Effects of Soil Compaction Stress Combined with Drought on Soil Pore Structure, Root System Development, and Maize Growth in Early Stage
Abstract
:1. Introduction
2. Results
2.1. Soil Pore Characteristics
2.2. Biomass Accumulation and Plant Height
2.3. Leaf Photosynthetic Characteristics
2.4. Root Structure Characteristics
2.5. Relationship Between Soil Pore Characteristics and Maize Growth Characteristics
3. Discussion
3.1. Effects of Soil Compaction Stress Combined with Drought on Soil Pore Structure
3.2. Effects of Soil Compaction Stress Combined with Drought on Root System Development
3.3. Effects of Soil Compaction Stress Combined with Drought on Maize Growth
4. Materials and Methods
4.1. Soil Column Experiment
4.2. XCT Imaging and Data Processing
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartemink, A.E. Soils Are Back on the Global Agenda. Soil Use Manag. 2008, 24, 327–330. [Google Scholar] [CrossRef]
- Gregorich, E.G.; McLaughlin, N.B.; Lapen, D.R.; Ma, B.L.; Rochette, P. Soil Compaction, Both an Environmental and Agronomic Culprit: Increased Nitrous Oxide Emissions and Reduced Plant Nitrogen Uptake. Soil Sci. Soc. Am. J. 2014, 78, 1913–1923. [Google Scholar] [CrossRef]
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Bukhari, M.A.; Tung, S.A.; Hafeez, A.; Souliyanonh, B. Soil Compaction Effects on Soil Health and Cropproductivity: An Overview. Environ. Sci. Pollut. Res. 2017, 24, 10056–10067. [Google Scholar] [CrossRef] [PubMed]
- Batey, T. Soil Compaction and Soil Management—A Review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Responses of Soil Properties and Grain Yields to Deep Ripping and Gypsum Application in a Compacted Loamy Sand Soil Contrasted with a Sandy Clay Loam Soil in Western Australia. Aust. J. Agric. Res. 2003, 54, 273–282. [Google Scholar] [CrossRef]
- Horn, R.; Fleige, H. Risk Assessment of Subsoil Compaction for Arable Soils in Northwest Germany at Farm Scale. Soil Tillage Res. 2009, 102, 201–208. [Google Scholar] [CrossRef]
- Correa, J.; Postma, J.A.; Watt, M.; Wojciechowski, T. Soil Compaction and the Architectural Plasticity of Root Systems. J. Exp. Bot. 2019, 70, 6019–6034. [Google Scholar] [CrossRef]
- Sun, X.; She, D.; Fei, Y.; Wang, H.; Gao, L. Three-Dimensional Fractal Characteristics of Soil Pore Structure and Their Relationships with Hydraulic Parameters in Biochar-Amended Saline Soil. Soil Tillage Res. 2021, 205, 104809. [Google Scholar] [CrossRef]
- Pfeifer, J.; Faget, M.; Walter, A.; Blossfeld, S.; Fiorani, F.; Schurr, U.; Nagel, K.A. Spring Barley Shows Dynamic Compensatory Root and Shoot Growth Responses When Exposed to Localised Soil Compaction and Fertilisation. Funct. Plant Biol. 2014, 41, 581–597. [Google Scholar] [CrossRef]
- Lipiec, J.; Hatano, R. Quantification of Compaction Effects on Soil Physical Properties and Crop Growth. Geoderma 2003, 116, 107–136. [Google Scholar] [CrossRef]
- Lipiec, J.; Horn, R.; Pietrusiewicz, J.; Siczek, A. Effects of Soil Compaction on Root Elongation and Anatomy of Different Cereal Plant Species. Soil Tillage Res. 2012, 121, 74–81. [Google Scholar] [CrossRef]
- Jin, K.; Shen, J.; Ashton, R.W.; White, R.P.; Dodd, I.C.; Phillips, A.L.; Parry, M.A.J.; Whalley, W.R. The Effect of Impedance to Root Growth on Plant Architecture in Wheat. Plant Soil 2015, 392, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Potocka, I.; Szymanowska-Pułka, J. Morphological Responses of Plant Roots to Mechanical Stress. Ann. Bot. 2018, 122, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, L.A.; Arts, W.B.M. Effects of Soil Compaction on the Relationships between Nematodes, Grass Production and Soil Physical Properties. Appl. Soil. Ecol. 2000, 14, 213–222. [Google Scholar] [CrossRef]
- Zhang, X.; Hua, Z.; Deng, H. Effects of soil compaction stress on growth, quantity and quality of Scutellaria baicalensis. Soil. Fert. Sci. China 2014, 16, 7–11. [Google Scholar] [CrossRef]
- Whalley, W.R.; Clark, L.J.; Gowing, D.J.G.; Cope, R.E.; Lodge, R.J.; Leeds-Harrison, P.B. Does Soil Strength Play a Role in Wheat Yield Losses Caused by Soil Drying? Plant Soil 2006, 280, 279–290. [Google Scholar] [CrossRef]
- Wang, X.; Shen, J.; Hedden, P.; Phillips, A.L.; Thomas, S.G.; Ge, Y.; Ashton, R.W.; Whalley, W.R. Wheat Growth Responses to Soil Mechanical Impedance Are Dependent on Phosphorus Supply. Soil Tillage Res. 2021, 205, 104754. [Google Scholar] [CrossRef]
- Yan, M.; Yang, D.; He, Y.; Ma, Y.; Zhang, X.; Wang, Q.; Gao, J. Alfalfa Responses to Intensive Soil Compaction: Effects on Plant and Root Growth, Phytohormones and Internal Gene Expression. Plants 2024, 13, 953. [Google Scholar] [CrossRef]
- Shaheb, R. A Study on the Effect of Tyre Inflation Pressure on Soil Properties, Growth and Yield of Maize and Soybean in Central Illinois. Ph.D. Thesis, Harper Adams University, New Port, UK, 2020. Available online: https://hau.repository.guildhe.ac.uk/id/eprint/17769 (accessed on 2 September 2024).
- Stenitzer, E.; Murer, E. Impact of Soil Compaction upon Soil Water Balance and Maize Yield Estimated by the SIMWASER Model. Soil Tillage Res. 2003, 73, 43–56. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Tong, R. Effects of Soil Compaction Stress on Photosynthesis, Chlorophyll Fluorescence Parameters of Cucumber (Cucumis sativus L.) Leaves. J. Plant Nutr. Fertil. 2009, 15, 638–642. [Google Scholar] [CrossRef]
- Ripley, B.S.; Gilbert, M.E.; Ibrahim, D.G.; Osborne, C.P. Drought Constraints on C4 Photosynthesis: Stomatal and Metabolic Limitations in C3 and C4 Subspecies of Alloteropsis Semialata. J. Exp. Bot. 2007, 58, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Schlüter, S.; Weller, U.; Vogel, H.-J. Soil-Structure Development Including Seasonal Dynamics in a Long-Term Fertilization Experiment. J. Plant Nutr. Soil Sci. 2011, 174, 395–403. [Google Scholar] [CrossRef]
- Steponavičienė, V.; Bogužas, V.; Sinkevičienė, A.; Skinulienė, L.; Vaisvalavičius, R.; Sinkevičius, A. Soil Water Capacity, Pore Size Distribution, and CO2 Emission in Different Soil Tillage Systems and Straw Retention. Plants 2022, 11, 614. [Google Scholar] [CrossRef] [PubMed]
- Bengough, A.G.; McKenzie, B.M.; Hallett, P.D.; Valentine, T.A. Root Elongation, Water Stress, and Mechanical Impedance: A Review of Limiting Stresses and Beneficial Root Tip Traits. J. Exp. Bot. 2011, 62, 59–68. [Google Scholar] [CrossRef]
- Grzesiak, M.T.; Janowiak, F.; Szczyrek, P.; Kaczanowska, K.; Ostrowska, A.; Rut, G.; Hura, T.; Rzepka, A.; Grzesiak, S. Impact of Soil Compaction Stress Combined with Drought or Waterlogging on Physiological and Biochemical Markers in Two Maize Hybrids. Acta Physiol. Plant. 2016, 38, 109. [Google Scholar] [CrossRef]
- Budhathoki, S.; Lamba, J.; Srivastava, P.; Williams, C.; Arriaga, F.; Karthikeyan, K.G. Impact of Land Use and Tillage Practice on Soil Macropore Characteristics Inferred from X-Ray Computed Tomography. Catena 2022, 210, 105886. [Google Scholar] [CrossRef]
- Colombi, T.; Braun, S.; Keller, T.; Walter, A. Artificial Macropores Attract Crop Roots and Enhance Plant Productivity on Compacted Soils. Sci. Total Environ. 2017, 574, 1283–1293. [Google Scholar] [CrossRef]
- Pires, L.F.; Roque, W.L.; Rosa, J.A.; Mooney, S.J. 3D Analysis of the Soil Porous Architecture under Long Term Contrasting Management Systems by X-Ray Computed Tomography. Soil Tillage Res. 2019, 191, 197–206. [Google Scholar] [CrossRef]
- Chen, Y.L.; Palta, J.; Clements, J.; Buirchell, B.; Siddique, K.H.M.; Rengel, Z. Root Architecture Alteration of Narrow-Leafed Lupin and Wheat in Response to Soil Compaction. Field Crops Res. 2014, 165, 61–70. [Google Scholar] [CrossRef]
- Wang, Q.; Li, C.; Li, Q.; Xue, S. Effect of Soil Compaction on Spatio-Temporal Distribution and Activities in Maize Under Different Soil Types. Chin. Agric. Sci. 2011, 44, 2039–2050. [Google Scholar] [CrossRef]
- Tubeileh, A.; Groleau-Renaud, V.; Plantureux, S.; Guckert, A. Effect of Soil Compaction on Photosynthesis and Carbon Partitioning within a Maize–Soil System. Soil Tillage Res. 2003, 71, 151–161. [Google Scholar] [CrossRef]
- Cambi, M.; Hoshika, Y.; Mariotti, B.; Paoletti, E.; Picchio, R.; Venanzi, R.; Marchi, E. Compaction by a Forest Machine Affects Soil Quality and Quercus robur L. Seedling Performance in an Experimental Field. For. Ecol. Manag. 2017, 384, 406–414. [Google Scholar] [CrossRef]
- Vincent, C.; Rowland, D.L.; Schaffer, B. The Potential for Primed Acclimation in Papaya (Carica papaya L.): Determination of Critical Water Deficit Thresholds and Physiological Response Variables. Sci. Hortic. 2015, 194, 344–352. [Google Scholar] [CrossRef]
- Leskovar, D.I.; Othman, Y.A. Direct Seeding and Transplanting Influence Root Dynamics, Morpho-Physiology, Yield, and Head Quality of Globe Artichoke. Plants 2021, 10, 899. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, J.; Dong, S.; Liu, P.; Zhao, B. Regulations of 6-Benzyladenine (6-BA) on Leaf Ultrastructure and Photosynthetic Characteristics of Waterlogged Summer Maize. J. Plant Growth Regul. 2017, 36, 743–754. [Google Scholar] [CrossRef]
- Chen, B.; Huang, G.; Lu, X.; Gu, S.; Wen, W.; Wang, G.; Chang, W.; Guo, X.; Zhao, C. Prediction of Vertical Distribution of SPAD Values within Maize Canopy Based on Unmanned Aerial Vehicles Multispectral Imagery. Front. Plant Sci. 2023, 14, 1253536. [Google Scholar] [CrossRef]
- Doube, M.; Kłosowski, M.M.; Arganda-Carreras, I.; Cordelières, F.P.; Dougherty, R.P.; Jackson, J.S.; Schmid, B.; Hutchinson, J.R.; Shefelbine, S.J. BoneJ: Free and Extensible Bone Image Analysis in ImageJ. Bone 2010, 47, 1076–1079. [Google Scholar] [CrossRef]
- Larsbo, M.; Koestel, J.; Jarvis, N. Relations between Macropore Network Characteristics and the Degree of Preferential Solute Transport. Hydrol. Earth Syst. Sci. 2014, 18, 5255–5269. [Google Scholar] [CrossRef]
- Bribiesca, E. A Measure of Compactness for 3D Shapes. Comput. Math. Appl. 2000, 40, 1275–1284. [Google Scholar] [CrossRef]
- Wang, M.; Xu, S.; Kong, C.; Zhao, Y.; Shi, X.; Guo, N. Assessing the Effects of Land Use Change from Rice to Vegetable on Soil Structural Quality Using X-Ray CT. Soil Tillage Res. 2019, 195, 104343. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Charrier, P.; Morari, F. Dual-Scale Micro-CT Assessment of Soil Structure in a Long-Term Fertilization Experiment. Geoderma 2013, 204–205, 84–93. [Google Scholar] [CrossRef]
- Pajor, R.; Falconer, R.; Hapca, S.; Otten, W. Modelling and Quantifying the Effect of Heterogeneity in Soil Physical Conditions on Fungal Growth. Biogeosciences 2010, 7, 3731–3740. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, S.; Udawatta, R.P.; Anderson, S.H.; de Jonge, L.W.; Katuwal, S. X-Ray Micro-Computed Tomography Characterized Soil Pore Network as Influenced by Long-Term Application of Manure and Fertilizer. Geoderma 2021, 385, 114872. [Google Scholar] [CrossRef]
Treatments | ϕ (%) | HR (mm) | DA | CLP (%) | MAPD (mm) | CP | Γ | SSA (m−1) |
---|---|---|---|---|---|---|---|---|
C1W1 | 35.25 ± 0.42 Aa | 0.015 ± 0.004 Aa | 0.22 ± 0.03 Aa | 28.69 ± 0.32 Aa | 0.39 ± 0.03 Aa | 9.43 ± 0.43 Ba | 0.04 ± 0.008 Aa | 787.49 ± 7.03 Aa |
C2W1 | 26.23 ± 0.32 Bb | 0.014 ± 0.004 Ab | 0.23 ± 0.02 Ab | 19.67 ± 0.22 Bb | 0.33 ± 0.03 ABb | 10.27 ± 0.43 ABb | 0.02 ± 0.005 Bb | 781.96 ± 7.28 Ab |
C3W1 | 13.93 ± 0.19 Cc | 0.013 ± 0.003 Ac | 0.25 ± 0.03 Ac | 9.84 ± 0.13 Cc | 0.26 ± 0.02 Bc | 14.40 ± 0.65 Ac | 0.01 ± 0.002 BCc | 753.59 ± 7.88 Ac |
C1W2 | 31.97 ± 0.35 Db | 0.012 ± 0.003 Ba | 0.23 ± 0.02 Ba | 19.67 ± 0.23 Db | 0.38 ± 0.03 Ca | 8.56 ± 0.48 Da | 0.008 ± 0.001 Db | 781.63 ± 7.08 Ba |
C2W2 | 21.31 ± 0.27 Dc | 0.012 ± 0.002 Bb | 0.23 ± 0.02 Bb | 10.66 ± 0.14 Ec | 0.33 ± 0.03 CDb | 11.63 ± 0.53 Db | 0.005 ± 0.001 Dc | 768.36 ± 7.26 Bb |
C3W2 | 10.66 ± 0.14 Ec | 0.012 ± 0.003 Bc | 0.24 ± 0.03 Bc | 7.38 ± 0.09 Ec | 0.23 ± 0.02 Dc | 30.75 ± 0.13 Cd | 0.006 ± 0.001 Dc | 745.01 ± 7.53 Bc |
C | * | NS | NS | * | * | * | * | NS |
W | * | NS | NS | NS | NS | NS | NS | NS |
C*W | NS | NS | NS | NS | NS | NS | NS | NS |
Treatments | SPAD | GS (mol m−2s−1) | Tr (mmol m−2s−1) |
---|---|---|---|
C1W1 | 37.9 ± 1.90 Aa | 0.54 ± 0.07 Aa | 0.05 ± 0.005 Aa |
C2W1 | 35.8 ± 2.83 Ab | 0.51 ± 0.11 ABb | 0.04 ± 0.01 ABb |
C3W1 | 39.7 ± 1.78 Ac | 0.22 ± 0.06 Bc | 0.02 ± 0.005 Bc |
C1W2 | 33.5 ± 1.99 Ba | 0.46 ± 0.29 Ca | 0.04 ± 0.02 Ca |
C2W2 | 35.2 ± 1.15 Bb | 0.41 ± 0.11 Cb | 0.03 ± 0.01 Cb |
C3W2 | 35.3 ± 3.95 Bc | 0.30 ± 0.19 Cc | 0.03 ± 0.01 Cc |
C | NS | * | * |
W | * | NS | NS |
C*W | NS | NS | NS |
Treatments | Root Surface Area (cm2) | Root Volume (cm3) | Root Length (cm) | Root Average Diameter (mm) |
---|---|---|---|---|
C1W1 | 8974.3 ± 863.0 Aa | 94.5 ± 5.0 Aa | 74,163.4 ± 5876.7 Aa | 0.46 ± 0.03 Ba |
C2W1 | 8088.9 ± 348.9 Bb | 88.5 ± 5.9 Ab | 62,671.7 ± 1339.4 Bb | 0.45 ± 0.01 Bb |
C3W1 | 7493.0 ± 237.6 Bc | 87.9 ± 2.1 Ac | 54,187.5 ± 5616.6 Bc | 0.51 ± 0.01 Ac |
C1W2 | 6449.2 ± 260.4 Cb | 61.3 ± 1.2 Bb | 57,180.5 ± 2819.8 Cb | 0.39 ± 0.01 Eb |
C2W2 | 5111.6 ± 158.6 Dc | 50.9 ± 0.3 Cc | 43,150.4 ± 1640.4 Dc | 0.44 ± 0.01 Db |
C3W2 | 4224.2 ± 169.6 Ed | 43.9 ± 3.7 Dd | 25,719.9 ± 235.8 Ed | 0.47 ± 0.02 Cd |
C | * | * | * | * |
W | * | * | * | * |
C*W | NS | NS | NS | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Peng, W.; Xie, Q.; Ran, E. Effects of Soil Compaction Stress Combined with Drought on Soil Pore Structure, Root System Development, and Maize Growth in Early Stage. Plants 2024, 13, 3185. https://doi.org/10.3390/plants13223185
Zhu X, Peng W, Xie Q, Ran E. Effects of Soil Compaction Stress Combined with Drought on Soil Pore Structure, Root System Development, and Maize Growth in Early Stage. Plants. 2024; 13(22):3185. https://doi.org/10.3390/plants13223185
Chicago/Turabian StyleZhu, Xiangming, Wei Peng, Qingyang Xie, and Enhua Ran. 2024. "Effects of Soil Compaction Stress Combined with Drought on Soil Pore Structure, Root System Development, and Maize Growth in Early Stage" Plants 13, no. 22: 3185. https://doi.org/10.3390/plants13223185
APA StyleZhu, X., Peng, W., Xie, Q., & Ran, E. (2024). Effects of Soil Compaction Stress Combined with Drought on Soil Pore Structure, Root System Development, and Maize Growth in Early Stage. Plants, 13(22), 3185. https://doi.org/10.3390/plants13223185