Comparative Study of Phenolic Content and Antioxidant and Hepatoprotective Activities of Unifloral Quillay Tree (Quillaja saponaria Molina) and Multifloral Honeys from Chile
Abstract
:1. Introduction
2. Results
2.1. Melissopalynological Analysis
2.2. HPLC-DAD Analysis, Total Phenolic Content, and Total Flavonoid Content
2.3. Cytotoxicity and Hepatoprotective Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Samples
4.3. Honey and Nectary Extracts
4.4. HPLC-DAD Analysis
4.5. Total Phenolic Content
4.6. Total Flavonoid Content
4.7. Ferric Reducing Antioxidant Potential (FRAP)
4.8. Oxygen Radical Absorbance Capacity (ORAC)
4.9. In Vitro Hepatoprotective Activity
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Patouna, A.; Vardakas, P.; Skaperda, Z.; Spandidos, D.A.; Kouretas, D. Evaluation of the Antioxidant Potency of Greek Honey from the Taygetos and Pindos Mountains Using a Combination of Cellular and Molecular Methods. Mol. Med. Rep. 2023, 27, 54. [Google Scholar] [CrossRef] [PubMed]
- Kivima, E.; Tanilas, K.; Martverk, K.; Rosenvald, S.; Timberg, L.; Laos, K. The Composition, Physicochemical Properties, Antioxidant Activity, and Sensory Properties of Estonian Honeys. Foods 2021, 10, 511. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Valverde, S.; Ares, A.M.; Stephen Elmore, J.; Bernal, J. Recent Trends in the Analysis of Honey Constituents. Food Chem. 2022, 387, 132920. [Google Scholar] [CrossRef] [PubMed]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and Health: A Review of Recent Clinical Research. Pharmacogn. Res. 2017, 9, 121. [Google Scholar]
- Berenbaum, M.R.; Calla, B. Honey as a Functional Food for Apis Mellifera. Annu. Rev. Entomol. 2021, 66, 185–208. [Google Scholar] [CrossRef]
- Fernandes, K.E.; Frost, E.A.; Remnant, E.J.; Schell, K.R.; Cokcetin, N.N.; Carter, D.A. The Role of Honey in the Ecology of the Hive: Nutrition, Detoxification, Longevity, and Protection against Hive Pathogens. Front. Nutr. 2022, 9, 954170. [Google Scholar] [CrossRef]
- Saralaya, S.; BS, J.; Thomas, N.S.; SM, S. Bee Wax and Honey-a Primer for OMFS. Oral. Maxillofac. Surg. 2021, 25, 1–6. [Google Scholar] [CrossRef]
- Kim, S.G.; Hong, I.P.; Woo, S.O.; Jang, H.R.; Pak, S.C.; Han, S.M. Isolation of Abscisic Acid from Korean Acacia Honey with Anti-Helicobacter Pylori Activity. Pharmacogn. Mag. 2017, 13, 170–173. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Aires, E.; Barreira, J.C.M.; Estevinho, L.M. Antioxidant Activity of Portuguese Honey Samples: Different Contributions of the Entire Honey and Phenolic Extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Bouacha, M.; Besnaci, S.; Boudiar, I. An Overview of The Most Used Methods to Determine The In Vitro Antibacterial Activity of Honey. Acta Microbiol. Bulg. 2023, 39, 23–30. [Google Scholar] [CrossRef]
- Fratianni, F.; Amato, G.; Neve Ombra, M.; De Feo, V.; Coppola, R.; Nazzaro, F. In Vitro Prospective Healthy and Nutritional Benefits of Different Citrus Monofloral Honeys. Sci. Rep. 2023, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Brieger, K.; Schiavone, S.; Miller, F.J.; Krause, K.-H. Reactive Oxygen Species: From Health to Disease. Swiss Med. Wkly. 2012, 142, w13659. [Google Scholar] [CrossRef] [PubMed]
- Machado, I.F.; Miranda, R.G.; Dorta, D.J.; Rolo, A.P.; Palmeira, C.M. Targeting Oxidative Stress with Polyphenols to Fight Liver Diseases. Antioxidants 2023, 12, 1212. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of Oxidative Stress in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Free Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef]
- Cichoż-Lach, H.; Michalak, A. Oxidative Stress as a Crucial Factor in Liver Diseases. World J. Gastroenterol. 2014, 20, 8082–8091. [Google Scholar] [CrossRef]
- Sekar, M.; Teng Lùm, P.; Reddy Bonam, S.; Hua Gan, S. Use of Honey in Liver Disease. In Honey: Composition and Health Benefits; Khalil, I., Hua Gan, S., Hing Goh, B., Eds.; Wiley: Hoboken, NJ, USA, 2023; pp. 224–234. [Google Scholar]
- Ciulu, M.; Spano, N.; Pilo, M.I.; Sanna, G. Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys. Molecules 2016, 21, 451. [Google Scholar] [CrossRef]
- Ciulu, M.; Mihai Magdas, T.; David, M.; Raluca Hategan, A.; Adriana Filip, G.; Alina Magdas, D. Geographical Origin Authentication-A Mandatory Step in the Efficient Involvement of Honey in Medical Treatment. Foods 2024, 13, 532. [Google Scholar] [CrossRef]
- Shakoori, Z.; Salaseh, E.; Mehrabian, A.R.; Tehrani, D.M.; Dardashti, N.F.; Salmanpour, F. The Amount of Antioxidants in Honey Has a Strong Relationship with the Plants Selected by Honey Bees. Sci. Rep. 2024, 14, 351. [Google Scholar] [CrossRef]
- Di Marco, G.; Gismondi, A.; Panzanella, L.; Canuti, L.; Impei, S.; Leonardi, D.; Canini, A. Botanical Influence on Phenolic Profile and Antioxidant Level of Italian Honeys. J. Food Sci. Technol. 2018, 55, 4042–4050. [Google Scholar] [CrossRef]
- Al-Kafaween, M.A.; Alwahsh, M.; Mohd Hilmi, A.B.; Abulebdah, D.H. Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review. Antibiotics 2023, 12, 337. [Google Scholar] [CrossRef] [PubMed]
- Poulsen-Silva, E.; Gordillo-Fuenzalida, F.; Velásquez, P.; Llancalahuen, F.M.; Carvajal, R.; Cabaña-Brunod, M.; Otero, M.C. Antimicrobial, Antioxidant, and Anti-Inflammatory Properties of Monofloral Honeys from Chile. Antioxidants 2023, 12, 1785. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, O.; Copaja, S.; Speisky, H.; Peña, R.C.; Montenegro, G. Contenido de Flavonoides y Compuestos Fenólicos de Mieles Chilenas e Índice Antioxidante. Quim. Nova 2007, 30, 848–851. [Google Scholar] [CrossRef]
- Santander, F.; Fredes, C.; Nuñez, G.; Casaubon, G.; Espinoza, M.I.; Montenegro, G. Volatile Compounds of Unifloral Honey and Floral Nectar from Quillaja Saponaria. PHYTON-Int. J. Exp. Bot. 2014, 9457, 17–26. [Google Scholar] [CrossRef]
- Giordano, A.; Retamal, M.; Leyton, F.; Martinez, P.; Bridi, R.; Velasquez, P.; Montenegro, G. Bioactive Polyphenols and Antioxidant Capacity of Azara Petiolaris and Azara Integrifolia Honeys. CyTA-J. Food 2018, 16, 484–489. [Google Scholar] [CrossRef]
- Delporte, C.; Rodríguez-Díaz, M.; Cassels, B.K. Quillaja Saponaria Molina. In Medicinal and Aromatic Plants of South America; Máthé, Á., Bandoni, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 461–473. [Google Scholar]
- Díaz-Forestier, J.; Gómez, M.; Montenegro, G. Nectar Volume and Floral Entomofauna as a Tool for the Implementation of Sustainable Apicultural Management Plans in Quillaja Saponaria Mol. Agroforest Syst. 2009, 76, 149–162. [Google Scholar] [CrossRef]
- Díaz-Forestier, J.; Gómez, M.; Celis-Diez, J.L.; Montenegro, G. Nectary Structure in Four Melliferous Plant Species Native to Chile. Flora 2016, 221, 100–106. [Google Scholar] [CrossRef]
- Reichert, C.L.; Salminen, H.; Weiss, J. Quillaja Saponin Characteristics and Functional Properties. Annu. Rev. Food Sci. Technol. 2019, 10, 43–73. [Google Scholar] [CrossRef]
- Montenegro, G.; Gómez, M.; Díaz-Forestier, J.; Pizarro, R. Aplicación de La Norma Chilena Oficial de Denominación de Origen Botánico de La Miel Para La Caracterización de La Producción Apícola. Cienc. Investig. Agrar. 2008, 35, 181–190. [Google Scholar] [CrossRef]
- Montenegro, G.; Díaz-Forestier, J.; Fredes, C.; Rodríguez, S. Phenolic Profiles of Nectar and Honey of Quillaja Saponaria Mol. (Quillajaceae) as Potential Chemical Markers. Biol. Res. 2013, 46, 177–182. [Google Scholar] [CrossRef]
- Bridi, R.; Nunez, G.; Aguilar, P.; Martinez, P.; Lissi, E.; Giordano, A.; Montenegro, G. Differences between Phenolic Content and Antioxidant Capacity of Quillay Chilean Honeys and Their Separated Phenolic Extracts. Cienc. Investig. Agrar. 2017, 44, 252–261. [Google Scholar] [CrossRef]
- Olds, C.L.; Glennon, E.K.K.; Luckhart, S. Abscisic Acid: New Perspectives on an Ancient Universal Stress Signaling Molecule. Microbes Infect. 2018, 20, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, G.-J.; Bressan, R.A.; Song, C.-P.; Zhu, J.-K.; Zhao, Y. Abscisic Acid Dynamics, Signaling, and Functions in Plants. J. Integr. Plant Biol. 2020, 62, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Bobis, O.; Bonta, V.; Cornea-Cipcigan, M.; Nayik, G.A.; Dezmirean, D.S. Bioactive Molecules for Discriminating Robinia and Helianthus Honey: High-Performance Liquid Chromatography-Electron Spray Ionization-Mass Spectrometry Polyphenolic Profile and Physicochemical Determinations. Molecules 2021, 26, 4433. [Google Scholar] [CrossRef]
- Montenegro, G.; Santander, F.; Jara, C.; Núñez, G. Antioxidant and Antimicrobial Activity of Unifloral Honeys of Plants Native to Chile. Bol. Latinoam. Caribe Plantas Med. Aromat. 2013, 12, 257–268. [Google Scholar]
- Oyarzún, J.E.; Andia, M.E.; Uribe, S.; Pizarro, P.N.; Núñez, G.; Montenegro, G.; Bridi, R. Honeybee Pollen Extracts Reduce Oxidative Stress and Steatosis in Hepatic Cells. Molecules 2021, 26, 6. [Google Scholar] [CrossRef]
- de Camargo, A.C.; Concepción Alvarez, A.; Arias-Santé, M.F.; Oyarzún, J.E.; Andia, M.E.; Uribe, S.; Núñez Pizarro, P.; Bustos, S.M.; Schwember, A.R.; Shahidi, F.; et al. Soluble Free, Esterified and Insoluble-Bound Phenolic Antioxidants from Chickpeas Prevent Cytotoxicity in Human Hepatoma HuH-7 Cells Induced by Peroxyl Radicals. Antioxidants 2022, 11, 1139. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Shen, M.; Yang, X.; Wang, Z.; Sha, X.; Zhang, X.; Sun, J. The Impact of AAPH-Induced Oxidation on the Functional and Structural Properties, and Proteomics of Arachin. Molecules 2023, 28, 6277. [Google Scholar] [CrossRef]
- Ou, B.; Chang, T.; Huang, D.; Prior, R.L. Determination of Total Antioxidant Capacity by Oxygen Radical Absorbance Capacity (ORAC) Using Fluorescein as the Fluorescence Probe: First Action 2012.23. J. AOAC Int. 2013, 96, 1372–1376. [Google Scholar] [CrossRef]
- Ryniewicz, J.; Skłodowski, M.; Chmur, M.; Bajguz, A.; Roguz, K.; Roguz, A.; Zych, M. Intraspecific Variation in Nectar Chemistry and Its Implications for Insect Visitors: The Case of the Medicinal Plant, Polemonium caeruleum L. Plants 2020, 9, 1297. [Google Scholar] [CrossRef]
- Parachnowitsch, A.L.; Manson, J.S.; Sletvold, N. Evolutionary Ecology of Nectar. Ann. Bot. 2019, 123, 247. [Google Scholar] [CrossRef] [PubMed]
- Pacini, E.; Nepi, M.; Vespini, J.L. Nectar Biodiversity: A Short Review. Plant Syst. Evol. 2003, 238, 7–21. [Google Scholar] [CrossRef]
- Chalcoff, V.R.; Aizen, M.A.; Galetto, L. Nectar Concentration and Composition of 26 Species from the Temperate Forest of South America. Ann. Bot. 2006, 97, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, L.; Lin, X.; Bai, W.; Xiao, G.; Liu, G. Composition, Functional Properties and Safety of Honey: A Review. J. Sci. Food Agric. 2023, 103, 6767–6779. [Google Scholar] [CrossRef]
- Truchado, P.; Ferreres, F.; Bortolotti, L.; Sabatini, A.G.; Tomás-Barberán, F.A. Nectar Flavonol Rhamnosides Are Floral Markers of Acacia (Robinia pseudacacia) Honey. J. Agric. Food Chem. 2008, 56, 8815–8824. [Google Scholar] [CrossRef]
- Gismondi, A.; De Rossi, S.; Canuti, L.; Novelli, S.; Di Marco, G.; Fattorini, L.; Canini, A. From Robinia pseudoacacia L. Nectar to Acacia Monofloral Honey: Biochemical Changes and Variation of Biological Properties. J. Sci. Food Agric. 2018, 98, 4312–4322. [Google Scholar] [CrossRef]
- Olofsson, T.C.; Vásquez, A. Detection and Identification of a Novel Lactic Acid Bacterial Flora within the Honey Stomach of the Honeybee Apis Mellifera. Curr. Microbiol. 2008, 57, 356–363. [Google Scholar] [CrossRef]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef]
- Laoué, J.; Fernandez, C.; Ormeño, E. Plant Flavonoids in Mediterranean Species: A Focus on Flavonols as Protective Metabolites under Climate Stress. Plants 2022, 11, 172. [Google Scholar] [CrossRef]
- Escuredo, O.; Rodríguez-Flores, M.S.; Míguez, M.; Seijo, M.C. Multivariate Statistical Approach for the Discrimination of Honey Samples from Galicia (NW Spain) Using Physicochemical and Pollen Parameters. Foods 2023, 1493, 1493. [Google Scholar] [CrossRef]
- Biesaga, M.; Pyrzyńska, K. Stability of Bioactive Polyphenols from Honey during Different Extraction Methods. Food Chem. 2013, 136, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.H.; Cacciola, F.; Chong, N.S.; Arena, K.; Marriott, P.J.; Wong, Y.F. An Updated Review of Extraction and Liquid Chromatography Techniques for Analysis of Phenolic Compounds in Honey. J. Food Compos. Anal. 2022, 114, 104751. [Google Scholar] [CrossRef]
- Zhao, H.; Cheng, N.; He, L.; Peng, G.; Xue, X.; Wu, L.; Cao, W. Antioxidant and Hepatoprotective Effects of A. Cerana Honey against Acute Alcohol-Induced Liver Damage in Mice. Food Res. Int. 2017, 101, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, D.; Cheng, N.; Gao, H.; Xue, X.; Cao, W.; Sun, L. Antioxidant and Hepatoprotective Activity of Vitex Honey against Paracetamol Induced Liver Damage in Mice. Food Funct. 2015, 6, 2339. [Google Scholar] [CrossRef]
- Hermenean, A.; Mariasiu, T.; Navarro-González, I.; Vegara-Meseguer, J.; Miuțescu, E.; Chakraborty, S.; Pérez-Sánchez, H. Hepatoprotective Activity of Chrysin Is Mediated through TNF-α in Chemically-Induced Acute Liver Damage: An in Vivo Study and Molecular Modeling. Exp. Ther. Med. 2017, 13, 1671. [Google Scholar] [CrossRef]
- Wang, X.; Gong, G.; Yang, W.; Li, Y.; Jiang, M.; Li, L. Antifibrotic Activity of Galangin, a Novel Function Evaluated in Animal Liver Fibrosis Model. Environ. Toxicol. Pharmacol. 2013, 36, 288–295. [Google Scholar] [CrossRef]
- Aladaileh, S.H.; Abukhalil, M.H.; Saghir, S.A.M.; Hanieh, H.; Alfwuaires, M.A.; Almaiman, A.A.; Bin-Jumah, M.; Mahmoud, A.M. Galangin Activates Nrf2 Signaling and Attenuates Oxidative Damage, Inflammation, and Apoptosis in a Rat Model of Cyclophosphamide-Induced Hepatotoxicity. Biomolecules 2019, 9, 346. [Google Scholar] [CrossRef]
- Ferah Okkay, I.; Okkay, U.; Lutfi Gundogdu, O.; Bayram, C.; Sefa Mendil, A.; Sait Ertugrul, M.; Hacimuftuoglu, A. Syringic Acid Protects against Thioacetamide-Induced Hepatic Encephalopathy: Behavioral, Biochemical, and Molecular Evidence. Neurosci. Lett. 2022, 769, 136385. [Google Scholar] [CrossRef]
- Rzepecka-Stojko, A.; Kabała-Dzik, A.; Kubina, R.; Jasik, K.; Kajor, M.; Wrze, D.; Stojko, J. Protective Effect of Polyphenol-Rich Extract from Bee Pollen in a High-Fat Diet. Molecules 2018, 23, 805. [Google Scholar] [CrossRef]
- Kismet, K.; Ozcan, C.; Kuru, S.; Gencay Celemli, O.; Celepli, P.; Senes, M.; Guclu, T.; Sorkun, K.; Hucumenoglu, S.; Besler, T. Does Propolis Have Any Effect on Non-Alcoholic Fatty Liver Disease? Biomed. Pharmacother. 2017, 90, 863–871. [Google Scholar] [CrossRef]
- Cheng, N.; Wu, L.; Zheng, J.; Cao, W. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice. Evid. Based Complement. Altern. Med. 2015, 2015, 987385. [Google Scholar] [CrossRef] [PubMed]
- Flanjak, I.; Kenjerić, D.; Bubalo, D.; Primorac, L. Characterisation of Selected Croatian Honey Types Based on the Combination of Antioxidant Capacity, Quality Parameters, and Chemometrics. Eur. Food Res. Technol. 2016, 242, 467–475. [Google Scholar] [CrossRef]
- Akgün, N.; Çelik, F.Ö.; Kelebekli, L. Physicochemical Properties, Total Phenolic Content, and Antioxidant Activity of Chestnut, Rhododendron, Acacia and Multifloral Honey. J. Food Meas. Charact. 2021, 15, 3501–3508. [Google Scholar] [CrossRef]
- Spilioti, E.; Jaakkola, M.; Tolonen, T.; Lipponen, M.; Virtanen, V.; Chinou, I.; Kassi, E.; Karabournioti, S.; Moutsatsou, P. Phenolic Acid Composition, Antiatherogenic and Anticancer Potential of Honeys Derived from Various Regions in Greece. PLoS ONE 2014, 9, e94860. [Google Scholar] [CrossRef]
- Fernandez-Panchon, M.S.; Villano, D.; Troncoso, A.M.; Garcia-Parrilla, M.C. Antioxidant Activity of Phenolic Compounds: From In Vitro Results to In Vivo Evidence. Crit. Rev. Food Sci. Nutr. 2008, 48, 649–671. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid Antioxidants: Chemistry, Metabolism and Structure-Activity Relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Česlová, L.; Pravcová, K.; Juričová, M.; Fischer, J. Rapid HPLC/MS/MS Analysis of Phenolic Content and Profile for Mead Quality Assessment. Food Control 2022, 134, 108737. [Google Scholar] [CrossRef]
- Bridi, R.; Atala, E.; Núñez, P.; Montenegro, G. Honeybee Pollen Load: Phenolic Composition and Antimicrobial Activity and Antioxidant Capacity. J. Nat. Prod. 2019, 82, 559–565. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Bridi, R.; Echeverría, J.; Larena, A.; Nuñez Pizarro, P.; Atala, E.; De Camargo, A.C.; Oh, W.Y.; Shahidi, F.; Garcia, O.; Ah-Hen, K.S.; et al. Honeybee Pollen From Southern Chile: Phenolic Profile, Antioxidant Capacity, Bioaccessibility, and Inhibition of DNA Damage. Front. Pharmacol. 2022, 13, 775219. [Google Scholar] [CrossRef]
Samples | Geographical Origin | Classification | Primary Species | Secondary Species | Tertiary Species | |||
---|---|---|---|---|---|---|---|---|
Species | % | Species | % | Species | % | |||
1 | Los Lagos Region | Unifloral | Lotus pedunculatus Cav. [Fabaceae] | 73.8 | Weinmannia trichosperma Cav. [Cunoniaceae] | 8.5 | Caldcluvia paniculata Cav. (D.Don) [Cunoniaceae] | 7.1 |
2 | Ñuble Region | Polyfloral | Echium vulgare L. [Boraginaceae] | 18.5 | Quillaja saponaria Molina [Quillajaceae] | 17.0 | Amomyrtus luma (Molina) D. Legrand & Kausel [Myrtaceae] | 12.5 |
3 | Metropolitan Region | Polyfloral | Quillaja saponaria Molina [Quillajaceae] | 18.6 | Lotus pedunculatus Cav. [Fabaceae] | 13.8 | Lithraea caustica (Molina) Hook et. Arn. [Anacardiaceae] | 13.6 |
4 | Maule Region | Polyfloral | Quillaja saponaria Molina [Quillajaceae] | 23.5 | Echium vulgare L. [Boraginaceae] | 21.6 | Lithraea caustica (Molina) Hook et. Arn. [Anacardiaceae] | 8.4 |
5 | BioBío Region | Bifloral | Echium vulgare L. [Boraginaceae] | 25.9 | Quillaja saponaria Molina [Quillajaceae] | 23.9 | Lotus pedunculatus Cav. [Fabaceae] | 12.5 |
6 | Maule Region | Polyfloral | Quillaja saponaria Molina [Quillajaceae] | 30.8 | Escallonia pulverulenta (Ruiz & Pav.) Pers. Escalloniaceae | 14.3 | Lithraea caustica (Molina) Hook et. Arn. [Anacardiaceae] | 12.9 |
7 | Valparaíso Region | Polyfloral | Quillaja saponaria Molina [Quillajaceae] | 34.1 | Brassica rapa L. [Brassicaceae] | 16.3 | Lithraea caustica (Molina) Hook et. Arn. [Anacardiaceae] | 12.8 |
8 | Metropolitan Region | Unifloral | Quillaja saponaria Molina [Quillajaceae] | 50.2 | Lithraea caustica (Molina) Hook et. Arn. [Anacardiaceae] | 11.8 | Schinus latifolius (Gillies Ex Lindl.) [Anacardiaceae] | 6.9 |
9 | BioBío Region | Unifloral | Quillaja saponaria Molina [Quillajaceae] | 63.5 | Lotus pedunculatus Cav. [Fabaceae] | 9.1 | Lithraea caustica (Molina) Hook et. Arn. [Anacardiaceae] | 5.3 |
10 | Maule Region | Unifloral | Quillaja saponaria Molina [Quillajaceae] | 65.3 | Lithraea caustica (Molina) Hook et. Arn. [Anacardiaceae] | 10.8 | Schinus latifolius (Gillies Ex Lindl.) [Anacardiaceae] | 6.8 |
11 | Valparaíso Region | Unifloral | Quillaja saponaria Molina [Quillajaceae] | 65.4 | Lithraea caustica (Molina) Hook et. Arn. [Anacardiaceae] | 13.2 | Rubus ulmifolius Schott [Rosaceae] | 5.2 |
12 | Maule Region | Unifloral | Quillaja saponaria Molina [Quillajaceae] | 69.8 | Echium vulgare L. [Boraginaceae] | 6.6 | Brassica rapa L. [Brassicaceae] | 5.1 |
Samples | Chlorogenic Acid | Cafeic Acid | Syringic Acid | p-Coumaric Acid | Sinapic Acid | Ferulic Acid | Abscisic Acid |
---|---|---|---|---|---|---|---|
Nectary | 83.96 ± 2.24 | n.d | 52.67 ± 2.38 | n.d | 453.51 ± 8.32 | 1337.30 ± 25.54 | 33.85 ± 0.96 |
1 | 2.28 ± 0.01 | 2.79 ± 0.01 | 0.37 ± 0.01 | 0.16 ± 0.01 | 1.43 ± 0.16 | n.d | 11.75 ± 0.01 |
2 | 6.11 ± 0.05 | n.d | 0.44 ± 0.01 | 0.22 ± 0.01 | 2.82 ± 0.08 | n.d | 3.48 ± 0.04 |
3 | 7.23 ± 0.01 | 8.26 ± 0.01 | 0.39 ± 0.01 | 0.30 ± 0.05 | 1.11 ± 0.12 | n.d | 3.03 ± 0.02 |
4 | 4.38 ± 0.01 | n.d | 0.58 ± 0.01 | 0.21 ± 0.01 | 1.39 ± 0.05 | n.d | 18.71 ± 0.08 |
5 | 2.07 ± 0.03 | n.d | 1.06 ± 0.01 | 0.15 ± 0.01 | n.d | 10.16 ± 0.06 | 5.85 ± 0.02 |
6 | 3.26 ± 0.03 | n.d | 0.49 ± 0.01 | 0.19 ± 0.01 | 0.85 ± 0.05 | 0.36 ± 0.01 | 31.95 ± 0.01 |
7 | 2.48 ± 0.12 | n.d | 1.18 ± 0.01 | 0.26 ± 0.03 | 1.63 ± 0.05 | n.d | 9.02 ± 0.04 |
8 | 6.20 ± 0.02 | n.d | 1.43 ± 0.01 | 0.23 ± 0.05 | 1.72 ± 0.03 | n.d | 6.42 ± 0.06 |
9 | 6.26 ± 0.03 | n.d | 4.23 ± 0.03 | 0.10 ± 0.01 | 1.49 ± 0.05 | n.d | 8.13 ± 0.16 |
10 | 3.77 ± 0.14 | n.d | 0.72 ± 0.03 | 0.63 ± 0.01 | 2.24 ± 0.04 | n.d | 41.44 ± 0.25 |
11 | 8.58 ± 0.04 | 6.34 ± 0.15 | 0.60 ± 0.01 | 0.63 ± 0.03 | n.d | 11.36 ± 0.17 | 56.03 ± 0.26 |
12 | 3.92 ± 0.22 | n.d | 1.85 ± 0.01 | 0.39 ± 0.08 | 2.96 ± 0.04 | n.d | 12.49 ± 0.21 |
Samples | Rutin | Quercetin | Kaempferol | Galangin | Pinocembrin | Chrysin | Genistein |
---|---|---|---|---|---|---|---|
Nectary | 103.9 ± 4.89 | 451.34 ± 9.10 | n.d | n.d | 5.76 ± 0.08 | 1.04 ± 0.07 | 64.03 ± 1.18 |
1 | 10.77 ± 0.06 | 0.95 ± 0.02 | 1.09 ± 0.07 | 1.90 ± 0.05 | 1.07 ± 0.23 | 3.86 ± 0.15 | 0.76 ± 0.10 |
2 | 0.13 ± 0.01 | 0.67 ± 0.07 | 1.95 ± 0.21 | 2.39 ± 0.12 | 1.28 ± 0.13 | 5.05 ± 0.15 | 0.84 ± 0.11 |
3 | 5.99 ± 0.01 | 0.93 ± 0.01 | 16.35 ± 0.17 | 2.33 ± 0.03 | 1.27 ± 0.23 | 4.17 ± 0.36 | n.d |
4 | 2.39 ± 0.02 | 0.39 ± 0.01 | 1.55 ± 0.07 | 2.33 ± 0.06 | 1.31 ± 0.03 | 4.64 ± 0.06 | 0.97 ± 0.08 |
5 | 0.82 ± 0.03 | 0.16 ± 0.01 | 3.09 ± 0.03 | 2.83 ± 0.07 | 1.17 ± 0.04 | 4.77 ± 0.04 | 0.89 ± 0.06 |
6 | 6.71 ± 0.06 | n.d | 0.65 ± 0.03 | 1.97 ± 0.10 | 0.82 ± 0.13 | 3.54 ± 0.04 | 0.41 ± 0.02 |
7 | 7.67 ± 0.61 | 0.67 ± 0.15 | 5.43 ± 0.02 | 2.91 ± 0.06 | 1.27 ± 0.03 | 4.83 ± 0.08 | 1.01 ± 0.05 |
8 | 1.00 ± 0.01 | n.d | 1.89 ± 0.02 | 2.63 ± 0.05 | 1.18 ± 0.11 | 5.07 ± 0.35 | 1.12 ± 0.01 |
9 | n.d | 0.25 ± 0.01 | 1.63 ± 0.14 | 2.71 ± 0.14 | 1.43 ± 0.22 | 5.25 ± 0.22 | 0.93 ± 0.15 |
10 | 5.15 ± 0.03 | 0.21 ± 0.01 | 4.05 ± 0.09 | 2.14 ± 0.04 | 0.90 ± 0.05 | 3.97 ± 0.09 | n.d |
11 | 0.12 ± 0.01 | n.d | n.d | 2.08 ± 0.20 | 1.41 ± 0.01 | 6.00 ± 0.02 | n.d |
12 | 1.10 ± 0.04 | n.d | 2.78 ± 0.04 | 5.49 ± 0.27 | 2.24 ± 0.04 | 9.91 ± 0.15 | n.d |
Samples | Quillay Pollen Percentage (%) | TPC (mg GAE/kg Honey) | TFC (mg QE/kg Honey) | ORAC-FL (μmol TE/100 g Honey) | FRAP (µmol TE/100 g Honey) |
---|---|---|---|---|---|
1 | 0 | 52.7 ± 8.5 | 7.4 ± 0.2 | 132.5 ± 7.9 | 3.6 ± 0.1 |
2 | 17.0 | 54.7 ± 10.6 | 11.1 ± 0.5 | 170.5 ± 1.4 | 4.4 ± 0.1 |
3 | 18.6 | 63.9 ± 9.9 | 20.7 ± 0.8 | 211.8 ± 14.5 | 5.0 ± 0.3 |
4 | 23.5 | 52.8 ± 9.6 | 9.9 ± 0.6 | 400.6 ± 7.4 | 6.8 ± 0.2 |
5 | 23.9 | 54.1 ± 7.5 | 9.8 ± 0.4 | 244.5 ± 4.0 | 4.1 ± 0.1 |
6 | 30.8 | 54.1 ± 9.7 | 9.6 ± 0.1 | 147.2 ± 7.8 | 4.1 ± 0.1 |
7 | 34.1 | 62.3 ± 12.3 | 13.8 ± 0.7 | 84.5 ± 8.0 | 4.2 ± 0.3 |
8 | 50.2 | 58.0 ± 11.3 | 11.8 ± 0.3 | 145.3 ± 10.4 | 3.6 ± 0.1 |
9 | 63.5 | 58.2 ± 11.6 | 8.9 ± 0.5 | 316.9 ± 10.0 | 4.1 ± 0.0 |
10 | 65.3 | 63.2 ± 10.3 | 11.9 ± 0.8 | 187.3 ± 6.3 | 3.9 ± 0.2 |
11 | 65.4 | 74.8 ± 12.6 | 12.2 ± 0.6 | 303.9 ± 5.9 | 8.1 ± 0.3 |
12 | 69.8 | 85.2 ± 14.1 | 16.8 ± 1.2 | 320.4 ± 6.3 | 5.8 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Pizarro, P.; Montenegro, G.; Núñez, G.; Andia, M.E.; Espinosa-Bustos, C.; Costa de Camargo, A.; Oyarzún, J.E.; Bridi, R. Comparative Study of Phenolic Content and Antioxidant and Hepatoprotective Activities of Unifloral Quillay Tree (Quillaja saponaria Molina) and Multifloral Honeys from Chile. Plants 2024, 13, 3187. https://doi.org/10.3390/plants13223187
Núñez-Pizarro P, Montenegro G, Núñez G, Andia ME, Espinosa-Bustos C, Costa de Camargo A, Oyarzún JE, Bridi R. Comparative Study of Phenolic Content and Antioxidant and Hepatoprotective Activities of Unifloral Quillay Tree (Quillaja saponaria Molina) and Multifloral Honeys from Chile. Plants. 2024; 13(22):3187. https://doi.org/10.3390/plants13223187
Chicago/Turabian StyleNúñez-Pizarro, Paula, Gloria Montenegro, Gabriel Núñez, Marcelo E. Andia, Christian Espinosa-Bustos, Adriano Costa de Camargo, Juan Esteban Oyarzún, and Raquel Bridi. 2024. "Comparative Study of Phenolic Content and Antioxidant and Hepatoprotective Activities of Unifloral Quillay Tree (Quillaja saponaria Molina) and Multifloral Honeys from Chile" Plants 13, no. 22: 3187. https://doi.org/10.3390/plants13223187
APA StyleNúñez-Pizarro, P., Montenegro, G., Núñez, G., Andia, M. E., Espinosa-Bustos, C., Costa de Camargo, A., Oyarzún, J. E., & Bridi, R. (2024). Comparative Study of Phenolic Content and Antioxidant and Hepatoprotective Activities of Unifloral Quillay Tree (Quillaja saponaria Molina) and Multifloral Honeys from Chile. Plants, 13(22), 3187. https://doi.org/10.3390/plants13223187