Chloroplast Genome and Description of Borodinellopsis insignis sp. nov. (Chlamydomonadales, Chlorophyta), a Rare Aerial Alga from China
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Borodinellopsis Insignis Q.F. Yan et G.X. Liu sp. nov.
3.2. Phylogenetic Analyses
3.3. Chloroplast Genome Analysis
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dykstra, R. Borodinellopsis texensis gen. et sp. nov. In Contributions in Phycology; Phycological Society of America: Waterloo, ON, Canada, 2017; pp. 1–8. [Google Scholar]
- Schwarz, K. New soil algae from Dalmatia. Plant Syst. Evol. 1979, 131, 193–209. [Google Scholar] [CrossRef]
- Chodat, R. Algues pélagiques nouvelles. Bull. De L’herbier Boissier 1897, 5, 119–120. [Google Scholar]
- Brown, R.; Bold, H.C. Comparative Studies of the Algal Genera Tetracystis and Chlorococcum; University of Texas Publication: Austin, TX, USA, 1964; Volume 6417, pp. 1–213. [Google Scholar]
- Meneghini, G. Monographia Nostochinearum Italicarum addito specimine de Rivulariis. 1842. [Google Scholar]
- Herndon, W. Studies on chlorosphaeracean algae from soil. Am. J. Bot. 1958, 45, 298–308. [Google Scholar] [CrossRef]
- Agardh, C. Systema algarum adumbravit CA Agardh, bot. et oec. pr. prof. reg. et ord…Literis Berlingianis. 1824. [Google Scholar]
- Kützing, F.T. Phycologia Generalis: Oder Anatomie, Physiologie und Systemkunde der Tange; Brockhaus: Lüdenscheid, Germany, 1843. [Google Scholar]
- Starr, R.C. A comparative study of Chlorococcum meneghini and other spherical, zoospore-producing genera of the Chlorococcales. Indiana Univ. Publ. Sci. Ser. 1955, 20, 1–111. [Google Scholar]
- Temraleeva, A.; Moskalenko, S.; Mincheva, E.; Bukin, Y.; Sinetova, M. Spongiosarcinopsis terrestris gen. et sp. nov. (chlorophyta, chlorophyceae): A new genus of green algae from gray forest soil, russia. Phytotaxa 2018, 6, 376. [Google Scholar] [CrossRef]
- Temraleeva, A. Validation of Spongiosarcinopsis terrestris gen. et sp. nov. (Protosiphonaceae, Chlorophyta). Not. Algarum 2019, 98, 1–2. [Google Scholar]
- Trofim, A.; Donţu, N.; Şalaru, V.; Gheorhiţa, C. Taxonomic and ecological structure of the edaphic algae flora from certain agrocenoses of the Republic of Moldova. Stud. Univ. Mold. 2013, 61, 83–87. [Google Scholar]
- Goyal, S.K. Algae and the soil environment. Phykos 1997, 36, 1–13. [Google Scholar]
- Metting, B. The systematics and ecology of soil algae. Bot. Rev. 1981, 47, 195–312. [Google Scholar]
- Kuzyakhmetov, G.G. Productivity of algocenoses in zonal arable soils of steppe and forest-steppe. Eurasian Soil Sci. 1998, 31, 406–410. [Google Scholar]
- Kozuki, Y.; Miura, Y.; Yagasaki, K. Inhibitory effects of carotenoids on the invasion of rat ascites hepatoma cells in culture. Cancer Lett. 2000, 151, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Donkin, P. Ketocarotenoid biosynthesis by Haematococcus lacustris. Phytochemistry 1976, 15, 711–715. [Google Scholar] [CrossRef]
- Johnson, E.A.; An, G.H. Astaxanthin from microbial sources. Crit. Rev. Biotechnol. 1991, 11, 297–326. [Google Scholar] [CrossRef]
- Zhang, D.H.; Ng, Y.K.; Phang, S.M. Composition and accumulation of secondary carotenoids in Chlorococcum sp. J. Appl. Phycol. 1997, 9, 147–155. [Google Scholar] [CrossRef]
- Liu, B.H.; Lee, Y.K. Composition and biosynthetic pathways of carotenoids in the astaxanthin-producing green alga Chlorococcum sp. Biotechnol. Lett. 1999, 21, 1007–1010. [Google Scholar] [CrossRef]
- Mathimani, T.; Rene, E.R.; Devanesan, S.; AlSalhi, M.S.; Shanmuganathan, R. Assessment of taxonomically diverse Chlorococcum species and Chroococcus species for cell density, pigments, biochemical components, and fatty acid composition for fuel/food applications. Algal Res. 2023, 74, 103228. [Google Scholar] [CrossRef]
- Oyelami, S.; Azeez, N.A.; Adekanmi, A.A.; Adeleke, K.M.; Oyewo, A.T.; Adeyi, A.J. Production and characterization of biodiesel from Chlorococcum sp.: A green microalgae. Environ. Qual. Manag. 2023, 33, 387–396. [Google Scholar] [CrossRef]
- Rayati, M.; Rajabi Islami, H.; Shamsaie Mehrgan, M. Light intensity improves growth, lipid productivity, and fatty acid profile of Chlorococcum oleofaciens (Chlorophyceae) for biodiesel production. BioEnergy Res. 2020, 13, 1235–1245. [Google Scholar] [CrossRef]
- Laje, K.; Seger, M.; Dungan, B.; Cooke, P.; Polle, J.; Holguin, F.O. Phytoene accumulation in the novel microalga Chlorococcum sp. using the pigment synthesis inhibitor fluridone. Mar. Drugs 2019, 17, 187. [Google Scholar] [CrossRef]
- Cabanelas, I.T.D.; Fernandes, C.; Kleinegris, D.M.; Wijffels, R.H.; Barbosa, M.J. Cell diameter doesn’t affect lipid productivity of Chlorococcum littorale. Algal Res. 2016, 19, 333–341. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Chen, H.; Bai, H.; Yang, X.; Yang, H. Influences of chlorococcum growth on the electrical performance of post insulators with RTV coating. Trans. China Electrotech. Soc. 2015, 30, 330–335. [Google Scholar]
- Bhagavathy, S.; Sumathi, P.; Bell, I.J.S. Green algae Chlorococcum humicola-a new source of bioactive compounds with antimicrobial activity. Asian Pac. J. Trop. Biomed. 2011, 1, S1–S7. [Google Scholar] [CrossRef]
- Allen, M.M. Simple conditions for growth of unicellular blue-green algae on plates. J. Phycol. 1968, 4, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Medlin, L.; Elwood, H.J.; Stickel, S.; Sogin, M.L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 1998, 71, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, D.; Friedl, T.; Damberger, S. Nuclear-encoded rDNA group I introns: Origin and phylogenetic relationships of insertion site lineages in the green algae. Mol. Biol. Evol. 1996, 13, 978–989. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Gouy, M.; Tannier, E.; Comte, N.; Parsons, D.P. Seaview Version 5: A Multiplatform Software for Multiple Sequence Alignment, Molecular Phylogenetic Analyses, and Tree Reconciliation. In Multiple Sequence Alignment; Springer: Berlin/Heidelberg, Germany, 2021; pp. 241–260. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Mishra, B.; Thines, M. siMBa—A simple graphical user interface for the Bayesian phylogenetic inference program MrBayes. Mycol. Prog. 2014, 13, 1255–1258. [Google Scholar] [CrossRef]
- Darriba, D.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Flouri, T. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 2020, 37, 291–294. [Google Scholar] [CrossRef]
- Chen, Y.X.; Chen, Y.S.; Shi, C.M.; Chen, Q. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 2018, 7, gix120. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.A.; Andrey, S.P.; Pyshkin, A.V.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xing, W.; Song, H.; Liu, G.; Hu, Z. Analysis of mitochondrial and chloroplast genomes in two volvocine algae: Eudorina elegans and Eudorina cylindrica (Volvocaceae, Chlorophyta). Eur. J. Phycol. 2019, 54, 193–205. [Google Scholar] [CrossRef]
- Liu, C.; Shi, L.; Zhu, Y.; Chen, H.; Zhang, J.; Lin, X.; Guan, X. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genom. 2012, 13, 715. [Google Scholar] [CrossRef]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Stærfeldt, H.H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef]
- Lohse, M.; Drechsel, O.; Kahlau, S.; Bock, R. Organellar GenomeDRAW—A suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013, 41, W575–W581. [Google Scholar] [CrossRef]
- Darling, A.E.; Mau, B.; Perna, N.T. progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 2010, 5, e11147. [Google Scholar] [CrossRef]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Vaidya, G.; Lohman, D.J.; Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011, 27, 171–180. [Google Scholar] [CrossRef]
- Xia, X.; Xie, Z. DAMBE: Software package for data analysis in molecular biology and evolution. J. Hered. 2001, 92, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Posada, D. jModelTest 2.0 Manual v0. 1.1.; The Free Software Foundation: Boston, MA, USA, 2014. [Google Scholar]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Temraleeva, A.D.; Moskalenko, S.V.; Bachura, Y.M. Morphology, ecology, and 18S rDNA phylogeny of the green microalgal order Protosiphonales (Chlorophyceae, Chlorophyta). Microbiology 2017, 86, 159–169. [Google Scholar] [CrossRef]
- Wang, Q.; Song, H.; Liu, X.; Zhu, H.; Hu, Z.; Liu, G. Deep genomic analysis of Coelastrella saipanensis (Scenedesmaceae, Chlorophyta): Comparative chloroplast genomics of Scenedesmaceae. Eur. J. Phycol. 2019, 54, 52–65. [Google Scholar] [CrossRef]
Dataset | 18S rDNA | ITS | rbcL | tufA |
---|---|---|---|---|
Alignment length | 1771 | 436 | 997 | 676 |
Number of sequences | 52 | 20 | 33 | 18 |
Parsimony-informative sites | 376 | 217 | 328 | 245 |
Invariant sites | 1281 | 180 | 592 | 349 |
Best-fit model | TN93+G+I | GTR+G+I | GTR+G+I | GTR+G |
Base frequency% (T/C/A/G) | 26/21/25/28 | 23/25/27/25 | 31/19/28/22 | 31/14/34/21 |
Saturation test (Iss/Iss.c) | 0.121 < 0.837 | 0.572 < 0.700 | 0.371 < 0.753 | 0.213 < 0.739 |
Gene Product | Gene |
---|---|
Subunits of photosystem I | psaA, -B, -C, -J |
Subunits of photosystem II | psbA, -B, -C, -D, -E, -F, -H, -I, -J, -K, -L, -M, -N, -T, -Z |
Subunits of cytochrome b/f complex | petA, -B, -D, -G, -L |
Subunits of ATP synthase | atpA, -B, -E, -F, -H, -I |
Large subunit of rubisco | rbcL |
Small subunit of ribosome | rps2, -3, -4, -7, -8, -9, -11, -12, -14, -18, -19 |
Large subunit of ribosome | rpl2, -5, -14, -16, -20, -23, -32, -36 |
DNA-dependent RNA polymerase | rpoA, -Ba, -Bb, -C1, -C2 |
rRNA genes | rrn5S(×2), -16S(×2), -23S(×2) |
Envelope membrane protein | cemA(×2) |
Protease | clpP |
c-type cytochrome synthesis gene | ccsA |
Genes of unknown functions Open Reading | ycf1, -3, -4, -12 |
Subunits of protochlorophyllide reductase | chlB, -L, -N |
Cell division protein FTSH | ftsH |
Translation elongation factor Tu | tufA |
tRNA genes | trnA-UGC(×2), -C-GCA, -D-GUC, -E-UUC(×2), -F-GAA, -G-GCC, -H-GUG, -I-GAU(×2), -K-UUU, -L-UAA, -L-UAG, -M-CAU(×3), -N-GUU, -P-UGG, -Q-UUG, -R-ACG, -R-UCU, -S-GCU, -S-UGA, -T-UGU, -V-UAC, -W-CCA, -Y-GUA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Q.; Liu, B.; Liu, G. Chloroplast Genome and Description of Borodinellopsis insignis sp. nov. (Chlamydomonadales, Chlorophyta), a Rare Aerial Alga from China. Plants 2024, 13, 3199. https://doi.org/10.3390/plants13223199
Yan Q, Liu B, Liu G. Chloroplast Genome and Description of Borodinellopsis insignis sp. nov. (Chlamydomonadales, Chlorophyta), a Rare Aerial Alga from China. Plants. 2024; 13(22):3199. https://doi.org/10.3390/plants13223199
Chicago/Turabian StyleYan, Qiufeng, Benwen Liu, and Guoxiang Liu. 2024. "Chloroplast Genome and Description of Borodinellopsis insignis sp. nov. (Chlamydomonadales, Chlorophyta), a Rare Aerial Alga from China" Plants 13, no. 22: 3199. https://doi.org/10.3390/plants13223199
APA StyleYan, Q., Liu, B., & Liu, G. (2024). Chloroplast Genome and Description of Borodinellopsis insignis sp. nov. (Chlamydomonadales, Chlorophyta), a Rare Aerial Alga from China. Plants, 13(22), 3199. https://doi.org/10.3390/plants13223199