Multi-Omics Analysis Uncovers the Mechanism for Enhanced Organic Acid Accumulation in Peach (Prunus persica L.) Fruit from High-Altitude Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Determination of Main Indicators for Fruit Intrinsic Quality
2.3. Metabolome Profiling of Primary Metabolites
2.4. Screening and Enrichment Analysis of Differentially Accumulated Metabolites
2.5. Transcriptome Profiling
2.6. Analysis of Differentially Expressed Genes
2.7. Analysis of Expression Patterns of Key Genes Involved in the Organic Acid Metabolic Pathway
2.8. RNA Extraction and Real-Time Quantitative Polymerase Chain Reaction Analysis
2.9. Weighted Gene Co-Expression Network Analysis Between Transcriptome and Three Organic Acid Traits
3. Results
3.1. Comparison of Fruit External Appearance and Internal Quality Indicators
3.2. Analysis of Primary Metabolites
3.3. Screening and Analysis of Differentially Accumulated Metabolites
3.4. Transcriptome Analysis
3.5. Expression Pattern of Key Genes Involved in Organic Acid Metabolism in Peach
3.6. Potential Regulatory Networks and Models of Organic Acid Accumulation in Peach Fruit Grown in High-Altitude Areas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, H.Y.; Tu, M.Y.; Jiang, G.L.; Li, J.; Wang, L.L.; He, C.Y.; Zhao, K.; Wang, X.A.; Gao, T.T.; Chen, D. Preliminary report on introduction test of three new early-maturing peach varieties in panxi area. Sichuan Agric. Sci. Technol. 2024, 4, 31–34. Available online: https://kns.cnki.net/kcms2/article/abstract?v=r9IaLYgXogUsgpYExVg-ryuneH5heaY2IHcJKm0uAeByZduunr155errtcMPqjd5VlhBULwQGcwp_gkW1xEgTuOJuKyO_5R0bpWYoWqK8BU2FEgLgXJt_aDMiL-HD4RwlpIJfaZBvSQ9x2Eo3haCbCT9GiHz3GfE9BJvO9PjvbNPnhWOHZNa5Fu_4-cXXKAP&uniplatform=NZKPT&language=CHS (accessed on 15 April 2024).
- Yu, F.; Zhang, Y.; Lu, L.; Qiu, M.H. Cultivation techniques of peach tree in low latitude plateau. Agric. Eng. Technol. 2017, 37, 12–14. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, H.; Zhao, X.Z.; Zhou, J.L.; Luo, C.G.; Ma, Y.H. Introduction evaluation of five yellow peach varieties in Guiyang area. South China Fruits 2023, 52, 194–196. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Zhu, C.H.; Li, J.X.; Gao, J.Y.; Gong, Q.; Shen, Z.S.; Yue, J.Q. Research progress on organic acid metabolism in fruit. South China Fruits 2015, 44, 120–125. [Google Scholar] [CrossRef]
- Lu, L.; Yu, F.; Qiu, M.H.; Zhang, Y.; Li, Y. Cultivation techniques of peach tree semi-open solar greenhouse in low latitude plateau. Agric. Eng. Technol. 2016, 36, 61–64. [Google Scholar]
- Li, Y.C. Analysis and Evaluation of Fruit Sugar, Acid and Aroma Quality of 11 Peach Varieties. Master’s Thesis, Zhejiang University, Hangzhou, China, 2023. [Google Scholar] [CrossRef]
- Xu, Z.Y. Fruit Quality Evaluation of 73 Peach Germplasm Resources. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2021. Available online: https://kns.cnki.net/kcms2/article/abstract?v=r9IaLYgXogVmvz-LsIfny2D5oXXCRvUi5Hb6nkJK-cDNCq-T0Ifb8dkgWHnkHrRpHiL1CplXqGU8LXMCZLgt9b7As7m_O_4p3l8IHaMsscN_2Yva6s_-N0EFYGHpKMaNEJSfmB7eEoLT7as-E0EjjW069KGxcjleAlKvzlI3Sj0PbQCS3yX4jw_ev1uvvYufAeCp0oz_tHs=&unipl (accessed on 1 May 2021).
- Xu, Z.Y.; Yan, J.; Cai, Z.X.; Sun, M.; Su, Z.W.; Shen, Z.J.; Ma, R.J.; Yu, M.L. Correlation between soluble sugar, organic acid and phenolic substances with tasted flavor in peach fruit. Jiangsu J. Agric. Sci. 2022, 38, 190–199. Available online: https://kns.cnki.net/kcms2/article/abstract?v=Fc1KeZPKhRHoCAbjkAWLvd6L6nC66Juu1mXd3QZQVgnr7FrdWErx-xHMruV-ST81O0kM3fs8GE8sFBh2imi3BMEnR22fmzHywqiGLh1nm8xCflaU_urtDsGR41XK2BQnzob2mwdIIhAwkD9qlCmIIHEQI13GOZ6OiXha2EFtj3sUDzC4dfDRRSKQlQ6suDU94Mc3gn9j3uc=&unipl (accessed on 28 February 2022).
- Li, C.L.; Krishnan, S.; Zhang, M.X.; Hu, D.G.; Meng, D.; Riedelsberger, J.; Dougherty, L.; Xu, K.N.; Pineros, M.A.; Cheng, L.L. Alternative splicing underpins the ALMT9 transporter function for vacuolar malic acid accumulation in apple. Adv. Sci. 2024, 11, e2310159. [Google Scholar] [CrossRef]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef]
- Wu, W.F.; Chen, F.X. Malate transportation and accumulation in fruit cell. Endocytobiosis Cell Res. 2016, 27, 107–112. Available online: https://www.researchgate.net/publication/311886181 (accessed on 31 December 2016).
- Katz, E.; Boo, K.H.; Kim, H.Y.; Eigenheer, R.A.; Phinney, B.S.; Shulaev, V.; Negre-Zakharov, F.; Sadka, A.; Blumwald, E. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. J. Exp. Bot. 2011, 62, 5367–5384. [Google Scholar] [CrossRef]
- Yoshida, M. Genétical studies on the fruit quality of peach varieties. I. Acidity. Bull. Hortic. Res. Stn. 1970, 9, 1–15. Available online: https://www.cabdirect.org/cabdirect/abstract/19710305949 (accessed on 24 October 1971).
- Monet, R. Transmission Génétique du Caractère “Fruit Doux” Chez le Pêcher. Incidence Sur la Sélection Pour la Qualité; Le Centre pour la Communication Scientifique Directe: Lyon, France, 1979; pp. 272–276. Available online: https://hal.inrae.fr/hal-02858664 (accessed on 30 September 1979).
- Wang, Q.; Cao, K.; Cheng, L.; Li, Y.; Guo, J.; Yang, X.; Wang, J.; Khan, I.A.; Zhu, G.; Fanh, W.; et al. Multi-omics approaches identify a key gene, PpTST1, for organic acid accumulation in peach. Hortic. Res. 2022, 9, uhac026. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiang, X.; Zhao, L.; Wang, F.; Liu, Y.; Zhou, H.; He, H.; Han, Y. A candidate PpRPH gene of the D locus controlling fruit acidity in peach. Plant Mol. Biol. 2021, 105, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q. Identification and Functional Characterization of Regulatory Genes of Organic Acid Accumulation in Peach. Ph.D. Thesis, Huazhong Agriculture University, Wuhan, China, 2022. [Google Scholar] [CrossRef]
- Yu, Y.; Guan, J.T.; Xu, Y.G.; Ren, F.; Zhang, Z.Q.; Yan, J.; Fu, J.; Guo, J.Y.; Shen, Z.J.; Zhao, J.B.; et al. Population-scale peach genome analyses unravel selection patterns and biochemical basis underlying fruit flavor. Nat. Commun. 2021, 12, 3604. [Google Scholar] [CrossRef]
- Zhou, D.D.; Zhang, Q.; Li, P.X.; Pan, L.Q.; Tu, K. Combined transcriptomics and proteomics analysis provides insight into metabolisms of sugars, organic acids and phenols in UV-C treated peaches during storage. Plant Physiol. Biochem. 2020, 157, 148–159. [Google Scholar] [CrossRef]
- Chen, L.; Qi, X.L.; Shi, C.Y.; Dong, Y.X.; Song, L.L.; Liu, C.L.; Li, M. Advances in research of malate metabolism and regulation in fruit of horticultural crops. J. Fruit Sci. 2023, 40, 2598–2609. [Google Scholar] [CrossRef]
- Zhou, H.J.; Wang, L.F.; Su, M.S.; Zhang, X.N.; Du, J.H.; Li, X.W.; Zhang, M.H.; Hu, Y.; Zheng, X.L.; Ye, Z.W.; et al. Comparative network analysis reveals the regulatory mechanism of 1-methylcyclopropene on sugar and acid metabolisms in yellow peach stored at non-chilling temperatures. Plant Physiol. Biochem. 2024, 216, 109100. [Google Scholar] [CrossRef]
- Olmedo, P.; Zepeda, B.; Delgado-Rioseco, J.; Leiva, C.; Moreno, A.A.; Sagredo, K.; Blanco-Herrera, F.; Pedreschi, R.; Infante, R.; Meneses, C.; et al. Metabolite profiling reveals the effect of cold storage on primary metabolism in nectarine varieties with contrasting mealiness. Plants 2023, 12, 766. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.J.; Zuo, H.; Zheng, W.K.; Zhang, S.S.; Huang, Y.; Pingcuo, G.S.; Ying, H.; Zhao, F.; Li, Y.R.; et al. Genomic basis of high-altitude adaptation in Tibetan Prunus fruit trees. Curr. Biol. 2021, 31, 3848–3860. [Google Scholar] [CrossRef]
- Ding, Z.H.; Fu, L.L.; Wang, B.; Ye, J.Q.; Ou, W.J.; Yan, Y.; Li, M.Y.; Zeng, L.W.; Dong, X.K.; Tie, W.W.; et al. Metabolic GWAS-based dissection of genetic basis underlying nutrient quality variation and domestication of cassava storage root. Genome Biol. 2023, 24, 289. [Google Scholar] [CrossRef]
- Shu, P.; Zhang, Z.X.; Wu, Y.; Chen, Y.; Li, K.Y.; Deng, H.; Zhang, J.; Zhang, X.; Wang, J.Y.; Liu, Z.B.; et al. A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). New Phytol. 2023, 238, 2064–2079. [Google Scholar] [CrossRef] [PubMed]
- Song, H.Y.; Liu, J.H.; Chen, C.Q.; Zhang, Y.; Tang, W.J.; Yang, W.L.; Chen, H.X.; Li, M.Y.; Jiang, G.L.; Sun, S.X.; et al. Down-regulation of NCED leads to the accumulation of carotenoids in the flesh of F1 generation of peach hybrid. Front Plant Sci. 2022, 13, 1055779. [Google Scholar] [CrossRef] [PubMed]
- Verde, I.; Jenkins, J.; Dondini, L.; Micali, S.; Pagliarani, G.; Vendramin, E.; Paris, R.; Aramini, V.; Gazza, L.; Rossini, L.; et al. The Peach v2.0 release: High-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genom. 2017, 18, 225. [Google Scholar] [CrossRef] [PubMed]
- Song, H.Y.; Zhao, K.; Pei, Y.G.; Chen, H.X.; Wang, X.A.; Jiang, G.L.; Xie, H.J.; Chen, D.; Gong, R.G. Multi-omics analysis provides new insights into the changes of important nutrients and fructose metabolism in loquat bud sport mutant. Front. Plant Sci. 2024, 15, 1374925. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape automation: Empowering workflow-based network analysis. Genome Biol. 2019, 20, 185. [Google Scholar] [CrossRef]
- Cao, K.; Wang, B.; Fang, W.C.; Zhu, G.R.; Chen, C.W.; Wang, X.W.; Li, Y.; Wu, J.L.; Tang, T.; Fei, Z.J.; et al. Combined nature and human selections reshaped peach fruit metabolome. Genome Biol. 2022, 23, 146. [Google Scholar] [CrossRef]
- Xiao, Q.; Ye, S.Y.; Wang, H.; Xing, S.S.; Zhu, W.L.; Zhang, H.N.; Zhu, J.W.; Pu, C.B.; Zhao, D.Q.; Zhou, Q.; et al. Soluble sugar, organic acid and phenolic composition and flavor evaluation of plum fruits. Food Chem. X 2024, 24, 101790. [Google Scholar] [CrossRef]
- Zhou, J.T.; Yang, S.W.; Ma, Y.; Liu, Z.S.; Tu, H.X.; Wang, H.; Zhang, J.; Chen, Q.; He, W.; Li, M.Y.; et al. Soluble sugar and organic acid composition and flavor evaluation of Chinese cherry fruits. Food Chem. X 2023, 20, 100953. [Google Scholar] [CrossRef]
- Hussain, S.B.; Shi, C.Y.; Guo, L.X.; Kamran, H.M.; Sadka, A.; Liu, Y.Z. Recent advances in the regulation of citric acid metabolism in citrus fruit. Crit. Rev. Plant Sci. 2017, 36, 241–256. [Google Scholar] [CrossRef]
- Lin, Q.; Qian, J.; Zhao, C.N.; Wang, D.L.; Liu, C.R.; Wang, Z.D.; Sun, C.D.; Chen, K.S. Low temperature induced changes in citrate metabolism in ponkan (Citrus reticulata Blanco cv. Ponkan) fruit during maturation. PLoS ONE 2016, 11, e0156703. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zheng, H.H.; Liu, W.; Liu, C.H.; Jin, T.; Liu, S.; Zheng, L. UV-C treatment enhances organic acids and GABA accumulation in tomato fruits during storage. Food Chem. 2021, 338, 128126. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.X.; Li, M.; Zhai, H.; You, C.X.; Hao, Y.J. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. J. Plant Physiol. 2011, 168, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Yokochi, Y.; Yoshida, K.; Hahn, F.; Miyagi, A.; Wakabayashi, K.I.; Kawai-Yamada, M.; Weber, A.P.M.; Hisabori, T. Redox regulation of NADP-malate dehydrogenase is vital for land plants under fluctuating light environment. Proc. Natl. Acad. Sci. USA 2021, 118, e2016903118. [Google Scholar] [CrossRef]
- Deng, Q.J.; Liu, J.H.; Jin, Z.Q.; Xu, B.Y. Changes of malate dehydrogenase and malic acid content during the ripening of banana fruit. Chin. J. Trop. Agric. 2011, 31, 34–38. Available online: https://kns.cnki.net/kcms2/article/abstract?v=r9IaLYgXogXuMf-Izbk1zQYY5dH51XpUthUjGXIcmrFfmBceRPnJHGDz8XqGwTR6ETjATQClKca9_64kVJ5t8XcLDnVdNXG1d-xu6Q_Kn2vO8836h7MyEAw9laGiUi_EWpQqU6mtFw_KE9HGvmnvM76q5R1W-MaqxW1fqDS9SrgkXV-WgkLbj7rT1zOsHlNA&uniplatform=NZKPT&language=CHS (accessed on 15 July 2011).
- Beeler, S.; Liu, H.C.; Stadler, M.; Schreier, T.; Eicke, S.; Lue, W.L.; Truernit, E.; Zeeman, S.C.; Chen, J.; Kötting, O. Plastidial NAD-dependent malate dehydrogenase is critical for embryo development and heterotrophic metabolism in Arabidopsis. Plant Physiol. 2014, 164, 1175–1190. [Google Scholar] [CrossRef]
- Teng, X.; Zhong, M.S.; Zhu, X.P.; Wang, C.M.; Ren, Y.L.; Wang, Y.L.; Zhang, H.; Jiang, L.; Wang, D.; Hao, Y.Y.; et al. FLOURY ENDOSPERM16 encoding a NAD-dependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice. Plant Biotechnol. J. 2019, 17, 1914–1927. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Zhao, K.; Wang, X.; Jiang, G.; Li, J.; He, C.; Wang, L.; Sun, S.; Tu, M.; Wang, Q.; et al. Multi-Omics Analysis Uncovers the Mechanism for Enhanced Organic Acid Accumulation in Peach (Prunus persica L.) Fruit from High-Altitude Areas. Plants 2024, 13, 3171. https://doi.org/10.3390/plants13223171
Song H, Zhao K, Wang X, Jiang G, Li J, He C, Wang L, Sun S, Tu M, Wang Q, et al. Multi-Omics Analysis Uncovers the Mechanism for Enhanced Organic Acid Accumulation in Peach (Prunus persica L.) Fruit from High-Altitude Areas. Plants. 2024; 13(22):3171. https://doi.org/10.3390/plants13223171
Chicago/Turabian StyleSong, Haiyan, Ke Zhao, Xiaoan Wang, Guoliang Jiang, Jing Li, Chengyong He, Lingli Wang, Shuxia Sun, Meiyan Tu, Qiang Wang, and et al. 2024. "Multi-Omics Analysis Uncovers the Mechanism for Enhanced Organic Acid Accumulation in Peach (Prunus persica L.) Fruit from High-Altitude Areas" Plants 13, no. 22: 3171. https://doi.org/10.3390/plants13223171
APA StyleSong, H., Zhao, K., Wang, X., Jiang, G., Li, J., He, C., Wang, L., Sun, S., Tu, M., Wang, Q., Gong, R., & Chen, D. (2024). Multi-Omics Analysis Uncovers the Mechanism for Enhanced Organic Acid Accumulation in Peach (Prunus persica L.) Fruit from High-Altitude Areas. Plants, 13(22), 3171. https://doi.org/10.3390/plants13223171