Influence of Microbial Treatments on Vine Growth and Must Quality: Preliminary Results
Abstract
:1. Introduction
2. Results and Discussion
2.1. Grapes Characteristics
2.2. CIELAB Coordinates
2.3. Chemical Composition of the Grape Juice
2.4. Aroma Composition
2.4.1. Whole Grapes
2.4.2. Pressed Grapes
2.4.3. Grape Juice
2.4.4. Grape Skins
3. Materials and Methods
3.1. Field Position
3.2. Product Application
3.3. Sampling
3.4. Chemical Analyses
3.5. Determination of Wine Colour Coordinates
- L*, representing brightness (0 = black, 100 = white);
- a*, which indicates the color range from green (negative values) to red (positive values);
- b*, indicating the color range from blue (negative values) to yellow (positive values).
3.6. Headspace Solid-Phase Microextraction and GC-MS Analyses
3.7. GC-MS Analyses
3.8. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Izquierdo, I.; Colino-Rabanal, V.J.; Tamame, M.; Rodríguez-López, F. Microbiota Ecosystem Services in Vineyards and Wine: A Review. Agronomy 2024, 14, 131. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Bindi, M.; Nunes, P.A.L.D. Vineyards and Vineyard Management Related to Ecosystem Services: Experiences from a Wide Range of Enological Regions in the Context of Global Climate Change. J. Wine Econ. 2016, 11, 66–68. [Google Scholar] [CrossRef]
- Paiola, A.; Assandri, G.; Brambilla, M.; Zottini, M.; Pedrini, P.; Nascimbene, J. Exploring the Potential of Vineyards for Biodiversity Conservation and Delivery of Biodiversity-Mediated Ecosystem Services: A Global-Scale Systematic Review. Sci. Total Environ. 2020, 706, 135839. [Google Scholar] [CrossRef]
- Winkler, K.J.; Viers, J.H.; Nicholas, K.A. Assessing Ecosystem Services and Multifunctionality for Vineyard Systems. Front. Environ. Sci. 2017, 5, 15. [Google Scholar] [CrossRef]
- Winter, S.; Bauer, T.; Strauss, P.; Kratschmer, S.; Paredes, D.; Popescu, D.; Landa, B.; Guzmán, G.; Gómez, J.A.; Guernion, M.; et al. Effects of Vegetation Management Intensity on Biodiversity and Ecosystem Services in Vineyards: A Meta-analysis. J. Appl. Ecol. 2018, 55, 2484–2495. [Google Scholar] [CrossRef]
- Han, K.Y.; Kröger, L.; Buchholz, F.; Dewan, I.; Quaas, M.; Schulenburg, H.; Reusch, T.B.H. The Economics of Microbiodiversity. Ecol. Econ. 2023, 204, 107664. [Google Scholar] [CrossRef]
- Venter, J.C.; Glass, J.I.; Hutchison, C.A., III; Vashee, S. Synthetic Chromosomes, Genomes, Viruses, and Cells. Cell 2022, 185, 2708–2724. [Google Scholar] [CrossRef]
- Giffard, B.; Winter, S.; Guidoni, S.; Nicolai, A.; Castaldini, M.; Cluzeau, D.; Coll, P.; Cortet, J.; Le Cadre, E.; d’Errico, G.; et al. Vineyard Management and Its Impacts on Soil Biodiversity, Functions, and Ecosystem Services. Front. Ecol. Evol. 2022, 10, 850272. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. Microbial Biogeography of Wine Grapes Is Conditioned by Cultivar, Vintage, and Climate. Proc. Natl. Acad. Sci. USA 2014, 111, E139–E148. [Google Scholar] [CrossRef]
- Power, A.G. Ecosystem Services and Agriculture: Tradeoffs and Synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- Santin, M.; Zeni, V.; Grassi, A.; Ricciardi, R.; Pieracci, Y.; Di Giovanni, F.; Panzani, S.; Frasconi, C.; Agnolucci, M.; Avio, L.; et al. Do Changes in Lactuca sativa Metabolic Performance, Induced by Mycorrhizal Symbionts and Leaf UV-B Irradiation, Play a Role towards Tolerance to a Polyphagous Insect Pest? Environ. Sci. Pollut. Res. 2023, 30, 56207–56223. [Google Scholar] [CrossRef] [PubMed]
- Agnolucci, M.; Avio, L.; Palla, M.; Sbrana, C.; Turrini, A.; Giovannetti, M. Health-Promoting Properties of Plant Products: The Role of Mycorrhizal Fungi and Associated Bacteria. Agronomy 2020, 10, 1864. [Google Scholar] [CrossRef]
- Ninkovic, V.; Markovic, D.; Rensing, M. Plant Volatiles as Cues and Signals in Plant Communication. Plant Cell Environ. 2021, 44, 1030–1043. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, R.P. Mycorrhizal Colonization of Grapevine Rootstocks under Field Conditions. Am. J. Enol. Vitic. 2003, 54, 143–149. [Google Scholar] [CrossRef]
- Cesaro, P.; Massa, N.; Bona, E.; Novello, G.; Todeschini, V.; Boatti, L.; Mignone, F.; Gamalero, E.; Berta, G.; Lingua, G. Native AMF Communities in an Italian Vineyard at Two Different Phenological Stages of Vitis Vinifera. Front. Microbiol. 2021, 12, 676610. [Google Scholar] [CrossRef]
- Mercanti, N.; Macaluso, M.; Pieracci, Y.; Flamini, G.; Scappaticci, G.; Marianelli, A.; Zinnai, A. Towards Sulphite-Free Winemaking: A New Horizon of Vinification and Maturation. Foods 2024, 13, 1108. [Google Scholar] [CrossRef]
- Zarraonaindia, I.; Owens, S.M.; Weisenhorn, P.; West, K.; Hampton-Marcell, J.; Lax, S.; Bokulich, N.A.; Mills, D.A.; Martin, G.; Taghavi, S.; et al. The Soil Microbiome Influences Grapevine-Associated Microbiota. MBio 2015, 6, e02527-14. [Google Scholar] [CrossRef]
- Karoglan, M.; Radić, T.; Anić, M.; Andabaka, Ž.; Stupić, D.; Tomaz, I.; Mesić, J.; Karažija, T.; Petek, M.; Lazarević, B.; et al. Mycorrhizal Fungi Enhance Yield and Berry Chemical Composition of in Field Grown “Cabernet Sauvignon” Grapevines (V. Vinifera L.). Agriculture 2021, 11, 615. [Google Scholar] [CrossRef]
- Wong, D.C.J.; Lopez Gutierrez, R.; Dimopoulos, N.; Gambetta, G.A.; Castellarin, S.D. Combined Physiological, Transcriptome, and Cis-Regulatory Element Analyses Indicate That Key Aspects of Ripening, Metabolism, and Transcriptional Program in Grapes (Vitis vinifera L.) Are Differentially Modulated Accordingly to Fruit Size. BMC Genom. 2016, 17, 416. [Google Scholar] [CrossRef]
- Kraus, C.; Pennington, T.; Herzog, K.; Hecht, A.; Fischer, M.; Voegele, R.T.; Hoffmann, C.; Töpfer, R.; Kicherer, A. Effects of Canopy Architecture and Microclimate on Grapevine Health in Two Training Systems. Vitis 2018, 57, 53–60. [Google Scholar]
- Bettiga, L.J. Grape Pest Management; UCANR Publications: Davis, CA, USA, 2013; Volume 3343, ISBN 1-60107-800-5. [Google Scholar]
- Santesteban, I.G.; Miranda, C.; Royo, J.B. Colour Evaluation on Red Winegrapes by Cielab Parameters. Acta Hortic. 2012, 931, 323–330. [Google Scholar] [CrossRef]
- Han, F.-L.; Zhang, W.-N.; Pan, Q.-H.; Zheng, C.-R.; Chen, H.-Y.; Duan, C.-Q. Principal Component Regression Analysis of the Relation between CIELAB Color and Monomeric Anthocyanins in Young Cabernet Sauvignon Wines. Molecules 2008, 13, 2859–2870. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Wu, J.; Meng, J.; Shi, P.; Fang, Y.; Zhang, Z.; Sun, X. Harvesting at the Right Time: Maturity and Its Effects on the Aromatic Characteristics of Cabernet Sauvignon Wine. Molecules 2019, 24, 2777. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-S.; Hong, S.-O. Effects of Layering Technique on the Shade of Resin Overlays and the Microhardness of Dual Cure Resin Cement. Braz. Oral Res. 2014, 28, 1–6. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; Wiley: Hoboken, NJ, USA, 2016; ISBN 9781118627808. [Google Scholar]
- Sicheri, G. Enologia. Con Elementi Di Chimica Viticolo-Enologica; Libreriauniversitaria.it Edizioni: Limena, Italy, 2015; ISBN 978-88-6292-610-2. [Google Scholar]
- Cacho, J.; Ferreira, V. The Aroma of Wine. In Handbook of Fruit and Vegetable Flavors; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 303–317. ISBN 9780470227213. [Google Scholar]
- Dicke, M.; Baldwin, I.T. The Evolutionary Context for Herbivore-Induced Plant Volatiles: Beyond the “Cry for Help”. Trends Plant Sci. 2010, 15, 167–175. [Google Scholar] [CrossRef]
- Sharma, E.; Anand, G.; Kapoor, R. Terpenoids in Plant and Arbuscular Mycorrhiza-Reinforced Defence against Herbivorous Insects. Ann. Bot. 2017, 119, 791–801. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The Effect of Developmental and Environmental Factors on Secondary Metabolites in Medicinal Plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Akula, R.; Ravishankar, G.A. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Iqbal, M.; Rasheed, R.; Hussain, I.; Riaz, M.; Arif, M.S. Environmental Stress and Secondary Metabolites in Plants. In Plant Metabolites and Regulation Under Environmental Stress; Elsevier: Amsterdam, The Netherlands, 2018; pp. 153–167. ISBN 9780128126899. [Google Scholar]
- Gao, Y.; Wei, Y.; Wang, Y.; Gao, F.; Chen, Z. Lycium Barbarum: A Traditional Chinese Herb and A Promising Anti-Aging Agent. Aging Dis. 2017, 8, 778. [Google Scholar] [CrossRef]
- Yue, X.; Ju, Y.; Cui, Y.; Wei, S.; Xu, H.; Zhang, Z. Evolution of Green Leaf Volatile Profile and Aroma Potential during the Berry Development in Five Vitis vinifera L. Cultivars. Food Chem. X 2023, 18, 100676. [Google Scholar] [CrossRef] [PubMed]
- Mendes, S.D.C.; Arcari, S.G.; Werner, S.S.; Valente, P.; Ramirez-Castrillon, M. Wild Saccharomyces Produced Differential Aromas of Fermented Sauvignon Blanc Must. Fermentation 2022, 8, 177. [Google Scholar] [CrossRef]
- Rocha, S.M.; Coelho, E.; Zrostlíková, J.; Delgadillo, I.; Coimbra, M.A. Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry of Monoterpenoids as a Powerful Tool for Grape Origin Traceability. J. Chromatogr. A 2007, 1161, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Duan, S.; Zhao, L.; Gao, Z.; Luo, M.; Song, S.; Xu, W.; Zhang, C.; Ma, C.; Wang, S. Aroma Characterization Based on Aromatic Series Analysis in Table Grapes. Sci. Rep. 2016, 6, 31116. [Google Scholar] [CrossRef]
- Kalua, C.M.; Boss, P.K. Evolution of Volatile Compounds during the Development of Cabernet Sauvignon Grapes (Vitis Vinifera L.). J. Agric. Food Chem. 2009, 57, 3818–3830. [Google Scholar] [CrossRef]
- Chen, J.; Pu, D.; Shi, Y.; Sun, B.; Guo, H.; Li, K.; Zhang, Y. Characterization of the Key Aroma Compounds in Different Yeast Proteins by GC-MS/O, Sensory Evaluation, and E-Nose. Foods 2023, 12, 3136. [Google Scholar] [CrossRef]
- Clark, A.C.; Deed, R.C. The Chemical Reaction of Glutathione and trans -2-Hexenal in Grape Juice Media to Form Wine Aroma Precursors: The Impact of pH, Temperature, and Sulfur Dioxide. J. Agric. Food Chem. 2018, 66, 1214–1221. [Google Scholar] [CrossRef]
- Chigo-Hernandez, M.M.; Tomasino, E. Aroma Perception of Limonene, Linalool and α-Terpineol Combinations in Pinot Gris Wine. Foods 2023, 12, 2389. [Google Scholar] [CrossRef]
- Reis Pereira, M.; Ribeiro, H.; Abreu, I.; Eiras-Dias, J.; Mota, T.; Cunha, M. Predicting the Flowering Date of Portuguese Grapevine Varieties Using Temperature-Based Phenological Models: A Multi-Site Approach. J. Agric. Sci. 2018, 156, 865–876. [Google Scholar] [CrossRef]
- Pérez-Caballero, V.; Ayala, F.; Echávarri, J.F.; Negueruela, A.I. Proposal for a New Standard OIV Method for Determination of Chromatic Characteristics of Wine. Am. J. Enol. Vitic. 2003, 54, 59–62. [Google Scholar] [CrossRef]
- Mercanti, N.; Pieracci, Y.; Macaluso, M.; Fedel, M.; Brazzarola, F.; Palla, F.; Verdini, P.G.; Zinnai, A. Exploring Red Wine Aging: Comparative Analysis of Cellar and Sea Underwater Aging on Chemical Composition and Quality. Foods 2024, 13, 1812. [Google Scholar] [CrossRef]
- Master, O.; Patronage, O. Resolution Oiv-Oeno 370-2012 Guidelines for the Characterization of Wine Yeasts of the Genus Saccharomyces Isolated from Vitivinicultural Environments. YEAST 3, 6.
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 1995. [Google Scholar]
- Davies, N.W. Gas Chromatographic Retention Indices of Monoterpenes and Sesquiterpenes on Methyl Silicon and Carbowax 20M Phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography; Elsevier: New York, NY, USA; London, UK; Sydney, Australia; Toronto, ON, Canada; San Francisco, CA, USA, 1980; Volume 26, ISBN 9780123842503. [Google Scholar]
- Masada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; John Wiley & Sons, Inc.: New York, NY, USA, 1976; ISBN 047015019X. [Google Scholar]
- Swigar, A.A.; Silverstein, R.M. Monoterpenes: Infrared, Mass, 1H NMR, and 13C NMR Spectra, and Kováts Indices; Aldrich Chemical Company: Milwaukee, WI, USA, 1981. [Google Scholar]
- Stenhagen, E.; Abrahamsson, S.; McLafferty, F.W. Registry of Mass Spectral Data; Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
Samples | N° Grapes | Average Grape Weight (g) | Total Grapes Weight (g) | Must Weight (g) | ||
---|---|---|---|---|---|---|
Bioma | 6 | 242.50 ± 117.06 B | 1455.05 | 1959 | ||
Control | 6 | 426.02 ± 117.21 A | 2556.16 | 2174 | ||
Samples | Average Grape Berries (N°) | Total Berries Weight (g) | Average Berry Weight (g) | |||
Bioma | 104.5 ± 33.39 B | 1379.85 | 2.20 | |||
Control | 230.6 ± 67.63 A | 2394.22 | 1.72 |
Samples | L* | a* | b* | Chroma | Hue (°) | ΔEab |
---|---|---|---|---|---|---|
Bioma berries | 14.18 ± 0.02 B | 2.81 ± 0.02 B | 0.29 ± 0 A | 2.83 ± 0.02 B | 5.90 ± 0.04 B | ≈11.66 |
Control berries | 24.96 ± 0.005 A | 3.12 ± 0 A | −4.14 ± 0.02 B | 5.18 ± 0.015 A | 306.79 ± 0.14 A | |
Bioma seeds | 30.79 ± 0.06 B | 6.14 ± 0.011 A | 12.35 ± 0.035 | 13.79 ± 0.03 | 63.56 ± 0.03 B | ≈0.94 |
Control seeds | 31.25 ± 0.02 A | 5.32 ± 0.01 B | 12.43 ± 0.29 | 13.52 ± 0.26 | 66.79 ± 0.51 A | |
Bioma marcs | 22.37 ± 0.34 A | 13.06 ± 0.20 B | 0.86 ± 0.086 A | 15.47 ± 0.20 B | 3.75 ± 0.31 A | ≈8.93 |
Control marcs | 13.79 ± 0.05 B | 15.46 ± 0.07 A | 0.17 ± 0.60 B | 13.78 ± 0.07 A | 0.64 ± 0.22 B |
Samples | Lactic Acid (g/L) | Citric Acid (g/L) | Malic Acid (g/L) | Tartaric Acid (g/L) | Acetic Acid (g/L) | pH | Titratable Acidity (g/L of Tartaric Acid) | Volatile Acidity (g/L of Acetic Acid) |
---|---|---|---|---|---|---|---|---|
Bioma | 0.1165 ± 0.017 | 0.07 ± 0.025 | 1.88 ± 0.5 A | 3.07 ± 2.02 | - B | 3.71 ± 0.14 | 4.53 ± 0.55 | 0.12 ± 0 |
Control | 0.113 ± 0 | 0.0335 ± 0 | 1.19 ± 0.15 B | 1.92 ± 0.21 | 30 ± 2.82 A | 3.65 ± 0.02 | 3.87 ± 0.28 | 0.11 ± 0.03 |
Samples | Total Phenols (g/L of Catechins) | Total Anthocyanins (TA) (mg/L of Malvin) | Bleachable Anthocyanins (BA) (mg/L of Malvin) | TA/BA | Hexoses (g/L) | Glucose (g/L) | Fructose (g/L) | Glucose/ Fructose |
Bioma | 2.56 ± 0.12 | 167.51 ± 4.13 B | 122.54 ± 0.30 | 1.36 A | 183.46 ± 2.11 A | 92.04 ± 1.26 | 91.41 ± 0.85 A | 1.006 |
Control | 2.61 ± 0 | 203.39 ± 2.86 A | 167.51 ± 7.42 | 1.21 B | 157.15 ± 7.19 B | 77.35 ± 5.25 | 79.80 ± 1.90 B | 0.96 |
Compounds | l.r.i. 1 | Class | Relative Abundance (%) ± Standard Deviation | Significance Level | |
---|---|---|---|---|---|
Control Grapes | Bioma Grapes | ||||
Heptane | 700 | nt | 7.2 ± 0.53 B | 25.6 ± 3.44 A | * |
2-Hexanone | 790 | nt | 2.1 ± 0.02 | 2.0 ± 0.09 | n.s. |
(Z)-3-Hexen-1-ol | 896 | nt | 0.4 ± 0.11 | 1.8 ± 0.11 | *** |
1-Hexanol | 903 | nt | 2.7 ± 0.28 B | 10.7 ± 0.17 A | *** |
2-Heptanone | 926 | nt | 13.7 ± 1.18 A | 5.0 ± 0.06 B | ** |
1-Octen-3-ol | 976 | nt | 1.1 ± 0.13 B | 2.1 ± 0.00 A | ** |
6-Methyl-5-hepten-2-one | 986 | nt | 1.5 ± 0.18 | 2.5 ± 1.07 | n.s. |
2-Octanone | 990 | nt | 57.0 ± 0.11 A | 28.8 ± 4.85 B | ** |
Pseudocumene | 990 | nt | 1.1 ± 0.11 B | 1.8 ± 0.19 A | * |
3-Ethyl-1-hexanol | 1030 | nt | - 2,B | 1.2 ± 0.17 A | ** |
Limonene | 1029 | mh | - B | 3.5 ± 0.19 A | ** |
1-Octanol | 1069 | nt | 0.6 ± 0.04 A | - B | * |
2-Nonanone | 1093 | nt | 5.2 ± 0.97 | 5.2 ± 0.77 | n.s. |
Nonanal | 1105 | nt | 2.2 ± 0.01 A | 1.1 ± 0.22 B | * |
Methylundecane | 1156 | nt | 0.7 ± 0.08 B | 1.4 ± 0.07 A | * |
Dodecane | 1200 | nt | 1.1 ± 0.12 B | 3.7 ± 0.26 A | ** |
Decanal | 1206 | nt | 2.2 ± 0.08 | 1.9 ± 0.65 | n.s. |
2-Undecanone | 1294 | nt | 0.5 ± 0.2 B | 1.6 ± 0.19 A | ** |
(E)-Geranylacetone | 1453 | ac | 0.6 ± 0.13 A | 0.3 ± 0.00 B | ** |
Other non-terpene derivatives (nt) | 98.2 ± 0.25 | 94.6 ± 0.01 | * | ||
Monoterpene hydrocarbons (mh) | 1.1 ± 0.11 | 5.3 ± 0 | *** | ||
Apocarotenoids (ac) | 0.6 ± 0.13 | 0.3 ± 0 | * | ||
Total identified (%) | 100 ± 0.01 | 100 ± 0.01 |
Compounds | l.r.i. 1 | Class | Relative Abundance (%) ± Standard Deviation | Significance Level | |
---|---|---|---|---|---|
Control Pressed Grapes | Bioma Pressed Grapes | ||||
Hexanal | 800 | nt | 23.8 ± 0.53 A | 15.9 ± 0.98 b | ** |
(E)-2-Hexenal | 854 | nt | 27.5 ± 0.07 B | 40.5 ± 0.72 A | ** |
(E)-2-Hexen-1-ol | 862 | nt | 19.4 ± 0.09 B | 27.4 ± 0.73 A | ** |
1-Hexanol | 871 | nt | 26.3 ± 0.75 A | 14.8 ± 1.07 B | ** |
2-Octanone | 990 | nt | 1.1 ± 0.02 A | 0.2 ± 0.02 B | *** |
(E)-2-hexenyl acetate | 1017 | nt | 0.4 ± 0.01 B | 0.7 ± 0.04 A | ** |
1-Octanol | 1069 | nt | 0.1 ± 0.00 | - 2 | n.s. |
2-Nonanone | 1093 | nt | 0.2 ± 0.00 A | - B | ** |
Nonanal | 1105 | nt | 0.6 ± 0.02 A | 0.3 ± 0.02 B | *** |
Decanal | 1206 | nt | 0.5 ± 0.01 A | 0.2 ± 0.02 B | *** |
Other non-terpene derivatives (nt) | 100 ± 0.01 | 100 ± 0.00 | n.s. | ||
Total identified (%) | 100 ± 0.01 | 100 ± 0.00 |
Compounds | l.r.i. 1 | Class | Relative Abundance (%) ± Standard Deviation | Significance Level | |
---|---|---|---|---|---|
Control Grape Juice | Bioma Grape Juice | ||||
Acetic acid | 610 | nt | 0.2 ± 0.05 | 0.2 ± 0.04 | n.s. |
Heptane | 700 | nt | 0.2 ± 0.02 A | 0.1 ± 0.02 B | ** |
Hexanal | 800 | nt | 30.7 ± 0.22 | 31.2 ± 0.24 | n.s. |
Hex-2-enal | 851 | nt | 0.8 ± 0.07 | 0.9 ± 0.06 | n.s. |
(E)-2-Hexenal | 854 | nt | 56.2 ± 0.14 B | 59.2 ± 0.16 A | *** |
(E)-2-Hexen-1-ol | 862 | nt | 6.2 ± 0.36 A | 3.3 ± 0.21 B | ** |
1-Hexanol | 871 | nt | 5.5 ± 0.09 A | 4.7 ± 0.2 B | * |
Nonanal | 1104 | nt | 0.1 ± 0.01 B | 0.3 ± 0.03 A | ** |
Other non-terpene derivatives (nt) | 100 ± 0.01 | 100 ± 0.00 | n.s. | ||
Total identified (%) | 100 ± 0.01 | 100 ± 0.00 |
Compounds | l.r.i. 1 | Class | Relative Abundance (%) ± Standard Deviation | Significance Level | |
---|---|---|---|---|---|
Control Grape Sink | Bioma Grape Sink | ||||
2-Pentanone | 685 | nt | 0.8 ± 0.11 B | 1.5 ± 0.06 A | ** |
Hexanal | 800 | nt | 3.6 ± 1.33 | 1.0 ± 0.38 | n.s. |
(E)-2-Hexenal | 854 | nt | 7.2 ± 1.43 A | 4.1 ± 0.61 B | * |
1-Hexanol | 871 | nt | 86.3 ± 2.85 | 88.2 ± 0.77 | n.s. |
1-Octen-3-ol | 981 | nt | 0.2 ± 0.00 B | 0.3 ± 0.02 A | ** |
6-Methyl-5-hepten-2-one | 986 | nt | 0.4 ± 0.07 A | - 2,B | * |
2-Octanone | 990 | nt | 0.2 ± 0.03 B | 0.8 ± 0.09 A | ** |
2-Pentylfuran | 993 | nt | 0.8 ± 0.11 | 0.7 ± 0.02 | n.s. |
Hexyl acetate | 1011 | nt | - | 0.6 ± 0.33 | n.s. |
(E)-2-hexenyl acetate | 1016 | nt | 0.2 ± 0.07 | 2.2 ± 1.36 | n.s. |
Limonene | 1029 | mh | - B | 0.2 ± 0.04 A | * |
Nonanal | 1105 | nt | - B | 0.1 ± 0.01 A | ** |
Phenethyl alcohol | 1116 | nt | 0.1 ± 0.01 | 0.1 ± 0.01 | n.s. |
Decanal | 1205 | nt | 0.4 ± 0.06 A | 0.2 ± 0.00 B | * |
Other non-terpene derivatives (nt) | 100.0 ± 0.00 A | 99.8 ± 0.04 B | ** | ||
Monoterpene hydrocarbons (mh) | - B | 0.2 ± 0.04 A | * | ||
Total identified (%) | 100 ± 0.00 | 100 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercanti, N.; Macaluso, M.; Pieracci, Y.; Bertonelli, L.; Flamini, G.; Zinnai, A. Influence of Microbial Treatments on Vine Growth and Must Quality: Preliminary Results. Plants 2024, 13, 3168. https://doi.org/10.3390/plants13223168
Mercanti N, Macaluso M, Pieracci Y, Bertonelli L, Flamini G, Zinnai A. Influence of Microbial Treatments on Vine Growth and Must Quality: Preliminary Results. Plants. 2024; 13(22):3168. https://doi.org/10.3390/plants13223168
Chicago/Turabian StyleMercanti, Nicola, Monica Macaluso, Ylenia Pieracci, Leonardo Bertonelli, Guido Flamini, and Angela Zinnai. 2024. "Influence of Microbial Treatments on Vine Growth and Must Quality: Preliminary Results" Plants 13, no. 22: 3168. https://doi.org/10.3390/plants13223168
APA StyleMercanti, N., Macaluso, M., Pieracci, Y., Bertonelli, L., Flamini, G., & Zinnai, A. (2024). Influence of Microbial Treatments on Vine Growth and Must Quality: Preliminary Results. Plants, 13(22), 3168. https://doi.org/10.3390/plants13223168