Resistance in Soybean Against Infection by Phakopsora pachyrhizi Is Induced by a Phosphite of Nickel and Potassium
Abstract
:1. Introduction
2. Results
2.1. Analysis of Variance
2.2. Germination of Urediniospores In Vitro
2.3. Rust Symptoms and Severity, AUDPC, and Observations at the SEM
2.4. Foliar Concentrations of Ni and K
2.5. Imaging and Quantification of Chl a Fluorescence Parameters
2.6. Photosynthetic Pigment Concentration
2.7. Histochemical Analysis
2.8. Concentrations of MDA, H2O2, and O2•−
2.9. Concentrations of TSP and LTGA Derivatives
2.10. Gene Expression
2.10.1. Comparing Control and IR Stimulus Treatments for Non-Inoculated Plants
2.10.2. Comparing Control and IR Stimulus Treatments for Inoculated Plants
2.10.3. Comparing Non-Inoculated and Inoculated Plants for Control Treatment
2.10.4. Comparing Non-Inoculated and Inoculated Plants for IR Stimulus Treatment
2.11. PCA
3. Discussion
4. Material and Methods
4.1. In Vitro Assay
4.2. Growth of Soybean Plants
4.3. Application of Blindage®
4.4. Inoculation of Soybean Plants with P. pachyrhizi
4.5. Experimental Design
4.6. Evaluation of ASR Severity
4.7. Determination of Foliar Nickel (Ni) and Potassium (K) Concentrations
4.8. Processing Leaf Samples for SEM
4.9. Imaging and Quantification of Chlorophyll (Chl) a Fluorescence Parameters
4.10. Determining Photosynthetic Pigments Concentration
4.11. Histochemical Detection of Lipid Peroxidation, Membrane Damage, Hydrogen Peroxide (H2O2), and Superoxide Anion Radical (O2•−)
4.12. Biochemical Assays and Gene Expression Using Quantitative Real-Time PCR
4.12.1. Malondialdehyde (MDA) Concentration
4.12.2. Concentrations of H2O2 and O2•−
4.12.3. Concentrations of Total Soluble Phenols (TSP) and Lignin-Thioglycolic Acid (LTGA) Derivatives
4.12.4. Genes Expression
4.13. Data Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, J.; Mooney, H.; Wu, W.; Tang, H.; Tong, Y.; Xu, Z.; Liu, J. Importing food damages domestic environment: Evidence from global soybean trade. Proc. Natl. Acad. Sci. USA 2018, 115, 5415–5419. [Google Scholar] [CrossRef] [PubMed]
- Kelly, H.Y.; Dufault, N.S.; Walker, D.R.; Isard, S.A.; Schneider, R.W.; Giesler, L.J.; Hartman, G.L. From select agent to an established pathogen: The response to Phakopsora pachyrhizi (soybean rust) in North America. Phytopathology 2015, 105, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Paula, S.; Holz, S.; Souza, D.H.G.; Pascholati, S.F. Potential of resistance inducers for soybean rust management. Can. J. Plant Pathol. 2021, 43, 298–307. [Google Scholar] [CrossRef]
- Goellner, K.; Loehrer, M.; Langenbach, C.; Conrath, U.; Koch, E.; Schaffrath, U. Phakopsora pachyrhizi, the causal agent of Asian soybean rust. Mol. Plant Pathol. 2010, 11, 169–177. [Google Scholar] [CrossRef]
- Godoy, C.V.; Seixas, C.D.S.; Soares, R.M.; Marcelino-Guimarães, F.C.; Meyer, M.C.; Costamilan, L.M. Asian soybean rust in Brazil: Past, present, and future. Pesqui. Agropecu. Bras. 2016, 51, 407–421. [Google Scholar] [CrossRef]
- Hartman, G.L.; Sikora, E.J.; Rupe, J.C. Rust. In Compendium of Soybean Diseases and Pests; Hartman, G.L., Rupe, J.C., Sikora, E.J., Domier, L.L., Davis, J.A., Stefey, K.L., Eds.; American Phytopathological Society: St. Paul, MN, USA, 2015; pp. 56–58. [Google Scholar]
- Agrofit. Available online: https://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed on 1 November 2024).
- Miles, M.R.; Levy, C.; Morel, W.; Mueller, T.; Steinlage, T.; Rij, N.; Frederick, R.D.; Hartman, G.L. International fungicide efficacy trials for the management of soybean rust. Plant Dis. 2007, 91, 1450–1458. [Google Scholar] [CrossRef] [PubMed]
- Langenbach, C.; Campe, R.; Beyer, S.F.; Mueller, A.N.; Conrath, U. Fighting Asian soybean rust. Front. Plant Sci. 2016, 7, 797. [Google Scholar] [CrossRef]
- Kashiwa, T.; Muraki, Y.; Yamanaka, N. Near-isogenic soybean lines carrying Asian soybean rust resistance genes for practical pathogenicity validation. Sci. Rep. 2020, 10, 13270. [Google Scholar] [CrossRef]
- Kato, M.; Soares, R.M. Field trials of a Rpp-pyramided line confirm the synergistic effect of multiple gene resistance to Asian soybean rust (Phakopsora pachyrhizi). Trop. Plant Pathol. 2022, 47, 222–232. [Google Scholar] [CrossRef]
- Durrant, W.E.; Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 2004, 42, 185–209. [Google Scholar] [CrossRef]
- Llorens, E.; García-Agustín, P.; Lapeña, L. Advances in induced resistance by natural compounds: Towards new options for woody crop protection. Sci. Agric. 2017, 74, 90–100. [Google Scholar] [CrossRef]
- Choudhary, D.K.; Prakash, A.; Johri, B.N. Induced systemic resistance (ISR) in plants: Mechanism of action. Indian J. Microbiol. 2007, 47, 289–297. [Google Scholar] [CrossRef]
- Kesel, J.; Conrath, U.; Flors, V.; Luna, E.; Mageroy, M.H.; Mauch-Mani, B.; Pastor, V.; Pozo, M.J.; Pieterse, C.M.J.; Ton, J.; et al. The induced resistance lexicon: Do’s and don’ts. Trends Plant Sci. 2021, 26, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Zeier, J. Metabolic regulation of systemic acquired resistance. Curr. Opin. Plant Biol. 2021, 62, 102050. [Google Scholar] [CrossRef] [PubMed]
- Hammerschmidt, R. Systemic acquired resistance. Adv. Bot. Res. 2009, 51, 173–222. [Google Scholar]
- Dempsey, D.M.A.; Klessig, D.F. SOS-too many signals for systemic acquired resistance? Trends Plant Sci. 2012, 17, 538–545. [Google Scholar] [CrossRef]
- Shah, J.; Zeier, J. Long-distance communication and signal amplification in systemic acquired resistance. Front. Plant Sci. 2013, 4, 30. [Google Scholar] [CrossRef]
- Vlot, A.C.; Sales, J.H.; Lenk, M.; Bauer, K.; Brambilla, A.; Sommer, A.; Chen, Y.; Wenig, M.; Nayem, S. Systemic propagation of immunity in plants. New Phytol. 2021, 229, 1234–1250. [Google Scholar] [CrossRef]
- Ahmed, H.F.; Elnaggar, S.; Abdel-Wahed, G.A.; Taha, R.S.; Ahmad, A.; Al-Selwey, W.A.; Seleiman, M.F. Induction of systemic resistance in Hibiscus sabdariffa Linn to control root rot and wilt diseases using biotic and abiotic inducers. Biology 2023, 12, 789. [Google Scholar] [CrossRef]
- Cruz, M.F.A.; Pinto, M.O.; Barros, E.G.; Rodrigues, F.A. Differential gene expression in soybean infected by Phakopsora pachyrhizi in response to acibenzolar-S-methyl, jasmonic acid and silicon. J. Phytopathol. 2020, 168, 571–580. [Google Scholar] [CrossRef]
- Einhardt, A.M.; Ferreira, S.; Hawerroth, C.; Valadares, S.V.; Rodrigues, F.A. Nickel potentiates soybean resistance against infection by Phakopsora pachyrhizi. Plant Pathol. 2020, 69, 849–859. [Google Scholar] [CrossRef]
- Reglinski, T.; Havis, N.; Rees, H.J.; Jong, H. The practical role of induced resistance for crop protection. Phytopathology 2023, 113, 719–731. [Google Scholar] [CrossRef]
- Rodrigues, F.C.T.; Araujo, M.U.P.; Silva, B.N.; Fontes, B.A.; Rodrigues, F.A. A copper-polyphenolic compound as an alternative for the control of Asian soybean rust. Trop. Plant Pathol. 2023, 48, 469–483. [Google Scholar] [CrossRef]
- Rodrigues, F.C.T.; Silveira, P.R.; Cacique, I.S.; Oliveira, L.M.; Rodrigues, F.A. Azelaic and hexanoic acids-inducing resistance in soybean against Phakopsora pachyrhizi infection. Plant Pathol. 2023, 72, 1034–1047. [Google Scholar] [CrossRef]
- Sood, D.; Sharma, M.; Sharma, A. Abiotic resistance inducers for management of bacterial wilt in tomato (Solanum lycopersicum L.). J. Plant Pathol. 2023, 105, 481–491. [Google Scholar] [CrossRef]
- Novaes, M.I.C.; Debona, D.; Fagundes-Nacarath, I.R.F.; Brás, V.V.; Rodrigues, F.A. Physiological and biochemical responses of soybean to white mold affected by manganese phosphite and fluazinam. Acta Physiol. Plant. 2019, 41, 186. [Google Scholar] [CrossRef]
- Picanço, B.B.; Silva, B.N.; Rodrigues, F.A. Potentiation of soybean resistance against Phakopsora pachyrhizi infection using phosphite combined with free amino acids. Plant Pathol. 2022, 71, 1496–1510. [Google Scholar] [CrossRef]
- Resende, M.L.V.; Rodrigues, F.A.; Botelho, D.M.S.; Ribeiro Junior, P.M.; Reichel, T.; Guerra-Guimarães, L. Produtos alternativos para o controlo de doenças das plantas. Bol. Soc. Port. Quim. 2021, 45, 255–259. [Google Scholar]
- Gill, U.S.; Sun, L.; Rustgi, S.; Tang, Y.; Wettstein, D.; Mysore, K.S. Transcriptome-based analyses of phosphite-mediated suppression of rust pathogens Puccinia emaculata and Phakopsora pachyrhizi and functional characterization of selected fungal target genes. Plant J. 2018, 93, 894–904. [Google Scholar] [CrossRef]
- Bruzamarello, J.; Franceschi, V.T.; Dalacosta, N.L.; Gonçalves, I.; Mazaro, S.M.; Reis, E. Potencial de fosfitos na indução da resistência em plantas de soja. Agron. Crop J. 2018, 27, 263–273. [Google Scholar] [CrossRef]
- Hao, Q.; Yang, H.; Chen, S.; Qu, Y.; Zhang, C.; Chen, L.; Zhou, X. RNA-Seq and comparative transcriptomic analyses of Asian soybean rust resistant and susceptible soybean genotypes provide insights into identifying disease resistance genes. Int. J. Mol. Sci. 2023, 24, 13450. [Google Scholar] [CrossRef] [PubMed]
- Havlin, J.L.; Schlegel, A.J. Review of phosphite as a plant nutrient and fungicide. Soil Syst. 2021, 5, 52. [Google Scholar] [CrossRef]
- Liu, Y.; Burke, D.J.; Medeiros, J.S.; Carrino-Kyker, S.R.; Burns, J.H. Phosphite indirectly mediates protection against root rot disease via altering soil fungal community in Rhododendron species. Plant Soil 2023, 491, 467–478. [Google Scholar] [CrossRef]
- Mehta, S.; Kumar, A.; Achary, V.M.M.; Ganesan, P.; Patel, A.; Singh, A.; Reddy, M.K. Antifungal and defense elicitor activity of potassium phosphite against fungal blast disease on ptxD-OE transgenic indica rice and its acceptor parent. Pestic. Biochem. Physiol. 2022, 182, 105026. [Google Scholar] [CrossRef]
- Mohammadi, M.A.; Cheng, Y.; Aslam, M.; Jakada, B.H.; Wai, M.H.; Ye, K.; Qin, Y. ROS and oxidative response systems in plants under biotic and abiotic stresses: Revisiting the crucial role of phosphite triggered plants defense response. Front. Microbiol. 2021, 12, 631318. [Google Scholar] [CrossRef] [PubMed]
- Chaves, J.A.A.; Oliveira, L.M.; Silva, L.C.; Silva, B.N.; Dias, C.S.; Rios, J.A.; Rodrigues, F.A. Physiological and biochemical responses of tomato plants to white mold affected by manganese phosphite. J. Phytopathol. 2021, 169, 149–167. [Google Scholar] [CrossRef]
- Fagundes-Nacarath, I.R.F.; Debona, D.; Brás, V.V.; Silveira, P.R.; Rodrigues, F.A. Phosphites attenuate Sclerotinia sclerotiorum-induced physiological impairments in common bean. Acta Physiol. Plant. 2018, 40, 198. [Google Scholar] [CrossRef]
- Hawerroth, C.; Einhardt, A.M.; Fontes, B.A.; Brás, V.V.; Valadares, S.V.; Rodrigues, F.A. Nickel enhances rice resistance against Bipolaris oryzae infection. Plant Soil 2023, 490, 291–303. [Google Scholar] [CrossRef]
- Oliveira, L.M.; Araujo, M.U.; Silva, B.N.; Chaves, J.A.; Pinto, L.F.; Silveira, P.R.; Rodrigues, F.A. Maize resistance to northern corn leaf blight is potentiated by nickel. Plant Pathol. 2022, 71, 262–278. [Google Scholar] [CrossRef]
- Guo, M.; Li, B.; Xiang, Q.; Wang, R.; Liu, P.; Chen, Q. Phosphite translocation in soybean and mechanisms of Phytophthora sojae inhibition. Pestic. Biochem. Physiol. 2021, 172, 104757. [Google Scholar] [CrossRef]
- Fernández, V.; Brown, P.H. From plant surface to plant metabolism: The uncertain fate of foliar-applied nutrients. Front. Plant Sci. 2013, 4, 289. [Google Scholar] [CrossRef] [PubMed]
- Otolakoski, M.G.; Viegas, B.G.; Bagio, B.Z.; Blum, M.M.C.; Suzana-Milan, C.S.; Huzar-Novakowiski, J. Reduction of the severity of Asian soybean rust with foliar application of silicon dioxide. Crop Prot. 2023, 173, 106387. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed]
- Cacique, I.S.; Bispo, W.M.S.; Araujo, L.; Aucique-Pérez, C.E.; Rios, J.A.; Silva, L.C.; Rodrigues, F.A. Potassium-modulated physiological performance of mango plants infected by Ceratocystis fimbriata. Bragantia 2017, 76, 521–535. [Google Scholar] [CrossRef]
- Amtmann, A.; Srivastava, A.K. Potassium and plant disease. In Mineral and Plant Nutrition; Datnoff, L.E., Elmer, W.H., Rodrigues, F.A., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 2023; pp. 105–140. [Google Scholar]
- Bock, C.H.; Pisani, C.; Wood, B.W. Nickel and plant disease. In Mineral Nutrition and Plant Disease; Datnoff, L.E., Elmer, W.H., Rodrigues, F.A., Eds.; APS Press: St. Paul, MN, USA, 2023; pp. 355–378. [Google Scholar]
- Aucique-Pérez, C.E.; Resende, R.S.; Martins, A.O.; Silveira, P.R.; Cavalcanti, J.H.F.; Vieira, N.M.; Rodrigues, F.A. How do wheat plants cope with Pyricularia oryzae infection? A physiological and metabolic approach. Planta 2020, 252, 24. [Google Scholar] [CrossRef] [PubMed]
- Rios, V.S.; Rios, J.A.; Aucique-Pérez, C.E.; Silveira, P.R.; Barros, A.V.; Rodrigues, F.A. Leaf gas exchange and chlorophyll a fluorescence in soybean leaves infected by Phakopsora pachyrhizi. J. Phytopathol. 2018, 166, 75–85. [Google Scholar] [CrossRef]
- Silva, B.N.; Picanço, B.B.M.; Martins, S.C.; Rodrigues, F.A. Impairment of the photorespiratory pathway on tomato leaves during the infection process of Septoria lycopersici. Physiol. Mol. Plant Pathol. 2023, 125, 102020. [Google Scholar] [CrossRef]
- Aucique-Pérez, C.E.; Resende, R.S.; Neto, L.B.C.; Dornelas, F.; DaMatta, F.M.; Rodrigues, F.A. Picolinic acid spray stimulates the antioxidative metabolism and minimizes impairments on photosynthesis on wheat leaves infected by Pyricularia oryzae. Physiol. Plant. 2019, 167, 628–644. [Google Scholar] [CrossRef]
- Silva, B.N.; Picanço, B.B.M.; Hawerroth, C.; Silva, L.C.; Rodrigues, F.A. Physiological and biochemical insights into induced resistance on tomato against septoria leaf spot by a phosphite combined with free amino acids. Physiol. Mol. Plant Pathol. 2022, 120, 101854. [Google Scholar] [CrossRef]
- Kaur, S.; Samota, M.H.; Choudhary, M.; Choudhary, M.; Pandey, A.K.; Sharma, A.; Thakur, J. How do plants defend themselves against pathogens–Biochemical mechanisms and genetic interventions. Physiol. Mol. Biol. Plants 2022, 28, 485–504. [Google Scholar] [CrossRef]
- Farooq, M.A.; Niazi, A.K.; Akhtar, J.; Farooq, M.; Souri, Z.; Karimi, N.; Rengel, Z. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol. Biochem. 2019, 141, 353–369. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ullah, F.; Zhou, D.X.; Yi, M.; Zhao, Y. Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef] [PubMed]
- Eshraghi, L.; Anderson, J.P.; Aryamanesh, N.; McComb, J.A.; Shearer, B.; Hardy, G.E. Defence signalling pathways involved in plant resistance and phosphite-mediated control of Phytophthora cinnamomi. Plant Mol. Biol. Rep. 2014, 32, 342–356. [Google Scholar] [CrossRef]
- Choudhary, K.K.; Singh, S.; Agrawal, M.; Agrawal, S.B. Role of jasmonic and salicylic acid signaling in plants under UV-B stress. In Jasmonates and Salicylates Signaling in Plants; Aftab, T., Yusuf, M., Eds.; Signaling and Communication in Plants; Springer: Cham, Switzerland, 2021; pp. 45–63. [Google Scholar]
- Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of phenolic compounds in plant-defensive mechanisms. In Plant Phenolics in Sustainable Agriculture; Lone, R., Shuab, R., Kamili, A., Eds.; Springer: Singapore, 2020; pp. 517–532. [Google Scholar]
- Ninkuu, V.; Yan, J.; Fu, Z.; Yang, T.; Ziemah, J.; Ullrich, M.S.; Zeng, H. Lignin and its pathway-associated phytoalexins modulate plant defense against fungi. J. Fungi 2022, 9, 52. [Google Scholar] [CrossRef]
- Yadav, V.; Wang, Z.; Wei, C.; Amo, A.; Ahmed, B.; Yang, X.; Zhang, X. Phenylpropanoid pathway engineering: An emerging approach towards plant defense. Pathogens 2020, 9, 312. [Google Scholar] [CrossRef]
- Silveira, P.R.; Aucique-Pérez, C.E.; Cruz, M.F.A.; Rodrigues, F.A. Biochemical and physiological changes in maize plants supplied with silicon and infected by Exserohilum turcicum. J. Phytopathol. 2021, 169, 393–408. [Google Scholar] [CrossRef]
- Shine, M.B.; Yang, J.W.; El-Habbak, M.; Nagyabhyru, P.; Fu, D.Q.; Navarre, D.; Kachroo, A. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytol. 2016, 212, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Siah, A.; Magnin-Robert, M.; Randoux, B.; Choma, C.; Rivière, C.; Halama, P.; Reignault, P. Natural agents inducing plant resistance against pests and diseases. In Natural Antimicrobial Agents; Mérillon, J.M., Riviere, C., Eds.; Sustainable Development and Biodiversity; Springer: Cham, Switzerland, 2018; Volume 19, pp. 121–159. [Google Scholar]
- Santos, C.; Franco, O.L. Pathogenesis-related proteins (PRs) with enzyme activity activating plant defense responses. Plants 2023, 12, 2226. [Google Scholar] [CrossRef]
- Zribi, I.; Ghorbel, M.; Brini, F. Pathogenesis related proteins (PRs): From cellular mechanisms to plant defense. Curr. Protein Pept. Sci. 2021, 22, 396–412. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, J.L.; Zhang, X.L.; Zhu, L.M.; Wang, X.F.; Guo, N.; Xing, H. Overexpression of chalcone isomerase (CHI) increases resistance against Phytophthora sojae in soybean. J. Plant Biol. 2018, 61, 309–319. [Google Scholar] [CrossRef]
- Aerts, N.; Mendes, M.P.; Van Wees, S.C.M. Multiple levels of crosstalk in hormone networks regulating plant defense. Plant J. 2021, 105, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.B. Characterization of phosphatase of intact maize roots. J. Agric. Food Chem. 1975, 23, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, V.T.; Alves, K.S.; Mazaro, S.M.; Godoy, C.V.; Duarte, H.S.S.; DelPonte, E.M. A new standard diagram set for assessment of severity of soybean rust improves accuracy of estimates and optimizes resource use. Plant Pathol. 2019, 69, 495–505. [Google Scholar] [CrossRef]
- Shaner, G.; Finney, R.E. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 1977, 67, 1051–1056. [Google Scholar] [CrossRef]
- Picanço, B.B.M.; Ferreira, S.; Fontes, B.A.; Oliveira, L.M.; Silva, B.N.; Einhardt, A.M.; Rodrigues, F.A. Soybean resistance to Phakopsora pachyrhizi infection is barely potentiated by boron. Physiol. Mol. Plant Pathol. 2021, 115, 101668. [Google Scholar] [CrossRef]
- Awasthi, J.P.; Saha, B.; Chowardhara, B.; Devi, S.S.; Borgohain, P.; Panda, S.K. Qualitative analysis of lipid peroxidation in plants under multiple stress through schiff’s reagent: A histochemical approach. Bio-Protocol 2018, 8, 2807. [Google Scholar] [CrossRef]
- Tistama, R.; Mawaddah, P.A.S.; Ade-Fipriani, L.; Junaidi, J. Physiological status of high and low metabolism Hevea clones in the difference stage of tapping panel dryness. Biodiversita 2019, 20, 367–373. [Google Scholar] [CrossRef]
- Cakmak, I.; Horst, W.J. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 1991, 83, 463–468. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Chaitanya, K.S.K.; Naithani, S.C. Role of superoxide lipid peroxidation and superoxide dismutase in membrane perturbation during loss of variability in seeds of Shorea robusta. New Phytol. 1994, 126, 623–627. [Google Scholar] [CrossRef]
- Tatagiba, S.D.; Rodrigues, F.A.; Filippi, M.C.C.; Silva, G.B.; Silva, L.C. Physiological responses of rice plants supplied with silicon to Monographella albescens infection. J. Phytopathol. 2014, 162, 596–606. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Mortel, M.; Recknor, J.C.; Graham, M.A.; Nettleton, D.; Dittman, J.D.; Nelson, R.T.; Godoy, C.V.; Abdelnoor, R.V.; Almeida, A.M.R.; Baum, T.J.; et al. Distinct biophasic mRNA changes in response to Asian soybean rust infection. Mol. Plant-Microbe Interact. 2007, 20, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.J.; Dixon, P.M. Analysis of combined experiments revisited. Agron. J. 2015, 107, 763–771. [Google Scholar] [CrossRef]
- Minitab LLC. Minitab. 2024. Available online: https://www.minitab.com (accessed on 1 March 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 1 March 2024).
Variables/Parameters | IR Stimulus | PI | IR Stimulus × PI |
---|---|---|---|
UG | <0.001 | - | - |
SR severity | <0.001 | - | - |
AUDPC | <0.001 | - | - |
Ni | <0.001 | 0.975 | 0.975 |
K | <0.001 | 0.010 | 0.044 |
Fv/Fm | 0.385 | 0.986 | 0.041 |
Y(II) | <0.001 | 0.030 | <0.001 |
Y(NPQ) | <0.001 | <0.001 | <0.001 |
Y(NO) | <0.001 | 0.004 | <0.001 |
ETR | <0.001 | <0.001 | <0.001 |
Chl a + b | 0.018 | <0.001 | 0.007 |
Car | <0.001 | <0.001 | <0.001 |
MDA | <0.001 | <0.001 | <0.001 |
H2O2 | <0.001 | <0.001 | 0.029 |
O2•− | 0.026 | 0.006 | 0.021 |
TSP | 0.006 | 0.013 | <0.001 |
LTGA derivatives | <0.001 | 0.572 | <0.001 |
PAL2.1 | 0.006 | 0.006 | 0.006 |
PAL3.1 | <0.001 | 0.102 | 0.099 |
CHIB1 | <0.001 | <0.001 | <0.001 |
LOX7 | 0.002 | 0.003 | 0.002 |
PR-1A | 0.031 | 0.032 | 0.032 |
PR10 | <0.001 | <0.001 | <0.001 |
ICS1 | <0.001 | 0.013 | 0.014 |
ICS2 | 0.046 | 0.043 | 0.046 |
JAR1 | 0.683 | 0.002 | 0.434 |
ETR1 | <0.001 | <0.001 | <0.001 |
ACS | <0.001 | 0.075 | <0.001 |
ACO | <0.001 | 0.289 | 0.004 |
OPR3 | <0.001 | <0.001 | <0.001 |
TEF-1α | <0.001 | - | - |
Genes | GenBank | Primer Sense 5′-3′ | Primer Antisense 5′-3′ |
---|---|---|---|
PAL2.1 | Glyma.10G058200 | ATCTCCCTCCACTCACCATA | GTTCAAGGGGTCATTAGCAC |
PAL3.1 | Glyma.02G309300 | TGCTCTTCAGAAGGAAATGGT | GTTGCTGATTTAGGCAGTGT |
CHI1B1 | Glyma.20G2416001 | GTTTCCCCTGCTTTGAAAGAGA | GGATTGGCCTCTAACTCTTTGAAG |
LOX7 | Glyma.13G347800 | ACAAGCTAGGCACAACAAAA | TTGTTTCCTCCGATGATTCCAA |
PR-1A | Glyma.09G040500 | GCACTACACACAGGTCGTTTGG | CCTCCGTTATCACATGTCACTTTG |
PR10 | Glyma.07G243651v4 | AAATCAACTCCCCTGTGGCTC | CCACCATTTCCCTCAACGTTT |
ICS1 | Glyma.01G104100 | GAAACAGTACAGTCCCTGCT | TGTGGCTGGGAAAAGAAAAC |
ICS2 | Glyma.03G070600 | GCAACATCCTCGTACCTCTT | CTCTCTGCAACCGTTCATTG |
JAR1 | Glyma.07G057900 | AGCCGTATGGTTGTGTTGTTC | TGCAGCATTGGGATTGGAGT |
ETR1 | Glyma.19g40090 | ATGGATGCCTTCAAGAAGTGG | GCACATATCTTCCCACAAGAGG |
ACS | Glyma.05g36250 | CTCTTAACCTTCATTCTTGCTAACC | TTGCTTCTGCTTCTTTGTATGC |
ACO | Glyma.14g05350 | CCAATGCGCCATTCCATTGTTG | TGAGGCTACGGACATTCTGGTC |
OPR3 | Glyma.13G109800 | GTGTATCAGCCTGGTGGG | GTGTATCAGCCTGGTGGG |
GAPDH | Glyma.04G193500 | AAGGGTGGTGCAAAGAAGGT | TCTGGCTTGTACTCGTGCTC |
UBIQ | Glyma.20g141600 | TGTAATGTTGGATGTGTTCCC | GGGACACAATTGAGTTCAACA |
TEF-1α | Glyma.07G060900 | ATTCGAAGCCGGTATTTCTAAAG | CCACTTGGTTGTGTCCATCTTAT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontes, B.A.; Silva, L.C.; Picanço, B.B.M.; Barros, A.V.; Leal, I.M.G.; Quadros, L.P.; Rodrigues, F.Á. Resistance in Soybean Against Infection by Phakopsora pachyrhizi Is Induced by a Phosphite of Nickel and Potassium. Plants 2024, 13, 3161. https://doi.org/10.3390/plants13223161
Fontes BA, Silva LC, Picanço BBM, Barros AV, Leal IMG, Quadros LP, Rodrigues FÁ. Resistance in Soybean Against Infection by Phakopsora pachyrhizi Is Induced by a Phosphite of Nickel and Potassium. Plants. 2024; 13(22):3161. https://doi.org/10.3390/plants13223161
Chicago/Turabian StyleFontes, Bianca Apolônio, Leandro Castro Silva, Bárbara Bezerra Menezes Picanço, Aline Vieira Barros, Isabela Maria Grossi Leal, Leonardo Packer Quadros, and Fabrício Ávila Rodrigues. 2024. "Resistance in Soybean Against Infection by Phakopsora pachyrhizi Is Induced by a Phosphite of Nickel and Potassium" Plants 13, no. 22: 3161. https://doi.org/10.3390/plants13223161
APA StyleFontes, B. A., Silva, L. C., Picanço, B. B. M., Barros, A. V., Leal, I. M. G., Quadros, L. P., & Rodrigues, F. Á. (2024). Resistance in Soybean Against Infection by Phakopsora pachyrhizi Is Induced by a Phosphite of Nickel and Potassium. Plants, 13(22), 3161. https://doi.org/10.3390/plants13223161