From Waste to Worth: Using Fermented Orange Pomace in Sustainable Feed Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Orange Pomace Fermentation Liquor
2.2. Assaying the Plant Growth Promotion Potential of OPFL
2.3. Total Acidity
2.4. Biosafety Assay of Fermentation Product
2.4.1. Detection of Coliform
2.4.2. Hemolytic Activity
2.5. Enumeration of Lactic Acid Bacteria in Fermentation Liquor
2.6. Antimicrobial Properties of Orange Pomace Fermentation Liquor
2.7. Barley Germination System
2.8. Statistical Analysis
3. Results
3.1. Characterization of the Fermentation Liquor
3.2. Antimicrobial Activity Assessment
3.3. Identification of Bacterial Colonies in Liquor Fermentation
3.4. Response of Sprouted Barley to Inoculation with OPFL
3.4.1. Impact of OPFL Inoculation on Chlorophyll Content
3.4.2. Changes in Protein Content
3.4.3. Effects on Plant Height
3.4.4. Fresh Biomass Yield
3.5. Comparative Performance of Barley Varieties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alshaal, T.; El-Ramady, H.; Al-Saeedi, A.H.; Shalaby, T.; Elsakhawy, T.; Omara, A.E.-D.; Gad, A.; Hamad, E.; El-Ghamry, A.; Mosa, A.; et al. The Rhizosphere and Plant Nutrition Under Climate Change. In Essential Plant Nutrients; Naeem, M., Ansari, A.A., Gill, S.S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 275–308. ISBN 978-3-319-58840-7. [Google Scholar]
- Alshaal, T.; Alharbi, K.; Naif, E.; Rashwan, E.; Omara, A.E.-D.; Hafez, E.M. Strengthen Sunflowers Resilience to Cadmium in Saline-Alkali Soil by PGPR-Augmented Biochar. Ecotoxicol. Environ. Saf. 2024, 280, 116555. [Google Scholar] [CrossRef] [PubMed]
- Grover, S.; Aggarwal, P.; Kumar, A.; Kaur, S.; Yadav, R.; Babbar, N. Utilizing Citrus Peel Waste: A Review of Essential Oil Extraction, Characterization, and Food-Industry Potential. Biomass Conv. Bioref. 2024. [Google Scholar] [CrossRef]
- Widmer, W.; Zhou, W.; Grohmann, K. Pretreatment Effects on Orange Processing Waste for Making Ethanol by Simultaneous Saccharification and Fermentation. Bioresour. Technol. 2010, 101, 5242–5249. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Pardo, F.A.; Nakajima, V.M.; Macedo, G.A.; Macedo, J.A.; Martínez, J. Extraction of Phenolic Compounds from Dry and Fermented Orange Pomace Using Supercritical CO2 and Cosolvents. Food Bioprod. Process. 2017, 101, 1–10. [Google Scholar] [CrossRef]
- Ruzzi, M.; Aroca, R. Plant Growth-Promoting Rhizobacteria Act as Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 124–134. [Google Scholar] [CrossRef]
- Aulitto, M.; Alfano, A.; Maresca, E.; Avolio, R.; Errico, M.E.; Gentile, G.; Cozzolino, F.; Monti, M.; Pirozzi, A.; Donsì, F.; et al. Thermophilic Biocatalysts for One-Step Conversion of Citrus Waste into Lactic Acid. Appl. Microbiol. Biotechnol. 2024, 108, 155. [Google Scholar] [CrossRef]
- Lamont, J.R.; Wilkins, O.; Bywater-Ekegärd, M.; Smith, D.L. From Yogurt to Yield: Potential Applications of Lactic Acid Bacteria in Plant Production. Soil Biol. Biochem. 2017, 111, 1–9. [Google Scholar] [CrossRef]
- Daba, G.M.; Elkhateeb, W.A. Bacteriocins of Lactic Acid Bacteria as Biotechnological Tools in Food and Pharmaceuticals: Current Applications and Future Prospects. Biocatal. Agric. Biotechnol. 2020, 28, 101750. [Google Scholar] [CrossRef]
- Yafetto, L. Application of Solid-State Fermentation by Microbial Biotechnology for Bioprocessing of Agro-Industrial Wastes from 1970 to 2020: A Review and Bibliometric Analysis. Heliyon 2022, 8, e09173. [Google Scholar] [CrossRef]
- Alshaal, T.; El-Ramady, H. Foliar Application: From Plant Nutrition to Biofortification. EBSS 2017, 1, 71–83. [Google Scholar] [CrossRef]
- Shu, X.; He, J.; Zhou, Z.; Xia, L.; Hu, Y.; Zhang, Y.; Zhang, Y.; Luo, Y.; Chu, H.; Liu, W.; et al. Organic Amendments Enhance Soil Microbial Diversity, Microbial Functionality and Crop Yields: A Meta-Analysis. Sci. Total Environ. 2022, 829, 154627. [Google Scholar] [CrossRef] [PubMed]
- Al-Taher, F.; Kalita, D.; Nemzer, B. The Role of Sprouted Grains in Human Wellness and Gut Health. In Sprouted Grains; Elsevier: Amsterdam, The Netherlands, 2025; pp. 285–311. ISBN 978-0-443-23634-1. [Google Scholar]
- Shahwar, D.; Mushtaq, Z.; Mushtaq, H.; Alqarawi, A.A.; Park, Y.; Alshahrani, T.S.; Faizan, S. Role of Microbial Inoculants as Bio Fertilizers for Improving Crop Productivity: A Review. Heliyon 2023, 9, e16134. [Google Scholar] [CrossRef] [PubMed]
- Bric, J.M.; Bostock, R.M.; Silverstone, S.E. Rapid In Situ Assay for Indoleacetic Acid Production by Bacteria Immobilized on a Nitrocellulose Membrane. Appl. Environ. Microbiol. 1991, 57, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Nautiyal, C.S. An Efficient Method for Qualitative Screening of Phosphate-Solubilizing Bacteria. Curr. Microbiol. 2001, 43, 51–56. [Google Scholar] [CrossRef]
- O’Toole, G.A. Microtiter Dish Biofilm Formation Assay. JoVE 2011, 47, 2437. [Google Scholar] [CrossRef]
- Weber, P. Determination of Amino Acids in Food and Feed by Microwave Hydrolysis and UHPLC-MS/MS. J. Chromatogr. B 2022, 1209, 123429. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Morris, P.B.; Ballantyne, C.M.; Birtcher, K.K.; Daly, D.D.; DePalma, S.M.; Minissian, M.B.; Orringer, C.E.; Smith, S.C. 2017 Focused Update of the 2016 ACC Expert Consensus Decision Pathway on the Role of Non-Statin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk. J. Am. Coll. Cardiol. 2017, 70, 1785–1822. [Google Scholar] [CrossRef]
- Sharma, G.; Shenoy, S.; Bhat, G. Virulence Factors and Drug Resistance in Escherichia coli Isolated from Extraintestinal Infections. Indian J. Med. Microbiol. 2007, 25, 369. [Google Scholar] [CrossRef]
- De Man, J.C.; Rogosa, M.; Sharpe, M.E. A Medium for the Cultivation of Lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Sparks, D.L.; Soil Science Society of America, American Society of Agronomy (Eds.) Methods of Soil Analysis, Part 3: Chemical Methods; Soil Science Society of America book series; Soil Science Society of America: American Society of Agronomy: Madison, WI, USA, 1996; ISBN 978-0-89118-825-4. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 148, pp. 350–382. ISBN 978-0-12-182048-0. [Google Scholar]
- Liu, J.-M.; Fehér, C.; Cao, M.; Lu, F.; Jensen, P.R. Editorial: Lactic Acid Bacteria: Microbial Metabolism and Expanding Applications. Front. Bioeng. Biotechnol. 2021, 9, 794164. [Google Scholar] [CrossRef]
- Canon, F.; Maillard, M.-B.; Henry, G.; Thierry, A.; Gagnaire, V. Positive Interactions between Lactic Acid Bacteria Promoted by Nitrogen-Based Nutritional Dependencies. Appl. Environ. Microbiol. 2021, 87, e01055-21. [Google Scholar] [CrossRef] [PubMed]
- Punia Bangar, S.; Suri, S.; Trif, M.; Ozogul, F. Organic Acids Production from Lactic Acid Bacteria: A Preservation Approach. Food Biosci. 2022, 46, 101615. [Google Scholar] [CrossRef]
- Song, D.; Dai, X.; Guo, T.; Cui, J.; Zhou, W.; Huang, S.; Shen, J.; Liang, G.; He, P.; Wang, X.; et al. Organic Amendment Regulates Soil Microbial Biomass and Activity in Wheat-Maize and Wheat-Soybean Rotation Systems. Agric. Ecosyst. Environ. 2022, 333, 107974. [Google Scholar] [CrossRef]
- Trias, R.; Bañeras, L. Lactic Acid Bacteria from Fresh Fruit and Vegetables as Biocontrol Agents of Phytopathogenic Bacteria and Fungi. Int. Microbiol. 2008, 11, 231–236. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Shape | Rod shaped |
Motility | Non motile |
Spore formation | Non motile |
Catalase reaction | Negative |
Parameter | Value |
---|---|
Appearance | Yellowish turbid liquid |
Smell | Orange scent competes with fermentation smell |
pH | 4.3 ± 0.05 |
EC (dS/m) | 9.3 ± 0.23 |
Total acidity (g acetic acid/L) | 2 ± 0.01 |
Total microbial count on MRS | 5 × 107 ± 0.02 |
Growth on nutrient agar | Weak growth was observed after incubation for 7 days |
Growth on potato dextrose agar (PDA) | Weak growth was observed after incubation for 7 days |
Detection of coliform | Not detected |
Blood hemolysis | No blood hemolysis |
Antimicrobial potential | Active against Pectobacterium carotovorum |
IAA | Present |
Phosphate solubilization potential | Positive |
Interaction | Chl a mg/g | Chl b mg/g | Total Chl mg/g | Carotenoid mg/g | Protein % | Plant Height cm | Fresh Biomass g |
---|---|---|---|---|---|---|---|
V1-con. | 2.94 ± 0.02 | 0.974 ± 0.01 | 4.28 ± 0.04 | 0.37 ± 0.01 | 12.15 ± 0.11 | 13.6 ± 0.19 | 2735 ± 30 |
V1-in. | 3.29 ± 0.02 | 0.967 ± 0.03 | 4.74 ± 0.03 | 0.48 ± 0.02 | 22.07 ± 0.19 | 16.4 ± 0.15 | 2945 ± 58 |
V2-con. | 2.70 ± 0.02 | 0.832 ± 0.04 | 4.02 ± 0.02 | 0.49 ± 0.03 | 9.48 ± 0.16 | 12.0 ± 0.20 | 2299 ± 59 |
V2-in. | 2.96 ± 0.01 | 0.954 ± 0.002 | 4.43 ± 0.01 | 0.51 ± 0.01 | 17.19 ± 0.12 | 15.6 ± 0.24 | 2627 ± 55 |
V3-con. | 2.88 ± 0.01 | 0.734 ± 0.02 | 4.03 ± 0.01 | 0.42 ± 0.02 | 8.08 ± 0.10 | 10.4 ± 0.21 | 2375 ± 46 |
V3-in. | 2.99 ± 0.03 | 0.827 ± 0.00 | 4.31 ± 0.01 | 0.49 ± 0.01 | 14.48 ± 0.15 | 12.2 ± 0.23 | 2756 ± 42 |
V4-con. | 2.54 ± 0.01 | 0.648 ± 0.01 | 3.58 ± 0.02 | 0.40 ± 0.00 | 10.23 ± 0.11 | 9.6 ± 0.11 | 2826 ± 35 |
V4-in. | 2.81 ± 0.02 | 0.782 ± 0.01 | 4.06 ± 0.01 | 0.46 ± 0.01 | 15.75 ± 0.12 | 12.8 ± 0.21 | 3066± |
L.S.D. 0.05 | 0.002 ** | 0.003 ** | 0.02 ** | 0.005 ** | 0.233 ** | 0.199 ** | n.s. |
Varieties | Chl a mg/g | Chl b mg/g | Total Chl mg/g | Car. mg/g | Protein % | Plant Height cm | Fresh Biomass g |
---|---|---|---|---|---|---|---|
Giza 2000 | 3.11 ± 0.02 | 0.97 ± 0.02 | 4.51 ± 0.03 | 0.43 ± 0.01 | 17.11 ± 0.02 | 15.00 ± 0.26 | 2840 ± 33 |
Giza 138 | 2.83 ± 0.03 | 0.89 ± 0.01 | 4.23 ± 0.01 | 0.50 ± 0.02 | 13.33 ± 0.04 | 13.80 ± 0.35 | 2463 ± 35 |
Giza 132 | 2.94 ± 0.03 | 0.78 ± 0.01 | 4.17 ± 0.02 | 0.45 ± 0.00 | 11.28 ± 0.05 | 11.30 ± 0.24 | 2566 ± 42 |
Giza 126 | 2.68 ± 0.02 | 0.72 ± 0.01 | 3.82 ± 0.02 | 0.43 ± 0.01 | 12.99 ± 0.02 | 11.20 ± 0.12 | 2946 ± 51 |
L.S.D. 0.05 | 0.005 ** | 0.009 ** | 0.02 ** | 0.003 ** | 0.269 ** | 0.245 ** | 77.2 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsakhawy, T.; Alshaal, T.; Elakhdar, A.; El-Akhdar, I. From Waste to Worth: Using Fermented Orange Pomace in Sustainable Feed Production. Plants 2024, 13, 3191. https://doi.org/10.3390/plants13223191
Elsakhawy T, Alshaal T, Elakhdar A, El-Akhdar I. From Waste to Worth: Using Fermented Orange Pomace in Sustainable Feed Production. Plants. 2024; 13(22):3191. https://doi.org/10.3390/plants13223191
Chicago/Turabian StyleElsakhawy, Tamer, Tarek Alshaal, Ammar Elakhdar, and Ibrahim El-Akhdar. 2024. "From Waste to Worth: Using Fermented Orange Pomace in Sustainable Feed Production" Plants 13, no. 22: 3191. https://doi.org/10.3390/plants13223191
APA StyleElsakhawy, T., Alshaal, T., Elakhdar, A., & El-Akhdar, I. (2024). From Waste to Worth: Using Fermented Orange Pomace in Sustainable Feed Production. Plants, 13(22), 3191. https://doi.org/10.3390/plants13223191