Effect of Higher Ethylene Levels Emitted by Shade-Avoider Plants on Neighboring Seedlings
Abstract
:1. Introduction
2. Results
2.1. Ethylene Production upon Exposure to Simulated Shade Is Attenuated in Shade-Tolerant Plants
2.2. Endogenous Ethylene Impacts Hypocotyl Elongation in a Light-Dependent Manner
2.3. Elongation of Dark-Grown A. thaliana Seedlings Is Repressed by Ethylene Released by Neighboring Plants
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Measurement of Hypocotyl Elongation
4.3. Ethylene Quantification
4.4. GUS Staining
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bulleri, F.; Bruno, J.F.; Silliman, B.R.; Stachowicz, J.J. Facilitation and the niche: Implications for coexistence, range shifts and ecosystem functioning. Funct. Ecol. 2016, 30, 70–78. [Google Scholar] [CrossRef]
- Callaway, R.M.; Walker, L.R. Competition and facilitation: A synthetic approach to interactions in plant communities. Ecology 1997, 78, 1958–1965. [Google Scholar] [CrossRef]
- Monn, D.C.; Monn, J.; Keagy, A. Direct and Indirect Interactions. Nat. Educ. Know. 2010, 3, 50. [Google Scholar]
- Roig-Villanova, I.; Martinez-Garcia, J.F. Molecular regulation of plant responses to shade. In Progress in Botany; Ulrich Lüttge, U., Cánovas, F.M., Risueño, M.C., Leuschner, C., Pretzsch, H., Eds.; Springer: Cham, Switzerland, 2024; Volume 84, pp. 221–240. [Google Scholar]
- Casal, J.J. Shade avoidance. Arab. Book 2012, 10, e0157. [Google Scholar] [CrossRef]
- Morelli, L.; Paulisic, S.; Qin, W.; Iglesias-Sanchez, A.; Roig-Villanova, I.; Florez-Sarasa, I.; Rodriguez-Concepcion, M.; Martinez-Garcia, J.F. Light signals generated by vegetation shade facilitate acclimation to low light in shade-avoider plants. Plant Physiol. 2021, 186, 2137–2151. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, J.F.; Rodriguez-Concepcion, M. Molecular mechanisms of shade tolerance in plants. New Phytol. 2023, 239, 1190–1202. [Google Scholar] [CrossRef]
- Gommers, C.M.; Visser, E.J.; St Onge, K.R.; Voesenek, L.A.; Pierik, R. Shade tolerance: When growing tall is not an option. Trends Plant Sci. 2013, 18, 65–71. [Google Scholar] [CrossRef]
- Martinez-Garcia, J.F.; Gallemi, M.; Molina-Contreras, M.J.; Llorente, B.; Bevilaqua, M.R.; Quail, P.H. The shade avoidance syndrome in Arabidopsis: The antagonistic role of phytochrome a and B differentiates vegetation proximity and canopy shade. PLoS ONE 2014, 9, e109275. [Google Scholar] [CrossRef]
- Yang, C.; Xie, F.; Jiang, Y.; Li, Z.; Huang, X.; Li, L. Phytochrome A Negatively Regulates the Shade Avoidance Response by Increasing Auxin/Indole Acidic Acid Protein Stability. Dev. Cell 2018, 44, 29–41 e24. [Google Scholar] [CrossRef]
- Tao, Y.; Ferrer, J.L.; Ljung, K.; Pojer, F.; Hong, F.; Long, J.A.; Li, L.; Moreno, J.E.; Bowman, M.E.; Ivans, L.J.; et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 2008, 133, 164–176. [Google Scholar] [CrossRef]
- Bou-Torrent, J.; Galstyan, A.; Gallemi, M.; Cifuentes-Esquivel, N.; Molina-Contreras, M.J.; Salla-Martret, M.; Jikumaru, Y.; Yamaguchi, S.; Kamiya, Y.; Martinez-Garcia, J.F. Plant proximity perception dynamically modulates hormone levels and sensitivity in Arabidopsis. J. Exp. Bot. 2014, 65, 2937–2947. [Google Scholar] [CrossRef] [PubMed]
- Hornitschek, P.; Kohnen, M.V.; Lorrain, S.; Rougemont, J.; Ljung, K.; Lopez-Vidriero, I.; Franco-Zorrilla, J.M.; Solano, R.; Trevisan, M.; Pradervand, S.; et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J. 2012, 71, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ljung, K.; Breton, G.; Schmitz, R.J.; Pruneda-Paz, J.; Cowing-Zitron, C.; Cole, B.J.; Ivans, L.J.; Pedmale, U.V.; Jung, H.S.; et al. Linking photoreceptor excitation to changes in plant architecture. Genes Dev. 2012, 26, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Molina-Contreras, M.J.; Paulisic, S.; Then, C.; Moreno-Romero, J.; Pastor-Andreu, P.; Morelli, L.; Roig-Villanova, I.; Jenkins, H.; Hallab, A.; Gan, X.; et al. Photoreceptor Activity Contributes to Contrasting Responses to Shade in Cardamine and Arabidopsis Seedlings. Plant Cell 2019, 31, 2649–2663. [Google Scholar] [CrossRef]
- Paulisic, S.; Qin, W.; Arora Veraszto, H.; Then, C.; Alary, B.; Nogue, F.; Tsiantis, M.; Hothorn, M.; Martinez-Garcia, J.F. Adjustment of the PIF7-HFR1 transcriptional module activity controls plant shade adaptation. EMBO J. 2021, 40, e104273. [Google Scholar] [CrossRef]
- Ueda, H.; Kikuta, Y.; Matsuda, K. Plant communication: Mediated by individual or blended VOCs? Plant Sig. Behav. 2012, 7, 222–226. [Google Scholar] [CrossRef]
- Vivaldo, G.; Masi, E.; Taiti, C.; Caldarelli, G.; Mancuso, S. The network of plants volatile organic compounds. Sci. Rep. 2017, 7, 11050. [Google Scholar] [CrossRef] [PubMed]
- Kegge, W.; Weldegergis, B.T.; Soler, R.; Vergeer-Van Eijk, M.; Dicke, M.; Voesenek, L.A.; Pierik, R. Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana. New Phytol. 2013, 200, 861–874. [Google Scholar] [CrossRef]
- Cortes, L.E.; Weldegergis, B.T.; Boccalandro, H.E.; Dicke, M.; Ballare, C.L. Trading direct for indirect defense? Phytochrome B inactivation in tomato attenuates direct anti-herbivore defenses whilst enhancing volatile-mediated attraction of predators. New Phytol. 2016, 212, 1057–1071. [Google Scholar] [CrossRef]
- Kegge, W.; Pierik, R. Biogenic volatile organic compounds and plant competition. Trends Plant Sci. 2010, 15, 126–132. [Google Scholar] [CrossRef]
- Pierik, R.; Cuppens, M.L.; Voesenek, L.A.; Visser, E.J. Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiol. 2004, 136, 2928–2936. [Google Scholar] [CrossRef] [PubMed]
- Pierik, R.; Whitelam, G.C.; Voesenek, L.A.; de Kroon, H.; Visser, E.J. Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant-plant signalling. Plant J. 2004, 38, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.M.; Hirayama, T.; Roman, G.; Nourizadeh, S.; Ecker, J.R. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 1999, 284, 2148–2152. [Google Scholar] [CrossRef] [PubMed]
- Pierik, R.; Djakovic-Petrovic, T.; Keuskamp, D.H.; de Wit, M.; Voesenek, L.A. Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and della proteins in Arabidopsis. Plant Physiol. 2009, 149, 1701–1712. [Google Scholar] [CrossRef] [PubMed]
- Kurepin, L.V.; Emery, R.J.; Pharis, R.P.; Reid, D.M. Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: Putative roles for plant hormones in leaf and internode growth. J. Exp. Bot. 2007, 58, 2145–2157. [Google Scholar] [CrossRef]
- Finlayson, S.A.; Hays, D.B.; Morgan, P.W. phyB-1 sorghum maintains responsiveness to simulated shade, irradiance and red light: Far-red light. Plant Cell Environ. 2007, 30, 952–962. [Google Scholar] [CrossRef]
- Pierik, R.; Visser, E.J.; De Kroon, H.; Voesenek, L.A. Ethylene is required in tobacco to successfully compete with proximate neighbors. Plant Cell Environ. 2003, 26, 1229–1234. [Google Scholar] [CrossRef]
- Smalle, J.; Haegman, M.; Kurepa, J.; Van Montagu, M.; Straeten, D.V. Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc. Natl. Acad. Sci. USA 1997, 94, 2756–2761. [Google Scholar] [CrossRef]
- Zhong, S.; Shi, H.; Xue, C.; Wang, L.; Xi, Y.; Li, J.; Quail, P.H.; Deng, X.W.; Guo, H. A molecular framework of light-controlled phytohormone action in Arabidopsis. Curr. Biol. 2012, 22, 1530–1535. [Google Scholar] [CrossRef]
- Alonso, J.M.; Stepanova, A.N.; Solano, R.; Wisman, E.; Ferrari, S.; Ausubel, F.M.; Ecker, J.R. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc. Natl. Acad. Sci. USA 2003, 100, 2992–2997. [Google Scholar] [CrossRef]
- Heilman, M.D.; Meredith, F.I.; Gonzalez, C.L. Ethylene production in the cotton plant (Gossypiun hirsutum L.) canopy and its effect on fruit abscission. Crop Sci. 1971, 11, 25–27. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urdin-Bravo, M.; Sanchez-Garcia, A.; Rodriguez-Concepcion, M.; Martinez-Garcia, J.F. Effect of Higher Ethylene Levels Emitted by Shade-Avoider Plants on Neighboring Seedlings. Plants 2024, 13, 3212. https://doi.org/10.3390/plants13223212
Urdin-Bravo M, Sanchez-Garcia A, Rodriguez-Concepcion M, Martinez-Garcia JF. Effect of Higher Ethylene Levels Emitted by Shade-Avoider Plants on Neighboring Seedlings. Plants. 2024; 13(22):3212. https://doi.org/10.3390/plants13223212
Chicago/Turabian StyleUrdin-Bravo, Mikel, Angela Sanchez-Garcia, Manuel Rodriguez-Concepcion, and Jaume F. Martinez-Garcia. 2024. "Effect of Higher Ethylene Levels Emitted by Shade-Avoider Plants on Neighboring Seedlings" Plants 13, no. 22: 3212. https://doi.org/10.3390/plants13223212
APA StyleUrdin-Bravo, M., Sanchez-Garcia, A., Rodriguez-Concepcion, M., & Martinez-Garcia, J. F. (2024). Effect of Higher Ethylene Levels Emitted by Shade-Avoider Plants on Neighboring Seedlings. Plants, 13(22), 3212. https://doi.org/10.3390/plants13223212