of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food Chem. 2013, 141, 2440–2449. [Google Scholar] [CrossRef]
- Babu, A.K.; Kumaresan, G.; Raj, V.A.A.; Velraj, R. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renew. Sustain. Energy Rev. 2018, 90, 536–556. [Google Scholar] [CrossRef]
- Chua, L.Y.W.; Chua, B.L.; Figiel, A.; Chong, C.H.; Wojdyło, A.; Szumny, A.; Łyczko, J. Drying of Phyla nodiflora leaves: Antioxidant activity, volatile and phytosterol content, energy consumption, and quality studies. Processes 2019, 7, 210. [Google Scholar] [CrossRef]
- Özbek, B.; Dadali, G. Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. J. Food Eng. 2007, 83, 541–549. [Google Scholar] [CrossRef]
- Orphanides, A.; Goulas, V.; Gekas, V. Drying Technologies: Vehicle to High-Quality Herbs. Food Eng. Rev. 2016, 8, 164–180. [Google Scholar] [CrossRef]
- Ibrahim, A.; Amer, A.; Elsebaee, I.; Sabahe, A.; Amer, M.A. Applied insight: Studying reducing the carbon footprint of the drying process and its environmental impact and financial return. Front. Bioeng. Biotechnol. 2024, 12, 1355133. [Google Scholar]
- Thamkaew, G.; Sjöholm, I.; Galindo, F.G. A review of drying methods for improving the quality of dried herbs. Crit. Rev. Food Sci. Nutr. 2021, 61, 1763–1786. [Google Scholar] [CrossRef]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Pignatello, R.; Carbone, C. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Qin, L.; Shen, J.; He, Z.; Shao, Q.; Lin, D. Drying methods affect bioactive compound contents and antioxidant capacity of Bletilla striata (Thunb.) Reichb.f. flower. Ind. Crops Prod. 2021, 164, 113388. [Google Scholar] [CrossRef]
- Chua, L.Y.W.; Chong, C.H.; Chua, B.L.; Figiel, A. Influence of Drying Methods on the Antibacterial, Antioxidant and Essential Oil Volatile Composition of Herbs: A Review. Food Bioprocess Technol. 2019, 12, 450–476. [Google Scholar] [CrossRef]
- Mokhtarikhah, G.; Ebadi, M.T.; Ayyari, M. Qualitative changes of spearmint essential oil as affected by drying methods. Ind. Crops Prod. 2020, 153, 112492. [Google Scholar] [CrossRef]
- Riaz, M.; Khalid, R.; Afzal, M.; Anjum, F.; Fatima, H.; Zia, S.; Rasool, G.; Egbuna, C.; Mtewa, A.G.; Uche, C.Z.; et al. Phytobioactive compounds as therapeutic agents for human diseases: A review. Food Sci. Nutr. 2023, 11, 2500–2529. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Sulaiman, G.M.; Khan, R.A.; Al-Saffar, A.Z.; Mohsin, M.H.; Albukhaty, S.; Ismail, A. Essential oils pharmacological activity: Chemical markers, biogenesis, plant sources, and commercial products. Process Biochem. 2024, 144, 112–132. [Google Scholar] [CrossRef]
- Panayi, T.; Sarigiannis, Y.; Mourelatou, E.; Hapeshis, E.; Papaneophytou, C. Anti-quorum-sensing potential of ethanolic extracts of aromatic plants from the flora of Cyprus. Plants 2022, 11, 2632. [Google Scholar] [CrossRef] [PubMed]
- Xylia, P.; Chrysargyris, A.; Tzortzakis, N. Origanum dubium Boiss. (Cypriot oregano) Use for the Preservation of Fresh Spearmint Quality and Safety. Agronomy 2024, 14, 1252. [Google Scholar] [CrossRef]
- Dong, H.; Xu, Y.; Zhang, Q.; Li, H.; Chen, L. Activity and safety evaluation of natural preservatives. Food Res. Int. 2024, 190, 114548. [Google Scholar] [CrossRef] [PubMed]
- Farid, N.; Waheed, A.; Motwani, S. Synthetic and natural antimicrobials as a control against food borne pathogens: A review. Heliyon 2023, 9, e17021. [Google Scholar] [CrossRef]
- Nagata, M.; Yamashita, I. Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit. Nippon Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. [Google Scholar] [CrossRef]
- Nazari, D.; Naghdi Badi, H.; Mehrafarin, A.; Taj-abadi, F.; Soltanipour, M. Expression of the changes in essential oil components of Shirazi thyme (Zataria multiflora Boiss.) as affected by various drying methods. Ind. Crops Prod. 2024, 220, 119222. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Panayiotou, C.; Tzortzakis, N. Nitrogen and phosphorus levels affected plant growth, essential oil composition and antioxidant status of lavender plant (Lavandula angustifolia Mill.). Ind. Crops Prod. 2016, 83, 577–586. [Google Scholar] [CrossRef]
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, TX, USA, 2017; ISBN 978-0-9981557-2-2. [Google Scholar]
- Kavoosi, G.; Rowshan, V. Chemical composition, antioxidant and antimicrobial activities of essential oil obtained from Ferula assa-foetida oleo-gum-resin: Effect of collection time. Food Chem. 2013, 138, 2180–2187. [Google Scholar] [CrossRef]
- Kumar, V.; Mathela, C.S.; Kumar, M.; Tewari, G. Antioxidant potential of essential oils from some Himalayan Asteraceae and Lamiaceae species. Med. Drug Discov. 2019, 1, 100004. [Google Scholar] [CrossRef]
- Oke, F.; Aslim, B.; Ozturk, S.; Altundag, S. Essential oil composition, antimicrobial and antioxidant activities of Satureja cuneifolia Ten. Food Chem. 2009, 112, 874–879. [Google Scholar] [CrossRef]
- Wang, D.C.; Sun, S.H.; Shi, L.N.; Qiu, D.R.; Li, X.; Wei, D.S.; Zhang, Y.M.; Qin, J.C. Chemical composition, antibacterial and antioxidant activity of the essential oils of Metaplexis japonica and their antibacterial components. Int. J. Food Sci. Technol. 2015, 50, 449–457. [Google Scholar] [CrossRef]
- Kant, R.; Tilford, H.; Freitas, C.S.; Ferreira, D.A.S.; Ng, J.; Rucinski, G.; Watkins, J.; Pemberton, R.; Abramyan, T.M.; Contreras, S.C.; et al. Antimicrobial activity of compounds identified by artificial intelligence discovery engine targeting enzymes involved in Neisseria gonorrhoeae peptidoglycan metabolism. Biol. Res. 2024, 57, 62. [Google Scholar] [CrossRef]
Plant | Sun Drying | Shade Drying | Oven Drying | |
---|---|---|---|---|
T. capitatus | Chl a (mg/g) | 0.38 ± 0.00 b | 0.39 ± 0.01 ab | 0.41 ± 0.01 a |
Chl b (mg/g) | 0.61 ± 0.02 b | 0.65 ± 0.01 ab | 0.70 ± 0.02 a | |
Total Chl (mg/g) | 1.00 ± 0.02 b | 1.04 ± 0.01 ab | 1.11 ± 0.03 a | |
M. piperita | Chl a (mg/g) | 0.38 ± 0.02 | 0.35 ± 0.01 | 0.37 ± 0.00 |
Chl b(mg/g) | 0.53 ± 0.04 | 0.45 ± 0.03 | 0.52 ± 0.03 | |
Total Chl (mg/g) | 0.91 ± 0.06 | 0.81 ± 0.04 | 0.89 ± 0.03 | |
S. cypria | Chl a (mg/g) | 0.36 ± 0.01 | 0.37 ± 0.01 | 0.36 ± 0.01 |
Chl b(mg/g) | 0.45 ± 0.04 b | 0.53 ± 0.01 ab | 0.58 ± 0.02 a | |
Total Chl (mg/g) | 0.82 ± 0.04 b | 0.90 ± 0.01 ab | 0.94 ± 0.02 a | |
Sun Drying | Shade Drying | Oven Drying | ||
T. capitatus | Hue angle (°) | 101.62 ± 1.95 | 104.63 ± 0.35 | 104.47 ± 2.25 |
Chroma value | 13.12 ± 0.47 | 14.60 ± 0.47 | 13.13 ± 0.55 | |
Color index | −4.48 ± 0.76 | −5.82 ± 0.21 | −5.81 ± 0.92 | |
Browning index | 27.46 ± 1.66 | 30.28 ± 1.31 | 26.88 ± 1.02 | |
M. piperita | Hue angle (°) | 110.10 ± 1.48 | 109.67 ± 1.81 | 113.49 ± 1.12 |
Chroma value | 13.56 ± 0.46 b | 17.39 ± 0.40 a | 18.53 ± 0.76 a | |
Color index | −10.71 ± 1.05 b | −10.67 ± 1.17 a | −12.53 ± 0.81 a | |
Browning index | 33.65 ± 1.86 | 48.58 ± 2.41 | 45.94 ± 2.66 | |
S. cypria | Hue angle (°) | 100.48 ± 0.81 a | 95.18 ± 0.98 b | 99.68 ± 0.53 a |
Chroma value | 9.26 ± 0.21 b | 8.77 ± 0.32 b | 11.02 ± 0.57 a | |
Color index | −2.60 ± 0.20 b | −1.35 ± 0.23 a | −2.69 ± 0.20 b | |
Browning index | 11.61 ± 0.53 b | 13.00 ± 0.78 b | 16.08 ± 0.99 a |
Compound | RI | Sun Drying | Shade Drying | Oven Drying | Identification Method |
---|---|---|---|---|---|
α-thujene | 926 | 1.37 ± 0.03 | 1.45 ± 0.09 | 1.28 ± 0.02 | 1, 2 |
α-pinene | 933 | 1.26 ± 0.03 | 1.22 ± 0.12 | 1.39 ± 0.06 | 1, 2, 3 |
Camphene | 948 | 1.35 ± 0.01 | 1.05 ± 0.14 | 1.40 ± 0.04 | 1, 2 |
1-octen-3-ol | 976 | 0.71 ± 0.05 | 0.69 ± 0.08 | 0.85 ± 0.01 | 1, 2 |
β-myrcene | 989 | 1.61 ± 0.06 | 1.89 ± 0.15 | 1.71 ± 0.05 | 1, 2, 3 |
α-phellandrene | 1004 | 0.32 ± 0.01 b | 0.44 ± 0.04 a | 0.35 ± 0.01 ab | 1, 2 |
α-terpinene | 1017 | 1.41 ± 0.03 b | 1.81 ± 0.14 a | 1.26 ± 0.04 b | 1, 2 |
p-cymene | 1024 | 9.04 ± 0.03 a | 9.94 ± 1.17 a | 7.82 ± 0.19 b | 1, 2 |
D-limonene | 1028 | 1.13 ± 0.03 | 1.06 ± 0.12 | 1.13 ± 0.02 | 1, 2, 3 |
Eucalyptol | 1031 | 0.06 ± 0.00 a | 0.01 ± 0.01 b | 0.04 ± 0.01 ab | 1, 2, 3 |
γ-terpinene | 1036 | 6.71 ± 0.03 b | 8.47 ± 0.43 a | 5.55 ± 0.28 b | 1, 2, 3 |
cis-sabinene hydrate | 1058 | 0.48 ± 0.01 a | 0.39 ± 0.01 b | 0.46 ± 0.03 ab | 1, 2 |
α-terpinolene | 1067 | 0.51 ± 0.01 | 0.50 ± 0.05 | 0.52 ± 0.01 | 1, 2 |
Linalool | 1100 | 0.52 ± 0.03 | 0.75 ± 0.03 | 0.62 ± 0.08 | 1, 2 |
Borneol | 1166 | 4.83 ± 0.00 a | 2.61 ± 0.33 b | 4.75 ± 0.06 a | 1, 2 |
Terpinen-4-ol | 1178 | 0.85 ± 0.05 | 0.86 ± 0.07 | 0.93 ± 0.02 | 1, 2 |
p-cymen-8-ol | 1186 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.05 ± 0.01 | 1, 2 |
α-terpineol | 1191 | 0.18 ± 0.02 | 0.18 ± 0.01 | 0.27 ± 0.03 | 1, 2 |
Thymol methyl ether | 1239 | 0.80 ± 0.14 | 0.26 ± 0.11 | 0.64 ± 0.29 | 1, 2 |
Neral | 1242 | 0.06 ± 0.02 | 0.07 ± 0.01 | 0.09 ± 0.02 | 1, 2 |
Carvacrol methyl ether | 1251 | 0.27 ± 0.05 | 0.08 ± 0.01 | 0.23 ± 0.07 | 1, 2 |
Geranial | 1271 | 0.09 ± 0.02 | 0.11 ± 0.01 | 0.12 ± 0.00 | 1, 2 |
Thymol | 1290 | 27.47 ± 0.84 | 29.86 ± 0.29 | 27.90 ± 0.72 | 1, 2 |
Carvacrol | 1300 | 37.44 ± 0.97 a | 34.56 ± 1.07 b | 38.86 ± 0.02 a | 1, 2, 3 |
β-caryophyllene | 1425 | 0.93 ± 0.05 | 1.00 ± 0.12 | 1.03 ± 0.06 | 1, 2, 3 |
Bicyclogermacrene | 1502 | 0.03 ± 0.01 b | 0.09 ± 0.00 a | 0.05 ± 0.01 b | 1, 2 |
Caryophyllene oxide | 1587 | 0.17 ± 0.01 b | 0.12 ± 0.01 b | 0.25 ± 0.02 a | 1, 2 |
Total identified | 99.63 ± 0.00 | 99.51 ± 0.08 | 99.53 ± 0.06 | ||
Grouped components | |||||
Monoterpene hydrocarbons | 24.67 ± 0.21 | 27.72 ± 2.39 | 22.34 ± 0.36 | ||
Oxygenated monoterpenes | 73.59 ± 0.18 | 70.27 ± 2.69 | 75.46 ± 0.30 | ||
Sesquiterpene hydrocarbons | 0.97 ± 0.06 | 1.08 ± 0.12 | 1.08 ± 0.05 | ||
Oxygenated sesquiterpenes | 0.17 ± 0.01 b | 0.12 ± 0.01 b | 0.25 ± 0.02 a | ||
Others | 0.71 ± 0.05 | 0.69 ± 0.08 | 0.85 ± 0.01 | ||
EO yield | 1.90 ± 0.20 | 1.92 ± 0.37 | 1.75 ± 0.25 |
Compound | RI | Sun Drying | Shade Drying | Oven Drying | Identification Method |
---|---|---|---|---|---|
α-pinene | 933 | 0.50 ± 0.01b | 0.56 ± 0.02a | 0.49 ± 0.01b | 1, 2, 3 |
Sabinene | 973 | 0.44 ± 0.01 | 0.48 ± 0.02 | 0.44 ± 0.01 | 1, 2, 3 |
β-pinene | 977 | 0.84 ± 0.02 ab | 0.91 ± 0.02 a | 0.82 ± 0.01 b | 1, 2 |
β-myrcene | 989 | 0.15 ± 0.00 | 0.16 ± 0.01 | 0.14 ± 0.00 | 1, 2, 3 |
3-octanol | 995 | 0.06 ± 0.01 b | 0.07 ± 0.00 a | 0.05 ± 0.00 b | 1, 2 |
α-terpinene | 1017 | 0.09 ± 0.00 | 0.08 ± 0.01 | 0.08 ± 0.00 | 1, 2 |
p-cymene | 1024 | 0.07 ± 0.03 | 0.04 ± 0.00 | 0.03 ± 0.00 | 1, 2 |
D-limonene | 1028 | 2.12 ± 0.05 | 2.34 ± 0.12 | 2.18 ± 0.05 | 1, 2, 3 |
Eucalyptol | 1031 | 8.20 ± 0.17 | 7.46 ± 0.29 | 7.57 ± 0.07 | 1, 2, 3 |
cis-ocimene | 1036 | 0.08 ± 0.00 | 0.09 ± 0.01 | 0.10 ± 0.01 | 1, 2 |
γ-terpinene | 1058 | 0.21 ± 0.01 | 0.18 ± 0.02 | 0.18 ± 0.00 | 1, 2, 3 |
cis-sabinene hydrate | 1067 | 0.77 ± 0.00 | 0.84 ± 0.06 | 0.74 ± 0.03 | 1, 2 |
Linalool | 1100 | 0.13 ± 0.01 | 0.12 ± 0.02 | 0.13 ± 0.01 | 1, 2 |
Methylbutyl 2-methylbutyrate 2 | 1105 | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.00 | 1, 2 |
Menthone | 1153 | 3.30 ± 0.04 ab | 3.78 ± 0.16 a | 2.80 ± 0.19 b | 1, 2 |
iso-menthone | 1164 | 16.25 ± 0.02 b | 18.69 ± 0.85 a | 16.97 ± 0.31 ab | 1, 2 |
Menthol | 1175 | 41.93 ± 0.32 b | 43.26 ± 0.45 ab | 44.45 ± 0.14 a | 1, 2 |
Terpinene-4-ol | 1178 | 1.37 ± 0.01 | 1.21 ± 0.11 | 1.27 ± 0.08 | 1, 2 |
iso-menthol | 1186 | 0.88 ± 0.01 b | 0.86 ± 0.02 b | 1.05 ± 0.03 a | 1, 2 |
α-terpineol | 1191 | 0.42 ± 0.06 | 0.34 ± 0.05 | 0.48 ± 0.11 | 1, 2 |
Pulegone | 1240 | 1.65 ± 0.06 | 1.50 ± 0.09 | 1.68 ± 0.11 | 1, 2 |
Piperitone | 1252 | 0.25 ± 0.01 | 0.23 ± 0.02 | 0.25 ± 0.01 | 1, 2 |
neo-menthyl acetate | 1278 | 0.87 ± 0.02 a | 0.63 ± 0.05 b | 0.70 ± 0.04 b | 1, 2 |
menthyl acetate | 1296 | 16.95 ± 0.25 a | 14.00 ± 0.40 b | 15.16 ± 0.74 ab | 1, 2 |
iso-menthyl acetate | 1304 | 0.57 ± 0.00 a | 0.42 ± 0.01 b | 0.49 ± 0.05 ab | 1, 2 |
β-bourbonene | 1386 | 0.10 ± 0.00 | 0.09 ± 0.00 | 0.09 ± 0.02 | 1, 2 |
β-caryophyllene | 1425 | 0.88 ± 0.05 | 0.84 ± 0.02 | 0.89 ± 0.08 | 1, 2, 3 |
trans-β-farnesene | 1464 | 0.05 ± 0.00 | 0.05 ± 0.00 | 0.05 ± 0.01 | 1, 2 |
Germacrene D | 1497 | 0.42 ± 0.03 | 0.47 ± 0.04 | 0.45 ± 0.04 | 1, 2 |
Viridiflorol | 1594 | 0.04 ± 0.01 | 0.05 ± 0.02 | 0.05 ± 0.00 | 1, 2 |
Total Identified | 99.62 ± 0.10 | 99.79 ± 0.01 | 99.82 ± 0.02 | ||
Grouped components | |||||
Monoterpene hydrocarbons | 4.49 ± 0.13 b | 4.82 ± 0.02 a | 4.45 ± 0.02 b | ||
Oxygenated monoterpenes | 93.51 ± 0.29 | 93.31 ± 0.06 | 93.70 ± 0.17 | ||
Sesquiterpene hydrocarbons | 1.43 ± 0.07 | 1.44 ± 0.06 | 1.47 ± 0.14 | ||
Oxygenated sesquiterpenes | 0.04 ± 0.01 | 0.05 ± 0.02 | 0.05 ± 0.00 | ||
Others | 0.03 ± 0.00 | 0.05 ± 0.02 | 0.05 ± 0.00 | ||
EO yield | 1.38 ± 0.03 b | 1.59 ± 0.06 a | 1.48 ± 0.06 ab |
Compound | RI | Sun Drying | Shade Drying | Oven Drying | Identification Method |
---|---|---|---|---|---|
α-thujene | 926 | 1.47 ± 0.03 b | 1.59 ± 0.01 a | 1.41 ± 0.02 b | 1, 2 |
α-pinene | 933 | 11.49 ± 0.14 ab | 11.21 ± 0.01 b | 11.84 ± 0.07 a | 1, 2, 3 |
Camphene | 948 | 0.05 ± 0.00 | 0.05 ± 0.00 | 0.06 ± 0.00 | 1, 2 |
Sabinene | 973 | 11.25 ± 0.07 a | 11.42 ± 0.00 a | 10.17 ± 0.19 b | 1, 2, 3 |
β-pinene | 977 | 6.10 ± 0.01 c | 6.65 ± 0.01 b | 8.27 ± 0.08 a | 1, 2 |
β-myrcene | 989 | 1.15 ± 0.00 b | 1.45 ± 0.00 a | 1.14 ± 0.01 b | 1, 2, 3 |
α-phellandrene | 1004 | 1.93 ± 0.01 c | 2.48 ± 0.00 a | 2.00 ± 0.01 b | 1, 2 |
α-terpinene | 1017 | 0.05 ± 0.01 | 0.04 ± 0.00 | 0.05 ± 0.00 | 1, 2 |
p-cymene | 1024 | 1.85 ± 0.06 a | 1.72 ± 0.01 a | 1.40 ± 0.02 b | 1, 2 |
β-phellandrene | 1029 | 33.88 ± 0.48 b | 37.72 ± 0.01 a | 33.81 ± 0.22 b | 1, 2 |
γ-terpinene | 1036 | 0.19 ± 0.06 | 0.10 ± 0.01 | 0.13 ± 0.00 | 1, 2, 3 |
cis-sabinene hydrate | 1058 | 0.28 ± 0.01 | 0.25 ± 0.02 | 0.24 ± 0.00 | 1, 2 |
Terpinolene | 1089 | 0.03 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 | 1, 2 |
Linalool | 1100 | 0.08 ± 0.02 b | 0.16 ± 0.01 a | 0.05 ± 0.01 b | 1, 2 |
α-campholenal | 1127 | 0.06 ± 0.01 | 0.05 ± 0.00 | 0.07 ± 0.01 | 1, 2 |
trans-pinocarveol | 1139 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.00 | 1, 2 |
Pinocarvone | 1163 | 0.08 ± 0.01 | 0.09 ± 0.00 | 0.09 ± 0.01 | 1, 2 |
Terpinen-4-ol | 1178 | 0.27 ± 0.01 a | 0.22 ± 0.01 b | 0.21 ± 0.00 b | 1, 2 |
Cryptone | 1187 | 2.13 ± 0.04 a | 2.15 ± 0.02 a | 1.16 ± 0.02 b | 1, 2 |
α-terpineol | 1191 | 1.02 ± 0.03 a | 1.01 ± 0.01 a | 0.87 ± 0.01 b | 1, 2 |
Myrtenol | 1196 | 0.07 ± 0.01 b | 0.08 ± 0.00 ab | 0.10 ± 0.00 a | 1, 2 |
Cumin aldehyde | 1241 | 1.16 ± 0.03 a | 1.10 ± 0.02 a | 0.74 ± 0.01 b | 1, 2 |
β-caryophyllene | 1425 | 11.92 ± 0.16 b | 9.74 ± 0.05 c | 13.25 ± 0.15 a | 1, 2, 3 |
α-humulene | 1462 | 0.38 ± 0.01 b | 0.30 ± 0.01c | 0.44 ± 0.01 a | 1, 2 |
caryophyllene oxide | 1587 | 11.01 ± 0.26 a | 8.75 ± 0.08 b | 9.66 ± 0.24 b | 1, 2 |
Humulene epoxide II | 1610 | 0.20 ± 0.02 a | 0.15 ± 0.00 b | 0.19 ± 0.01 ab | 1, 2 |
14-hydroxy-Z-caryophyllene | 1666 | 1.28 ± 0.10 b | 1.06 ± 0.08 b | 2.33 ± 0.24 a | 1, 2 |
Total Identified | 99.56 ± 0.05 | 99.54 ± 0.06 | 99.64 ± 0.00 | ||
Grouped components | |||||
Monoterpene hydrocarbons | 69.67 ± 0.54 b | 74.66 ± 0.01 a | 70.49 ± 0.59 b | ||
Oxygenated monoterpenes | 5.12 ± 0.04 a | 4.88 ± 0.04 b | 3.31 ± 0.04 c | ||
Sesquiterpene hydrocarbons | 12.30 ± 0.17 b | 10.05 ± 0.05 c | 13.68 ± 0.15 a | ||
Oxygenated sesquiterpenes | 12.48 ± 0.37 a | 9.95 ± 0.15 b | 12.17 ± 0.48 a | ||
EO yield | 0.21 ± 0.03 | 0.26 ± 0.03 | 0.22 ± 0.07 |
Plant | Sun Drying | Shade Drying | Oven Drying | BHT/AA | |
---|---|---|---|---|---|
T. capitatus | Total Phenolic Content (mg GAE/g EO) | 45.92 ± 0.92 b | 65.18 ± 0.36 a | 63.73 ± 0.50 a | |
Total Antioxidant Capacity (mg AAE/g EO) | 4.36 ± 0.03 b | 5.01 ± 0.11 a | 4.39 ± 0.05 b | ||
DPPH IC50 (μg/mL) | 0.12 ± 0.00 b | 0.12 ± 0.00 b | 0.15 ± 0.01 b | 1.60 ± 0.23 a | |
ABTS IC50 (μg/mL) | 0.10 ± 0.00 c | 0.17 ± 0.00 b | 0.07 ± 0.00 c | 19.62 ± 0.10 a | |
M. piperita | Total Phenolic Content (mg GAE/g EO) | 0.73 ± 0.01 | 0.69 ± 0.01 | 0.66 ± 0.00 | |
Total Antioxidant Capacity (mg AAE/g EO) | 4.69 ± 0.05 | 4.76 ± 0.12 | 4.74 ± 0.02 | ||
DPPH IC50 (μg/mL) | 21.25 ± 0.02 a | 18.39 ± 0.93 a | 20.71 ± 0.78 a | 1.60 ± 0.23 b | |
ABTS IC50 (μg/mL) | 32.43 ± 1.74 a | 34.37 ± 1.39 a | 19.39 ± 2.36 b | 19.62 ± 0.10 b | |
S. cypria | Total Phenolic Content (mg GAE/g EO) | 3.54 ± 0.01 b | 4.63 ± 0.11 a | 3.22 ± 0.21 b | |
Total Antioxidant Capacity (mg AAE/g EO) | 6.35 ± 0.44 a | 6.84 ± 0.26 a | 4.40 ± 0.02 b | ||
DPPH IC50 (μg/mL) | 4.91 ± 0.24 a | 3.15 ± 0.27 b | 6.03 ± 0.27 a | 1.60 ± 0.23 c | |
ABTS IC50 (μg/mL) | 2.24 ± 0.01 c | 3.31 ± 0.06 b | 3.43 ± 0.23 b | 19.62 ± 0.10 a |
Plant | Bacterium | Sun Drying | SHADE Drying | Oven Drying | Streptomycin | |
---|---|---|---|---|---|---|
T. capitatus | E. coli | MIC (μg/mL) | 310.00 ± 0.00 a | 310.00 ± 0.00 a | 310.00 ± 0.00 a | 3.12 ± 0.00 b |
IC50 (μg/mL) | 1184.53 ± 31.19 a | 1225.80 ± 37.14 a | 1184.72 ± 36.80 a | 20.36 ± 1.11 b | ||
S. enterica | MIC (μg/mL) | 310.00 ± 0.00 a | 310.00 ± 0.00 a | 310.00 ± 0.00 a | 3.12 ± 0.00 b | |
IC50 (μg/mL) | 926.22 ± 52.35 a | 661.93 ± 45.71 b | 557.10 ± 19.21 b | 23.39 ± 1.80 c | ||
S. aureus | MIC (μg/mL) | 80.00 ± 0.00 a | 80.00 ± 0.00 a | 80.00 ± 0.00 a | 0.78 ± 0.00 b | |
IC50 (μg/mL) | 926.22 ± 52.35 a | 661.93 ± 45.71 b | 557.10 ± 19.21 b | 2.33 ± 0.11 c | ||
L. monocytogenes | MIC (μg/mL) | 80.00 ± 0.00 a | 80.00 ± 0.00 a | 80.00 ± 0.00 a | 0.39 ± 0.00 b | |
IC50 (μg/mL) | 1029.28 ± 20.78 a | 1089.30 ± 46.12 a | 548.07 ± 13.17 b | 2.44 ± 0.06 c | ||
M. piperita | E. coli | MIC (μg/mL) | 2500.00 ± 0.00 a | 1250.00 ± 0.00 a | 1250.00 ± 0.00 a | 3.12 ± 0.00 b |
IC50 (μg/mL) | 3596.52 ± 79.28 a | 3612.33 ± 99.46 a | 2890.79 ± 213.59 b | 20.36 ± 1.11 c | ||
S. enterica | MIC (μg/mL) | 620.00 ± 0.00 a | 620.00 ± 0.00 a | 80.00 ± 0.00 b | 0.78 ± 0.00 c | |
IC50 (μg/mL) | 3055.28 ± 388.38 b | 4774.81 ± 606.17 a | 4328.51 ± 317.14 ab | 2.33 ± 0.11 c | ||
S. aureus | MIC (μg/mL) | 620.00 ± 0.00 a | 620.00 ± 0.00 a | 620.00 ± 0.00 a | 3.12 ± 0.00 b | |
IC50 (μg/mL) | 1250.63 ± 142.24 a | 896.83 ± 35.82 b | 730.52 ± 50.38 b | 23.39 ± 1.80 c | ||
L. monocytogenes | MIC (μg/mL) | 160.00 ± 0.00 a | 160.00 ± 0.00 a | 80.00 ± 0.00 a | 0.39 ± 0.00 b | |
IC50 (μg/mL) | 2654.73 ± 168.70 a | 3072.73 ± 138.57 a | 3022.03 ± 177.26 a | 2.44 ± 0.06 b | ||
S. cypria | E. coli | MIC (μg/mL) | 620.00 ± 0.00 a | 620.00 ± 0.00 a | 620.00 ± 0.00 a | 3.12 ± 0.00 b |
IC50 (μg/mL) | 3287.15 ± 88.03 a | 3179.77 ± 78.65 a | 1616.97 ± 30.88 b | 20.36 ± 1.11 c | ||
S. enterica | MIC (μg/mL) | 1250.00 ± 0.00 a | 1250.00 ± 0.00 a | 620.00 ± 0.00 b | 3.12 ± 0.00 c | |
IC50 (μg/mL) | 1963.23 ± 321.94 a | 1493.37 ± 103.57 ab | 1184.49 ± 23.68 b | 23.39 ± 1.80 c | ||
S. aureus | MIC (μg/mL) | 160.00 ± 0.00 a | 80.00 ± 0.00 a | 80.00 ± 0.00 a | 0.78 ± 0.00 b | |
IC50 (μg/mL) | 2179.05 ± 183.21 a | 1875.62 ± 569.78 a | 1978.48 ± 397.66 a | 2.33 ± 0.11 b | ||
L. monocytogenes | MIC (μg/mL) | 620.00 ± 0.00 a | 160.00 ± 0.00 a | 160.00 ± 0.00 a | 0.39 ± 0.00 b | |
IC50 (μg/mL) | 1601.68 ± 42.54 a | 1784.23 ± 106.50 a | 1743.61 ± 82.61 a | 2.44 ± 0.06 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xylia, P.; Chrysargyris, A.; Tomou, E.-M.; Goumenos, C.; Skaltsa, H.; Tzortzakis, N. Quality Characteristics and Essential Oil Properties of Thymus capitatus, Mentha piperita, and Sideritis cypria Dried under Different Conditions. Plants 2024, 13, 3150. https://doi.org/10.3390/plants13223150
Xylia P, Chrysargyris A, Tomou E-M, Goumenos C, Skaltsa H, Tzortzakis N. Quality Characteristics and Essential Oil Properties of Thymus capitatus, Mentha piperita, and Sideritis cypria Dried under Different Conditions. Plants. 2024; 13(22):3150. https://doi.org/10.3390/plants13223150
Chicago/Turabian StyleXylia, Panayiota, Antonios Chrysargyris, Ekaterina-Michaela Tomou, Christos Goumenos, Helen Skaltsa, and Nikolaos Tzortzakis. 2024. "Quality Characteristics and Essential Oil Properties of Thymus capitatus, Mentha piperita, and Sideritis cypria Dried under Different Conditions" Plants 13, no. 22: 3150. https://doi.org/10.3390/plants13223150
APA StyleXylia, P., Chrysargyris, A., Tomou, E. -M., Goumenos, C., Skaltsa, H., & Tzortzakis, N. (2024). Quality Characteristics and Essential Oil Properties of Thymus capitatus, Mentha piperita, and Sideritis cypria Dried under Different Conditions. Plants, 13(22), 3150. https://doi.org/10.3390/plants13223150