The rDNA Diversity, Interseasonal Dynamic, and Functional Role of Cyanobacteria Synechococcus in the Sub-Arctic White Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water and Ice Sample Collection
2.2. Chlorophyll a (Chl-a) Concentration
2.3. Enumeration of Picocyanobacteria and Total Picophytoplankton Abundance and Biomass
2.4. Primary Production (PP) and Growth Rate
2.5. DNA Extraction, PCR Amplification, Cloning, and Sequencing
2.6. Phylogenetic Analysis
3. Results
3.1. Environmental Parameters
3.2. Picocyanobacteria Abundance and Role in Total Picophytoplankton
3.3. Primary Production of Total Phytoplankton and Picophytoplankton
3.4. Synechococcus Molecular Diversity Using ITS and the 16S rRNA Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tsai, A.-Y.; Gong, G.-C.; Sanders, R.W.; Chiang, K.-P.; Chao, C.-F. Heterotrophic bacterial and Synechococcus spp. growth and mortality along the inshore-offshore in the East China Sea in summer. J. Oceanogr. 2012, 68, 151–162. [Google Scholar] [CrossRef]
- Flombaum, P.; Gallegos, J.L.; Gordillo, R.A.; Rincón, J.; Zabala, L.L.; Jiao, N.; Karl, D.M.; Li, W.K.W.; Lomas, M.W.; Veneziano, D.; et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. USA 2013, 110, 9824–9829. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, L.; Long, B.M.; Price, G.D.; Badger, M.R. Comparing the in vivo function of a-carboxysomes and b-carboxysomes in two model cyanobacteria. Plant Physiol. 2014, 165, 398–411. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Carroll, A.L.; Atsumi, S. Carbon recycling by cyanobacteria: Improving CO2 fixation through chemical production. FEMS Microbiol. Lett. 2017, 364, fnx165. [Google Scholar] [CrossRef] [PubMed]
- Falkowski, P.G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 1997, 387, 272–275. [Google Scholar] [CrossRef]
- Dıez, B.; Ininbergs, K. Ecological importance of cyanobacteria. In Cyanobacteria; Sharma, N.K., Rai, A.K., Stal, L.J., Eds.; John Wiley & Sons: Oxford, UK, 2014; pp. 41–63. [Google Scholar]
- Strunecký, O.; Ivanova, A.P.; Mareš, J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 2023, 59, 12–51. [Google Scholar] [CrossRef]
- Wu, Q.L.; Xing, P.; Liu, W.T. East Tibetan lakes harbour novel clusters of picocyanobacteria as inferred from the 16S–23S rRNA internal transcribed spacer sequences. Microb. Ecol. 2010, 59, 614–622. [Google Scholar] [CrossRef]
- Chung, C.-C.; Gong, G.-C.; Huang, C.-Y.; Lin, J.-Y.; Lin, Y.-C. Changes in the Synechococcus assemblage composition at the surface of the East China Sea due to flooding of the Changjiang river. Microb. Ecol. 2015, 70, 677–688. [Google Scholar] [CrossRef]
- Xia, X.; Guo, W.; Tan, S.; Liu, H. Synechococcus assemblages across the salinity gradient in a salt wedge estuary. Front. Microbiol. 2017, 8, 1254. [Google Scholar] [CrossRef]
- Mackey, K.R.M.; Hunter-Cevera, K.; Britten, G.L.; Murphy, L.G.; Sogin, M.L.; Huber, J.A. Seasonal Succession and Spatial Patterns of Synechococcus Microdiversity in a Salt Marsh Estuary Revealed through 16S rRNA Gene Oligotyping. Front. Microbiol. 2017, 8, 1496. [Google Scholar] [CrossRef]
- Wang, T.; Li, J.; Jing, H.; Qin, S. Picocyanobacterial Synechococcus in marine ecosystem: Insights from genetic diversity, global distribution, and potential function. Mar. Environ. Res. 2022, 177, 105622. [Google Scholar] [CrossRef] [PubMed]
- Vincent, W.; Bowman, J.; Rankin, L.; McMeekin, T. Phylogenetic diversity of picocyanobacteria in Arctic and Antarctic ecosystems. In Proceedings of the 8th International Symposium on Microbial Ecology, Halifax, NS, Canada, 9–14 August 2000; pp. 317–322. [Google Scholar]
- Komárek, J.; Elster, J.; Komárek, O. Diversity of the cyanobacterial microflora of the northern part of James Ross Island, NW Weddell Sea, Antarctica. Polar Biol. 2008, 31, 853–865. [Google Scholar] [CrossRef]
- Belevich, T.A.; Milyutina, I.A.; Troitsky, A.V. Picocyanobacteria in Estuaries of Three Siberian Rivers and Adjacent Shelves of Russian Arctic Seas: Genetic Diversity and Distribution. Diversity 2023, 15, 1049. [Google Scholar] [CrossRef]
- Herdman, M.; Castenholz, R.W.; Waterbury, J.B.; Rippka, R. Form-genus XIII. Synechococcus. In Bergey’s Manual of Systematic Bacteriology; Boone, D.R., Castenholz, R.W., Eds.; Springer: New York, NY, USA, 2001; pp. 508–512. [Google Scholar]
- Dufresne, A.; Ostrowski, M.; Scanlan, D.; Garczarek, L.; Mazard, S.; Palenik, B.; Paulsen, I.; de Marsac, N.; Wincker, P.; Dossat, C.; et al. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol. 2008, 9, R90. [Google Scholar] [CrossRef]
- Scanlan, D.; Ostrowski, M.; Mazard, S.; Dufresne, A.; Garczarek, L.; Hess, W.; Post, A.; Hagemann, M.; Paulsen, I.; Partensky, F. Ecological genomics of marine picocyanobacteria. Microbiol. Mol. Biol. Rev. 2009, 73, 249–299. [Google Scholar] [CrossRef]
- Ahlgren, N.A.; Rocap, G. Diversity and distribution of marine Synechococcus: Multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front. Microbiol. 2012, 3, 213. [Google Scholar] [CrossRef]
- Waleron, M.; Waleron, K.; Vincent, W.F.; Wilmotte, A. Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean. FEMS Microbiol. Ecol. 2006, 59, 356–365. [Google Scholar] [CrossRef]
- Mioduchowska, M.; Pawłowska, J.; Mazanowski, K.; Weydmann-Zwolicka, A. Contrasting Marine Microbial Communities of the Fram Strait with the First Confirmed Record of Cyanobacteria Prochlorococcus marinus in the Arctic Region. Biology 2023, 12, 1246. [Google Scholar] [CrossRef]
- Berger, V.; Dahle, S.; Galaktionov, K.; Kosobokova, X.; Naumov, A.; Rat’kova, T.; Savinov, V.; Savinova, T. White Sea. Ecology and Environment; Derzavets Publisher: St-Petersburg, Russia; Tromsø, Norway, 2001. [Google Scholar]
- Belevich, T.A.; Ilyash, L.V.; Milyutina, I.A.; Logacheva, M.D.; Troitsky, A.V. Phototrophic picoeukaryotes of Onega Bay, the White Sea: Abundance and species composition. Mosc. Univ. Biol. Sci. Bull. 2017, 72, 109–114. [Google Scholar] [CrossRef]
- Belevich, T.A.; Ilyash, L.V.; Milyutina, I.A.; Logacheva, M.D.; Goryunov, D.V.; Troitsky, A.V. Photosynthetic picoeukaryotes in the land-fast ice of the White Sea, Russia. Microb Ecol. 2018, 75, 582–597. [Google Scholar] [CrossRef]
- Belevich, T.A.; Ilyash, L.V.; Milyutina, I.A.; Logacheva, M.D.; Troitsky, A.V. Photosynthetic Picoeukaryotes Diversity in the Underlying Ice Waters of the White Sea, Russia. Diversity 2020, 12, 93. [Google Scholar] [CrossRef]
- Milyutina, I.A.; Belevich, T.A.; Ilyash, L.V.; Troitsky, A.V. Insight into picophytoplankton diversity of the subarctic White Sea—The first recording of Pedinophyceae in environmental DNA. MicrobiologyOpen 2019, 8, e892. [Google Scholar] [CrossRef] [PubMed]
- Poulin, M.; Daugbjerg, N.; Gradinger, R.; Ilyash, L.; Ratkova, T.; von Quillfeldt, C.H. The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: A first-attempt assessment. Mar. Biodiv. 2011, 41, 13–28. [Google Scholar] [CrossRef]
- Ilyash, L.V.; Belevich, T.A.; Zhitina, L.S.; Radchenko, I.G.; Ratkova, T.N. Phytoplankton of the White Sea. In Biogeochemistry of the Atmosphere, Ice and Water of the White Sea; Lisitsyn, A., Gordeev, V., Eds.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2018; Volume 81. [Google Scholar]
- Holm-Hansen, O.; Riemann, B. Chlorophyll a determination: Improvements in methodology. Oikos 1978, 30, 438–447. [Google Scholar] [CrossRef]
- Verity, P.G.; Robertson, C.Y.; Tronzo, C.R.; Endrews, M.G.; Nelson, J.R.; Sieracki, M.E. Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr. 1992, 37, 1434–1446. [Google Scholar] [CrossRef]
- DuRand, M.D.; Olson, R.J.; Chisholm, S.W. Phytoplankton population dynamics at the Bermuda Atlantic time-series station in the Sargasso Sea. Deep-Sea Res. II 2001, 48, 1983–2003. [Google Scholar] [CrossRef]
- Hillebrand, H.; Dürselen, C.-D.; Kirschtel, D.; Pollingher, U.; Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999, 5, 403–424. [Google Scholar] [CrossRef]
- Steemann Nielsen, E. The use of radioactive carbon (C14) for measuring organic production in the sea. J. Cons. Perm. Int. Pour Explor. Mer. 1952, 18, 117–140. [Google Scholar] [CrossRef]
- Cai, H.; Wang, K.; Huang, S.; Jiao, N.; Chen, F. Distinct patterns of picocyanobacterial communities in winter and summer in the Chesapeake Bay. Appl. Environ. Microbiol. 2010, 76, 2955–2960. [Google Scholar] [CrossRef]
- Nübel, U.; Garcia-Pichel, F.; Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 1997, 63, 3327–3332. [Google Scholar] [CrossRef]
- Edgar, R.C. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat. Commun. 2022, 13, 6968. [Google Scholar] [CrossRef] [PubMed]
- Hall, T. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 717 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Rzhetsky, A.; Nei, M. A simple method for estimating and testing minimum evolution trees. Mol. Biol. Evol. 1992, 9, 945–967. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Belevich, T.A.; Ilyash, L.V. Picophytoplankton abundance in the Velikaya Salma strait, White Sea. Microbiology 2012, 81, 360–366. [Google Scholar] [CrossRef]
- Gradinger, R.; Lenz, J. Picocyanobacteria in the high Arctic. Mar. Ecol. Prog. Ser. 1989, 52, 99–101. [Google Scholar] [CrossRef]
- Tolstikov, A.V.; Serykh, I.V.; Balagansky, A.F. Climate changes in river flow and precipitation in the White Sea Region. Arktika: Ekologiya i ekonomika. Arct. Ecol. Econ. 2022, 12, 464–474. (In Russian) [Google Scholar]
- Tolstikov, A.V.; Balaganskiy, A.F.; Chernov, I.A. Estimation of heat runoff of the rivers in the White Sea catchment area. Lomonosov Geogr. J. 2021, 3, 109–119. (In Russian) [Google Scholar]
- Baklagin, V. Spatio-temporal regularities of the White Sea ice regime formation. Adv. Oceanogr. Limnol. 2022, 13, 9849. [Google Scholar] [CrossRef]
- Olson, R.J.; Zettler, E.R.; Armbrust, E.V.; Chisholm, S.W. Pigment, size and distribution of Synechococcus in the North Atlantic and Pacific oceans. Limnol. Oceanogr. 1990, 35, 45–58. [Google Scholar] [CrossRef]
- Tsai, A.Y.; Gong, G.C.; Sanders, R.W.; Chiang, K.P. Relationship of Synechococcus abundance to seasonal ocean temperature ranges. Terr. Atmos. Ocean. Sci. 2013, 24, 925–932. [Google Scholar] [CrossRef]
- Belevich, T.A.; Il’yash, L.V.; Chul’tsova, A.L.; Flint, M.V. The Spatial Distribution of Plankton Picocyanobacteria on the Shelf of the Kara, Laptev, and East Siberian Seas. Mosc. Univ. Biol. Sci. Bull. 2019, 74, 194–199. [Google Scholar] [CrossRef]
- Ilyash, L.V. Picophytoplankton of the Kandalaksha Bay, White Sea. Vestn. Moskovsk. Univ. Ser. 16. Biol. 1998, 2, 49–52. (In Russian) [Google Scholar]
- Morán, X.A.G. Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: A major contribution to carbon fluxes. Aquat. Microb. Ecol. 2007, 49, 267–279. [Google Scholar] [CrossRef]
- Eppley, R.W. Temperature and phytoplankton growth in the sea. Fish. Bull. 1972, 70, 41063–41085. [Google Scholar]
- Kremer, C.T.; Thomas, M.K.; Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: Reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 2017, 62, 1658–1670. [Google Scholar] [CrossRef]
- Zwirglmaier, K.; Jardillier, L.; Ostrowski, M.; Mazard, S.; Garczarek, L.; Vaulot, D.; Massana, R.; Ulloa, O.; Scanlan, D.J. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ. Microbiol. 2008, 10, 147–161. [Google Scholar] [CrossRef]
- Sohm, J.A.; Ahlgren, N.A.; Thomson, Z.J.; Williams, C.; Moffett, J.W.; Saito, M.A.; Webb, E.A.; Rocap, G. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 2016, 10, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, M.L.; Doré, H.; Garczarek, L.; Seuthe, L.; Müller, O.; Sandaa, R.-A.; Bratbak, G.; Larsen, A. Synechococcus in the Atlantic Gateway to the Arctic Ocean. Front. Mar. Sci. 2016, 3, 191. [Google Scholar] [CrossRef]
- Chen, F.; Wang, K.; Kan, J.; Suzuki, M.T.; Wommack, K.E. Diverse and Unique Picocyanobacteria in Chesapeake Bay, Revealed by 16S-23S rRNA Internal Transcribed Spacer Sequences. Appl. Environ. Microbiol. 2006, 72, 2239–2243. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wilhelm, S.W.; Harvey, H.R.; Taylor, K.; Jiao, N.; Chen, F. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J. 2012, 6, 285–297. [Google Scholar] [CrossRef]
- Hagstrom, A.; Azam, F.; Andersson, A.; Wikner, J.; Rassoulzadegan, F. Microbial loop in an oligotrophic pelagic marine ecosystem: Possible roles of cyanobacteria and nanoflagellates in the organic fluxes. Mar. Ecol. Prog. Ser. 1988, 49, 171–178. [Google Scholar] [CrossRef]
- Kiriukhin, B.A.; Belevich, T.A.; Milyutina, I.A.; Logacheva, M.D.; Tikhonenkov, D.V. Diversity of heterotrophic picoeukaryotes in the ice of the Kandalaksha Gulf (White Sea, Russia) based on rRNA gene high-throughput sequencing. Mar. Biodivers. 2023, 53, 82. [Google Scholar] [CrossRef]
Sample | Latitude (N) | Longitude (E) | Bay | Date, Horizon | Water/Ice | T0 | S0 | Chltot | Chlpico |
---|---|---|---|---|---|---|---|---|---|
The White Sea | |||||||||
1/15 | 66.870 | 32.804 | Kandalaksha | 12 June 2015 0 m | water | 5.4 | 19.9 | 2.63 | - |
2/15 | 66.893 | 32.468 | Kandalaksha | 12 June 2015 0 m | water | 6.3 | 9.0 | 1.50 | - |
3/15 | 66.531 | 33.726 | Kandalaksha | 17 June 2015 0 m | water | 5.9 | 25.5 | 4.20 | - |
4/15 | 66.535 | 33.721 | Kandalaksha | 17 June 2015 250 m | water | 5.9 | 25.5 | 0.04 | - |
5/15 | 65.048 | 35.257 | Onega | 18 June 2015 0 m | water | 6.6 | 26.1 | 0.72 | - |
6/15 | 64.349 | 37.062 | Onega | 24 June 2015 0 m | water | 12.2 | 16.2 | 0.39 | - |
21/14 | 66.553 | 33.105 | Kandalaksha | 18 July 2014 0 m | water | 13.4 | 24.5 | - | - |
22/14 | 66.536 | 33.220 | Kandalaksha | 21 July 2014 0 m | water | 14.0 | 24.5 | - | - |
* 23/14 | 66.581 | 32.982 | Kandalaksha | 25 July 2014 0 m | water | 19.6 | 24.5 | - | - |
1/16 | 66.525 | 33.093 | Kandalaksha | 13 September 2016 0 m | water | 10.6 | 24.2 | 0.77 | - |
2/16 | 66.536 | 33.220 | Kandalaksha | 13 September 2016 0 m | water | 10.4 | 24.3 | 1.16 | - |
5/16 | 66.552 | 33.035 | Kandalaksha | 15 September 2016 0 m | water | 10.5 | 24.5 | 0.71 | 0.16 |
2/17 | 66.534 | 33.109 | Kandalaksha | 4 February 2017 0 m | under-ice water | −1.3 | 26.5 | 0.03 | 0.005 |
3/17 | 66.581 | 32.982 | Kandalaksha | 5 February 2017 0 m | under-ice water | −1.4 | 28.5 | 0.04 | 0.003 |
4/17 | 66.534 | 33.109 | Kandalaksha | 4 February 2017 | ice | −2.1 | 8.3 | 0.56 | 0.015 |
5/17 | 66.581 | 32.982 | Kandalaksha | 5 February 2017 | ice | −2.9 | 6.2 | 0.34 | 0.01 |
6/17 | 66.552 | 33.035 | Kandalaksha | 6 February 2017 0 m | under-ice water | −1.4 | 26.6 | 0.04 | 0.01 |
7/17 | 66.552 | 33.035 | Kandalaksha | 6 February 2017 | ice | −2.8 | 5.5 | 0.6 | 0.02 |
8/17 | 66.553 | 33.105 | Kandalaksha | 3 February 2017 0 m | water | 1.1 | 28.2 | 0.02 | 0.003 |
The Barents Sea | |||||||||
5546 | 72.549 | 27.346 | 31 July 2017, 5 m | water | 8.8 | 34.8 | 0.68 | - | |
5559 | 80.066 | 44.857 | 5 August 2017, 15 m | water | 2.5 | 33.4 | 0.15 | - |
Season | Month | PPtot | PPpico | % PPpico | µ |
---|---|---|---|---|---|
Summer | July | 75.13 | 11.32 | 15 | 1.13 |
Autumn | September | 17 | 2.15 | 13 | 1.22 |
Winter (water) | February | 0.35 | 0.22 | 63 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belevich, T.A.; Milyutina, I.A.; Vorob’eva, O.V.; Troitsky, A.V. The rDNA Diversity, Interseasonal Dynamic, and Functional Role of Cyanobacteria Synechococcus in the Sub-Arctic White Sea. Plants 2024, 13, 3153. https://doi.org/10.3390/plants13223153
Belevich TA, Milyutina IA, Vorob’eva OV, Troitsky AV. The rDNA Diversity, Interseasonal Dynamic, and Functional Role of Cyanobacteria Synechococcus in the Sub-Arctic White Sea. Plants. 2024; 13(22):3153. https://doi.org/10.3390/plants13223153
Chicago/Turabian StyleBelevich, Tatiana A., Irina A. Milyutina, Olga V. Vorob’eva, and Aleksey V. Troitsky. 2024. "The rDNA Diversity, Interseasonal Dynamic, and Functional Role of Cyanobacteria Synechococcus in the Sub-Arctic White Sea" Plants 13, no. 22: 3153. https://doi.org/10.3390/plants13223153
APA StyleBelevich, T. A., Milyutina, I. A., Vorob’eva, O. V., & Troitsky, A. V. (2024). The rDNA Diversity, Interseasonal Dynamic, and Functional Role of Cyanobacteria Synechococcus in the Sub-Arctic White Sea. Plants, 13(22), 3153. https://doi.org/10.3390/plants13223153