Soil Microbial and Metabolomic Shifts Induced by Phosphate-Solubilizing Bacterial Inoculation in Torreya grandis Seedlings
Abstract
:1. Introduction
2. Results
2.1. Soil Physicochemical Properties of Different Groups
2.2. Changes in Soil Microbial Diversity in Different Groups
2.3. Differential Microbial Species in Different Groups
2.4. Enrichment Analysis of Bacterial and Fungal KEGG Metabolic Pathways
2.5. Screening and Content Changes of Differential Metabolites in Different Groups
2.6. Correlation Analysis Reveals the Close Relationship Between Soil Bacteria Communities, Fungi Communities, and Metabolites
3. Discussion
3.1. Impact of Phosphate-Solubilizing Bacterial Agents on Soil Nutrients and Microbial Diversity
3.2. Functional Prediction of Bacterial and Fungal Communities
3.3. Differential Metabolites and Content Changes
3.4. Correlation Analysis of Differential Metabolites with Soil Microbes
4. Materials and Methods
4.1. Materials
4.2. Experimental Design
4.3. Physicochemical Analysis of Soil Samples
4.4. Soil DNA Extraction, Amplicon Sequencing, and Data Analysis
4.5. Soil Untargeted Metabolomics Analysis and Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.F.; Chen, Z.L.; He, A.G.; Liu, J.L.; Wang, P.; Chen, W.J.; Jin, X.F. Torreyadapanshanica (Taxaceae), a new species of gymnosperm from Zhejiang, East China. PhytoKeys 2022, 192, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.Q.; Ding, M.Z.; Wu, J.S.; Zhang, F.C.; Chen, W.C.; Yi, Y.; Suo, J.W.; Yu, W.W.; Xu, C.C.; Song, L.L. Full-Length Transcriptome Analysis of the Genes Involved in Tocopherol Biosynthesis in Torreya grandis. J. Agric. Food Chem. 2019, 67, 1877–1888. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.A. Nucleic acid requirement of plants from low phosphorus habitats. A Commentary on: Foliar nutrient-allocation patterns in Banksia attenuata and Banksia sessilis differing in growth rate and adaptation to low-phosphorus habitats. Ann. Bot. 2021, 128, iv–vi. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus dynamics: From soil to plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Lütke, S.F.; Oliveira, M.L.S.; Silva, L.F.O.; Cadaval, T.R.S., Jr.; Dotto, G.L. Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry. Chemosphere 2020, 256, 127138. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, D. Nitrogen and phosphorus losses by surface runoff and soil microbial communities in a paddy field with different irrigation and fertilization managements. PLoS ONE 2021, 6, e0254227. [Google Scholar] [CrossRef]
- Li, X.; Rui, J.; Xiong, J.; Li, J.; He, Z.; Zhou, J. Yannarell AC, Mackie RI. Functional potential of soil microbial communities in the maize rhizosphere. PLoS ONE 2014, 9, e112609. [Google Scholar] [CrossRef]
- Cantó, F.; Simonin, M.; King, E.; Moulin, L.; Bennett, M.J.; Castrillo, G.; Laplaze, L. An extended root phenotype: The rhizosphere, its formation and impacts on plant fitness. Plant J. 2020, 103, 951–964. [Google Scholar] [CrossRef]
- Chen, S.; Yao, F.; Mi, G.; Wang, L.; Wu, H.; Wang, Y. Crop rotation increases root biomass and promotes the correlation of soil dissolved carbon with the microbial community in the rhizosphere. Front. Bioeng. Biotechnol. 2022, 10, 1081647. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Ayangbenro, A.S.; Glick, B.R.; Babalola, O.O. Plant Health: Feedback Effect of Root Exudates-Rhizobiome Interactions. Appl. Microbiol. Biotechnol. 2019, 103, 1155–1166. [Google Scholar] [CrossRef]
- Hartman, W.H.; Richardson, C.J. Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): Is there a biological stoichiometry of soil microbes? PLoS ONE 2013, 8, e57127. [Google Scholar] [CrossRef] [PubMed]
- Ros, M.; Almagro, M.; Fernández, J.A.; Egea-Gilabert, C.; Faz, Á.; Pascual, J.A. Approaches for the Discrimination of Suppressive Soils for Pythium Irregulare Disease. Appl. Soil Ecol. 2020, 147, 103439. [Google Scholar] [CrossRef]
- Wang, R.; Tan, J.; Fan, J. Analysis of Metabolic Markers in Soil with Tobacco Bacterial Wilt Based on Metabolomics. Acta Tabacaria Sin. 2022, 28, 104–112. [Google Scholar] [CrossRef]
- Li, F.L.; Hu, Z.J. Microbiology; China Agriculture Press: Beijing, China, 2000; 228p. [Google Scholar]
- Bardin, S.D.; Finan, T.M. Regulation of phosphate assimilation in Rhizobium (Sinorhizobium) meliloti. Genetics 1998, 148, 1689–1700. [Google Scholar] [CrossRef]
- Khan, H.; Akbar, W.A.; Shah, Z.; Rahim, H.U.; Taj, A.; Alatalo, J.M. Coupling phosphate-solubilizing bacteria (PSB) with inorganic phosphorus fertilizer improves mungbean (Vigna radiata) phosphorus acquisition, nitrogen fixation, and yield in alkaline-calcareous soil. Heliyon 2022, 8, e09081. [Google Scholar] [CrossRef]
- Chi, J.L.; Hao, M.; Wang, Z.X.; Li, Y. Advances in Research and Application of Phosphorus Solubilizing Microorganism. J. Microbiol. 2021, 41, 1–7. [Google Scholar] [CrossRef]
- Singh, B.; Satyanarayana, T. Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol. Mol. Biol. Plants 2011, 17, 93–103. [Google Scholar] [CrossRef]
- Long, H.; Wasaki, J. Effects of Phosphate-solubilizing Bacteria on Soil Phosphorus Fractions and Supply to Maize Seedlings Grown in Lateritic Red Earths and Cinnamon Soils. Microbes Environ. 2023, 38, ME22075. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, C.; Kong, C.; Zeng, H.; Yu, W.; Wu, J. Genomics Analysis of Three Phosphorus-Dissolving Bacteria Isolated from T.grandis Soil. Int. Microbiol. 2023, 27, 361–376. [Google Scholar] [CrossRef]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef]
- Mącik, M.; Gryta, A.; Sas-Paszt, L.; Frąc, M. Composition, Activity and Diversity of Bacterial and Fungal Communities Responses to Inputs of Phosphorus Fertilizer Enriched with Beneficial Microbes in Degraded Brunic Arenosol. Land Degrad. Dev. 2022, 33, 844–865. [Google Scholar] [CrossRef]
- Jiang, N.W.; Liang, C.F.; Zhang, Y.; Jiang, Z.L.; Dong, J.Q.; Wu, J.S.; Fu, W.J. Microbial composition and diversity in soil of Torreya grandis cv. Merrillii relative to different cultivation years after land use conversion. Environ. Sci. 2022, 43, 530–539. [Google Scholar] [CrossRef]
- Zhu, W.J.; Ren, Y.M.; Yang, Z.; Guo, R.F.; Zhang, S.; Ren, G.B. Prediction and Analysis of Soil Microbial Community Structure and Function in Foxtail Millet. Crop J. 2023, 5, 170–178. [Google Scholar] [CrossRef]
- Yang, A.; Lu, Y.; Zhang, J.; Wu, J.; Xu, J.; Tong, Z. Changes in Soil Nutrients and Acidobacteria Community Structure in Cunninghamia Lanceolata Plantations. Sci. Silvae Sin. 2019, 55, 119–127. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Zhang, M.; Wang, S.; Liu, Q.; Yin, K. Effects of Inoculating Phosphate-Solubilizing Bacteria on Bacterial Diversity of Mung Bean Rhizosphere Soil Mixed with Sands in Saline Alkaline Soil. Shandong Agric. Sci. 2022, 54, 73–81. [Google Scholar] [CrossRef]
- Eigemann, F.; Vogts, A.; Voss, M.; Zoccarato, L.; Schulz-Vogt, H. Distinctive tasks of different cyanobacteria and associated bacteria in carbon as well as nitrogen fixation and cycling in a late stage Baltic Sea bloom. PLoS ONE 2019, 14, e0223294. [Google Scholar] [CrossRef]
- Wang, C.; Ren, S.; Tong, Q.; Chen, M.; Zhang, C.; Zhou, X.; Wei, X. Analysis of Root Fungal Diversity and Community Structure of Yellowing T.grandis ‘Merrillii’ in Guizhou. J. Cent. South Univ. For. Technol. 2023, 2023, 29–39. [Google Scholar] [CrossRef]
- Jin, N.; Jin, L.; Wang, S.; Li, J.; Liu, F.; Liu, Z.; Luo, S.; Wu, Y.; Lyu, J.; Yu, J. Reduced Chemical Fertilizer Combined with Bio-Organic Fertilizer Affects the Soil Microbial Community and Yield and Quality of Lettuce. Front. Microbiol. 2022, 13, 863325. [Google Scholar] [CrossRef]
- Ye, G.; Lin, Y.; Luo, J.; Di, H.J.; Lindsey, S.; Liu, D.; Fan, J.; Ding, W. Responses of Soil Fungal Diversity and Community Composition to Long-Term Fertilization: Field Experiment in an Acidic Ultisol and Literature Synthesis. Appl. Soil Ecol. 2020, 145, 103305. [Google Scholar] [CrossRef]
- Azene, B.; Zhu, R.; Pan, K.; Sun, X.; Nigussie, Y.; Gruba, P.; Raza, A.; Alemu, A.; Wu, X.; Zhang, L. Land Use Change Alters Phosphatase Enzyme Activity and Phosphatase-Harboring Microbial Abundance in the Subalpine Ecosystem of Southeastern Qinghai-Tibet Plateau, China. Ecol. Indic. 2023, 153, 110416. [Google Scholar] [CrossRef]
- Zúñiga-Silgado, D.; Rivera-Leyva, J.C.; Coleman, J.J.; Sánchez-Reyez, A.; Valencia-Díaz, S.; Serrano, M.; de-Bashan, L.E.; Folch-Mallol, J.L. Soil Type Affects Organic Acid Production and Phosphorus Solubilization Efficiency Mediated by Several Native Fungal Strains from Mexico. Microorganisms 2020, 8, 1337. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Shen, Z.; Zhang, N.; Deng, X.; Thomashow, L.S.; Lidbury, I.; Liu, H.; Li, R.; Shen, Q.; Kowalchuk, G.A. Phosphorus Availability Influences Disease-Suppressive Soil Microbiome through Plant-Microbe Interactions. Microbiome 2024, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Murphy, D.V.; George, S.J.; Lapis-Gaza, H.; Xu, M.; Gleeson, D.B. Increasing the Size of the Microbial Biomass Altered Bacterial Community Structure Which Enhances Plant Phosphorus Uptake. PLoS ONE 2016, 11, e0166062. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xie, T.; Zhu, H.; Zhou, J.; Li, C.; Xiong, W.; Xu, L.; Wu, Y.; He, Z.; Li, X. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma 2021, 404, 115376. [Google Scholar] [CrossRef]
- Lu, J.; Jia, P.; Feng, S.; Wang, Y.; Zheng, J.; Ou, S.; Wu, Z.; Liao, B.; Shu, W.; Liang, J.L. Remarkable Effects of Microbial Factors on Soil Phosphorus Bioavailability: A Country-Scale Study. Glob. Chang. Biol. 2022, 28, 4459–4471. [Google Scholar] [CrossRef]
- Zhang, Q.; Yao, D.; Rao, B.; Jian, L.; Chen, Y.; Hu, K.; Xia, Y.; Li, S.; Shen, Y.; Qin, A.; et al. The structural basis for the phospholipid remodeling by lysophosphatidylcholine acyltransferase 3. Nat. Commun. 2021, 12, 6869. [Google Scholar] [CrossRef]
- Patton-Vogt, J.; de Kroon, A.I.P.M. Phospholipid turnover and acyl chain remodeling in the yeast ER. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2020, 1865, 158462. [Google Scholar] [CrossRef]
- Cheng, H.; Yuan, M.; Tang, L.; Shen, Y.; Yu, Q.; Li, S. Integrated Microbiology and Metabolomics Analysis Reveal Responses of Soil Microorganisms and Metabolic Functions to Phosphorus Fertilizer on Semiarid Farm. Sci. Total Environ. 2022, 817, 152878. [Google Scholar] [CrossRef]
- Yao, X.D.; Wang, W.; Zeng, H. Application of Phospholipid Fatty Acid Method in Analyzing Soil Microbial Community Composition. Microbiol. China 2016, 43, 2086–2095. [Google Scholar] [CrossRef]
- Tamburini, D.; Dyer, J.; Bonaduce, I. The characterisation of shellac resin by flow injection and liquid chromatography coupled with electrospray ionisation and mass spectrometry. Sci. Rep. 2017, 7, 14784. [Google Scholar] [CrossRef]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The Interplay between Microbial Communities and Soil Properties. Nat. Rev. Microbiol. 2024, 22, 226–239. [Google Scholar] [CrossRef]
- Hou, D.; Al-Tabbaa, A.; O’Connor, D.; Hu, Q.; Zhu, Y.-G.; Wang, L.; Kirkwood, N.; Ok, Y.S.; Tsang, D.C.W.; Bolan, N.S.; et al. Sustainable Remediation and Redevelopment of Brownfield Sites. Nat. Rev. Earth Environ. 2023, 4, 271–286. [Google Scholar] [CrossRef]
- Dong, H.; Du, Y.; Li, J.; Wu, D. Research Progress on the Synthetic Technology of Pinoxaden. Fine Spec. Chem. 2023, 31, 42–47+51. [Google Scholar] [CrossRef]
- Neunert, G.; Tomaszewska-Gras, J.; Gauza-Włodarczyk, M.; Witkowski, S.; Polewski, K. Assessment of DPPC Liposome Disruption by Embedded Tocopheryl Malonate. Appl. Sci. 2023, 13, 6219. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, W.; Li, X.; Feng, J.; Li, C.; Yang, X.; Guo, Q.; Wang, L.; Chen, S.; Li, Y. Integrated Biocontrol of Tobacco Bacterial Wilt by Antagonistic Bacteria and Marigold. Sci. Rep. 2021, 11, 16360. [Google Scholar] [CrossRef]
- Cai, Y.M.; Zhao, Q.X.; Zhang, C.F. Effect of Plant Root Exudates on Soil Phosphorus Transformation under Low Phosphorus: A Review. J. Northeast. Agric. Univ. 2021, 52, 79–86. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Guan, Y.; Jiang, Z.; Xie, Q.; Wang, Q.; Yu, C.; Yu, W. Soil Microbial and Metabolomic Shifts Induced by Phosphate-Solubilizing Bacterial Inoculation in Torreya grandis Seedlings. Plants 2024, 13, 3209. https://doi.org/10.3390/plants13223209
Li Y, Guan Y, Jiang Z, Xie Q, Wang Q, Yu C, Yu W. Soil Microbial and Metabolomic Shifts Induced by Phosphate-Solubilizing Bacterial Inoculation in Torreya grandis Seedlings. Plants. 2024; 13(22):3209. https://doi.org/10.3390/plants13223209
Chicago/Turabian StyleLi, Yi, Yuanyuan Guan, Zhengchu Jiang, Qiandan Xie, Qi Wang, Chenliang Yu, and Weiwu Yu. 2024. "Soil Microbial and Metabolomic Shifts Induced by Phosphate-Solubilizing Bacterial Inoculation in Torreya grandis Seedlings" Plants 13, no. 22: 3209. https://doi.org/10.3390/plants13223209
APA StyleLi, Y., Guan, Y., Jiang, Z., Xie, Q., Wang, Q., Yu, C., & Yu, W. (2024). Soil Microbial and Metabolomic Shifts Induced by Phosphate-Solubilizing Bacterial Inoculation in Torreya grandis Seedlings. Plants, 13(22), 3209. https://doi.org/10.3390/plants13223209