Impact of Climate Change on Distribution of Endemic Plant Section Tuberculata (Camellia L.) in China: MaxEnt Model-Based Projection
Abstract
:1. Introduction
2. Results
2.1. Model Optimization and Accuracy Validation
2.2. The Most Influential Climatic Factors for the Geographic Range of Sect. Tuberculata Plants
Climate Scenarios | High (×105 km2) | Medium (×105 km2) | Low (×105 km2) | |
---|---|---|---|---|
Last Interglacial | 0.01 | 0.12 | 0.5 | |
Last Glacial Maximum | 0.01 | 0.05 | 0.1 | |
Mid Holocene | 0.01 | 0.06 | 0.09 | |
Current | 0.21 | 0.35 | 0.49 | |
2030s | SSP2.6 | 0.21 | 0.35 | 0.53 |
SSP4.5 | 0.12 | 0.26 | 0.49 | |
SSP8.5 | 0.16 | 0.3 | 0.51 | |
2050s | SSP2.6 | 0.18 | 0.38 | 0.58 |
SSP4.5 | 0.19 | 0.43 | 0.58 | |
SSP8.5 | 0.22 | 0.41 | 0.6 | |
2070s | SSP2.6 | 0.17 | 0.31 | 0.54 |
SSP4.5 | 0.16 | 0.32 | 0.57 | |
SSP8.5 | 0.07 | 0.2 | 0.48 | |
2090s | SSP2.6 | 0.21 | 0.41 | 0.54 |
SSP4.5 | 0.12 | 0.33 | 0.66 | |
SSP8.5 | 0.1 | 0.3 | 0.62 |
2.3. Potential Habitat of Sect. Tuberculata Species in the Current Climate
2.4. Simulation of Potential Habitat Areas for Sect. Tuberculata Plants in the Past and Future
2.5. Changes in the Spatial Pattern of Sect. Tuberculata Habitats
Climate Scenarios | Increase (×105 km2) | Stable (×105 km2) | Shrink (×105 km2) |
---|---|---|---|
Last interglacial | 12 | 9.98 | 1.86 |
Last Glacial Maximum | 18.92 | 3.14 | 0.37 |
Mid Holocene | 20.31 | 1.75 | 1.16 |
2030sSSP2.6 | 2.12 | 20.92 | 1.14 |
2030sSSP4.5 | 0.4 | 18.05 | 4.01 |
2030sSSP8.5 | 0.78 | 19.78 | 2.28 |
2050sSSP2.6 | 2.64 | 21.33 | 0.73 |
2050sSSP4.5 | 3.44 | 21.65 | 0.41 |
2050sSSP8.5 | 4 | 21.71 | 0.35 |
2070sSSP2.6 | 1.33 | 20.22 | 1.84 |
2070sSSP4.5 | 2.15 | 19.78 | 2.28 |
2070sSSP8.5 | 0.31 | 15.6 | 6.46 |
2090sSSP2.6 | 2.47 | 21.84 | 0.23 |
2090sSSP4.5 | 3.2 | 20 | 2.06 |
2090sSSP8.5 | 2.97 | 18.3 | 3.76 |
2.6. Shifts in the Centroid of the Sect. Tuberculata Range
3. Discussion
3.1. The Most Important Environmental Factors for the Distribution of Sect. Tuberculata
3.2. Changes in the Potential Habitable Range of Sect. Tuberculata Plants and Centroid Analysis
4. Materials and Methods
4.1. Data Collection and Processing
4.2. Acquisition and Selection of Environmental Data
4.3. Building and Optimizing the Model
4.4. Model Assessment
4.5. Classification of Habitat Areas
4.6. Centroid Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klein, T.; Anderegg, W.R.L. A vast increase in heat exposure in the 21st century is driven, by global warming and urban population growth. Sustain. Cities Soc. 2021, 73, 103098. [Google Scholar] [CrossRef]
- Lehikoinen, A.; Virkkala, R. Norh by north-west: Climate change and diredions of density shifts in birds. Glob. Chang. Biol. 2015, 22, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.G.; Lü, J.J.; Ai, L. The impacts of climate change on the biodiversity: Vulnerability and adaptation. Ecol. Environ. Sci. 2009, 18, 693–703. Available online: https://www.jeesci.com/CN/Y2009/V18/I2/693 (accessed on 7 November 2024).
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.K. Influence of climate change on wild plants and the conservation strategies. Biodivers. Sci. 2014, 22, 549–563. [Google Scholar] [CrossRef]
- Ji, L.T.; Zheng, T.Y.; Chen, Q.; Zhong, J.J.; Kang, B. Responses of potential suitable area of Paris verticillata to climate change and its dominant climate factors. Chin. J. Appl. Ecol. 2020, 31, 89–96. [Google Scholar] [CrossRef]
- Fuller, D.O.; Ahumada, M.L.; Quiñones, M.L.; Herrera, S.; Beier, J.C. Near-present and future distribution of Anopheles albimanus in Mesoamerica and the Caribbean Basin modeled with climate and topographic data. Int. J. Health Geogr. 2012, 11, 13. [Google Scholar] [CrossRef]
- Barbosa, F.G.; Schneck, F. Characteristics of the topcited papers in species distribution predictive models. Ecol. Model. 2015, 313, 77–83. [Google Scholar] [CrossRef]
- Chang, H.T. A taxonomy of the genus Camellia. Acta Sci. Nat. Univ. Sunyatseni 1981, 4, 18–52. [Google Scholar]
- Chang, H.T.; Ren, S.X. A classification on the section Tuberculata of Camellia. Acta Sci. Nat. Univ. Sunyatseni 1991, 30, 86–91. [Google Scholar]
- Chang, H.T. Camellia. In Flora Reipublicae Popularis Sinicae; Science Press: Beijing, China, 1998; pp. 37–48. [Google Scholar]
- An, M.T. Present Status of the Natural Resource of Camellias in Guizhou Province. Guizhou For. Sci. Technol. 2005, 2, 25–29. [Google Scholar]
- Min, T.L.; Zhang, W.J. The evolution and distribution of genus Camellia. Acta Bot. Yunnan 1996, 18, 1–13. [Google Scholar]
- Min, T.L. A systematic synopsis of genus Camellia. Acta Bot. Yunnan 1999, 21, 149–159. [Google Scholar]
- Ran, Z.H.; Li, Z.; Xiao, X.; An, M.T.; Yan, C. Complete chloroplast genomes of 13 species of sect. Tuberculata Chang (Camellia L.): Genomic features, comparative analysis, and phylogenetic relationships. BMC Genom. 2024, 25, 108. [Google Scholar] [CrossRef]
- Xiao, X.; Lu, J.T.; Yang, G.Y.; Li, Z. The complete chloroplast genome of Camellia leyeensis (theaceae). Mitochondrial DNA Part B 2022, 7, 735–737. [Google Scholar] [CrossRef]
- Xiao, X.; Lu, J.T.; Yang, G.Y.; Li, Z. Analysison chloroplast genome characteristics and codon usage biases of Camellia rubituberculata. Seed 2022, 41, 19–26. [Google Scholar] [CrossRef]
- Lu, H.F.; Jiang, B.; Shen, Z.G.; Shen, J.B.; Peng, Q.F.; Cheng, C.G. Comparative leaf anatomy, FTIR discrimination and biogeographical analysis of Camellia section Tuberculata (Theaceae) with a discussion of its taxonomic treatments. Plant Syst. Evol. 2008, 274, 223–235. [Google Scholar] [CrossRef]
- Jiang, B.; Peng, Q.F.; Shen, Z.G.; Moller, M.; Pi, E.X.; Lu, H.F. Taxonomic treatments of Camellia (Theaceae) species with secretory structures based on integrated leaf characters. Plant Syst. Evol. 2010, 290, 1–20. [Google Scholar] [CrossRef]
- Guo, M.X.; Yang, N.K.; Liu, H.Y.; Tang, S.H.; Fan, Z.W.; Zou, T.C. Spatial distribution pattern and quantitative dynamics of the endemic plant Camellia rubituberculata in Guizhou Province. Guihaia 2019, 39, 1359–1369. [Google Scholar] [CrossRef]
- Liu, Y.L.; Du, X.Q.; Fang, X.P. The analysis of and spatial distribution pattern of Camellia rubimuricata population. Seed 2010, 29, 53–55. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Leneshow, S. Applied logistic regression. Biometrics 1991, 4, 1632–1633. [Google Scholar] [CrossRef]
- Du, Z.Y.; He, Y.M.; Wang, H.T.; Wang, C.; Duan, Y.Z. Potential geographical distribution and habitat shift of the genus Ammopiptanthus in China under current and future climate change based on the MaxEnt model. J. Arid. Environ. 2021, 184, 104328. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Liu, Y.L.; Qin, H.; Meng, Q.X. Prediction on spatial migration of suitable distribution of Elaeagnus mollis under climate change conditions in Shanxi Province, China. Chin. J. Appl. Ecol. 2019, 30, 496–502. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Eeological Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Zimmermann, N.E.; Edwards, T.C.; Grham, C.H.; Peaman, P.B.; Svenning, J.C. New trends in species distribution modeling. Ecography 2010, 33, 985–989. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Li, G.; Du, S.; Wen, Z. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale. Sci. Rep. 2016, 6, 30009. [Google Scholar] [CrossRef]
- Liu, Y.L.; Du, X.Q. Correlation between climatic factor and ring width of Camellia rubimuricata. Guizhou Agric. Sci. 2010, 38, 38–41. [Google Scholar]
- Guo, M.X.; Lv, X.M.; Hong, J.; Liu, H.Y.; Zou, T.C. Studies on seed germination regulated by temperature and light and physiological characteristics change of Camellia rubituberculata. Seed 2019, 38, 36–42. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Li, L.; Zhang, H.; Wang, B. Ecological restoration scheme of lake basins on the karst plateau based on natural solution: Take nine lakes on the Yunnan Plateau as example. Carsologica Sin. 2023, 42, 391–401. [Google Scholar] [CrossRef]
- Liu, Y.T.; Wang, L.; Li, X.H.; Guo, L. Analysis on spatio-temporal variability of fractional vegetation cover and influencing factors from 2000 to 2020 in Southwestern China. Plateau Meteorol. 2024, 43, 264–276. [Google Scholar] [CrossRef]
- Ma, W.H.; Liu, Z.L.; Wang, Z.H.; Wang, W.; Liang, C.Z.; Tang, Y.H.; He, J.S.; Fang, J.Y. Climate change allers interanual varation of gassland aboveground productivity: Evidence from a 22-year measurement seres in the lmer Mongolian grassland. J. Plant Res. 2010, 123, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Ladwig, L.M.; Ratajczak, Z.R.; Ochelree, T.W.; Hafich, K.A.; Churhil, A.C.; Frey, S.J.K.; Fuss, C.B.; Kazanski, C.E.; Munoz, J.D.; Petrie, M.D.; et al. Beyond aretie and alpine: The inuence of winer cimate on temperate ecosystems. Ecology 2016, 97, 372–382. [Google Scholar] [CrossRef]
- Liu, Y.N.; Ao, M.; Li, B.; Guan, Y.X. Effect of ultraviolet-B (UV-B) radiation on plant growth and development and its application value. Soils Crops 2020, 9, 191–202. Available online: http://sc.iga.ac.cn/article/2020/2 (accessed on 7 November 2024).
- Zhang, Q.; Shen, X.B.; Jiang, X.L.; Fan, T.T.; Liang, X.C.; Yan, W.D. MaxEnt modeling for predicting suitable habitat for endangered tree Keteleeria davidiana (Pinaceae) in China. Forests 2023, 14, 394. [Google Scholar] [CrossRef]
- Sekercioglu, C.H.; Schneider, S.H.; Fay, J.P.; Loarie, S.R. Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 2007, 22, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Zhu, J.L.; Shi, Y. The responses of ecosystems to global warming. Chin. Sci. Bull. 2018, 63, 136–140. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. World Clim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Mondal, S.K.; Zhai, J.Q.; Wang, Y.J.; Wen, S.S.; Gao, M.N.; Lu, Y.R.; Jiang, S.; Jiang, T.; et al. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos. Res. 2021, 250, 105375. [Google Scholar] [CrossRef]
- Sang, Y.H.; Ren, H.L.; Shi, X.L.; Xu, X.F.; Chen, H.H. Improvement of Soil moisture simulation in eurasia by the Beijing climate center climate system model from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- Beckmann, M.; Václavík, T.; Manceur, A.M.; Šprtová, L.; Henrik, V.W.; Erik, W.; Anna, F.C. glUV: A global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 2014, 5, 372–383. [Google Scholar] [CrossRef]
- Yang, X.Q.; Kushwaha, S.P.S.; Saran, S.; Xu, J.C.; Roy, P.S. MaxEnt modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 2013, 51, 83–87. [Google Scholar] [CrossRef]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Luis, O.O. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lei, M.; Wei, C.; Guo, X.X. Assessing the suitable regions and the key factors for three Cd-accumulating plants (Sedum alfredii, Phytolacca americana and Hylotelephium spectabile) in China using MaxEnt model. Sci. Total Environ. 2022, 852, 158202. [Google Scholar] [CrossRef]
- Zhu, G.P.; Qiao, H.J. Effect of the MaxEnt model’s complexity on the prediction of species potential distributions. Biodivers. Sci. 2016, 24, 1189–1196. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; María, U.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. Method. Ecol. Evolut. 2015, 5, 1198–1205. [Google Scholar] [CrossRef]
- Zhao, G.H.; Cui, X.Y.; Sun, J.J.; Li, T.T.; Wang, Q.; Ye, X.Z.; Fan, B.G. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol. Indic. 2021, 132, 108256. [Google Scholar] [CrossRef]
- Wang, X.G.; Duan, Y.X.; Jin, L.L.; Wang, C.Y.; Peng, M.C.; Li, Y.; Wang, X.H.; Ma, Y.F. Prediction of historical, present and future distribution of Quercus sect. Heterobalanus based on the optimized MaxEnt model in China. Acta Ecol. Sin. 2023, 43, 6590–6604. Available online: https://kns.cnki.net/kcms/detail/11.2031.Q.20230413.1604.002.html (accessed on 7 November 2024).
- Bateman, B.L.; Pidgeon, A.M.; Radeloff, V.C.; Vanderwal, J.; Thogmartin, W.E.; Vavrus, S.J.; Heglund, P.J. The pace of past climate change vs. potential bird distributions and land use in the United States. Glob. Chang. Biol. 2016, 22, 1130–1144. [Google Scholar] [CrossRef]
- Cong, M.Y.; Xu, Y.Y.; Tang, L.Y.; Yang, W.J.; Jian, M.F. Predicting the dynamic distribution of sphagnum bogs in China under climate change since the last interglacial period. PLoS ONE 2020, 15, e0230969. [Google Scholar] [CrossRef]
- Walther, G.R.; Berger, S.; Sykes, M.T. An ecological ‘footprint’ of climate change. Proc. R. Soc. B Biol. Sci. 2005, 272, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
Environmental Variables | Description | Contribution (%) | Suitable Range |
---|---|---|---|
Bio2 | Mean diurnal range | 46.9 | <7.83 °C |
S_bs | Subsoil base saturation | 10.4 | <53.36% |
Bio7 | Annual temperature range | 10.1 | <27.49 °C |
Bio9 | Mean temperature of the driest quarter | 8.9 | −7.75–7.75 °C |
Uvb2 | Seasonality of UV-B | 7.1 | <1.31 × 105 W/m2 |
Uvb3 | Mean UV-B of the highest month | 3.4 | <5089.61 W/m2 |
Index | Longitude (°) | Latitude (°) | Distance (km) | |
---|---|---|---|---|
LIG | 111.68 | 30.28 | 252.75 | |
LGM | 112.05 | 31.20 | 360.18 | |
MH | 113.17 | 33.43 | 623.48 | |
Current | 110.89 | 28.12 | 0.00 | |
2030s | SSP2.6 | 110.61 | 28.60 | 60.06 |
SSP4.5 | 110.44 | 28.02 | 44.76 | |
SSP8.5 | 110.38 | 28.02 | 50.58 | |
2050s | SSP2.6 | 110.68 | 28.26 | 25.40 |
SSP4.5 | 110.80 | 28.77 | 73.02 | |
SSP8.5 | 110.92 | 28.77 | 72.98 | |
2070s | SSP2.6 | 110.88 | 28.39 | 30.79 |
SSP4.5 | 110.67 | 28.76 | 75.29 | |
SSP8.5 | 110.01 | 28.19 | 84.53 | |
2090s | SSP2.6 | 111.02 | 28.50 | 44.62 |
SSP4.5 | 111.39 | 29.38 | 149.10 | |
SSP8.5 | 110.72 | 29.50 | 155.18 |
Variable | Description | Percent Contribution (%) | Permutation Importance (%) |
---|---|---|---|
bio2 | Mean diurnal range (Mean of monthly (max temp–min temp)) | 46.9 | 14.2 |
s_bs | Basic saturation (lower level) | 10.4 | 8.4 |
bio7 | Temperature annual range | 10.1 | 30.3 |
bio9 | Mean temperature of driest quarter | 8.9 | 5.4 |
uvb2 | Annual UV-B seasonality (standard deviation) | 7.1 | 0.6 |
uvb3 | Mean UV-B of highest month | 3.4 | 0 |
bio15 | Precipitation seasonality | 2.7 | 0.7 |
elevation | Altitude | 2.3 | 16.3 |
t_sand | Sand content (upper layer) | 2.3 | 1.4 |
bio12 | Annual precipitation | 2.3 | 10 |
slope | Slope | 1.6 | 1.1 |
bio14 | Precipitation of driest month | 1.1 | 8 |
s_teb | Exchangeable salt base (lower layer) | 0.3 | 1.3 |
t_gravel | Percent of gravel (upper layer) | 0.3 | 0.3 |
aspect | Aspect | 0.2 | 0.3 |
bio16 | Precipitation of wettest quarter | 0.1 | 1.1 |
uvb4 | Mean UV-B of lowest month | 0.1 | 0.4 |
s_gravel | Percent of gravel volume (lower layer) | 0 | 0 |
s_esp | Exchangeable sodium salt (lower layer) | 0 | 0.1 |
t_caso4 | Sulfate content (upper layer) | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Li, Z.; Ran, Z.; Yan, C.; Chen, J. Impact of Climate Change on Distribution of Endemic Plant Section Tuberculata (Camellia L.) in China: MaxEnt Model-Based Projection. Plants 2024, 13, 3175. https://doi.org/10.3390/plants13223175
Xiao X, Li Z, Ran Z, Yan C, Chen J. Impact of Climate Change on Distribution of Endemic Plant Section Tuberculata (Camellia L.) in China: MaxEnt Model-Based Projection. Plants. 2024; 13(22):3175. https://doi.org/10.3390/plants13223175
Chicago/Turabian StyleXiao, Xu, Zhi Li, Zhaohui Ran, Chao Yan, and Juyan Chen. 2024. "Impact of Climate Change on Distribution of Endemic Plant Section Tuberculata (Camellia L.) in China: MaxEnt Model-Based Projection" Plants 13, no. 22: 3175. https://doi.org/10.3390/plants13223175
APA StyleXiao, X., Li, Z., Ran, Z., Yan, C., & Chen, J. (2024). Impact of Climate Change on Distribution of Endemic Plant Section Tuberculata (Camellia L.) in China: MaxEnt Model-Based Projection. Plants, 13(22), 3175. https://doi.org/10.3390/plants13223175