CRISPR-Based Editing of the Medicago truncatula LEC1 Gene
Abstract
:1. Introduction
2. Results
2.1. Obtaining Plants with Edited MtNF-YB10 Gene
2.2. Analysis of the T1 Progeny of Unedited Plants
2.3. Analysis of T1 and T2 Progeny from Edited Plants
2.3.1. Allele Sequence Analysis of T1 Edited Plants
2.3.2. Analysis of Homozygous MtNF-YB10 Loss-of-Function Mutants
3. Discussion
4. Materials and Methods
4.1. Plant Material and Bacterial Strains
4.2. Plant Cultivation Conditions
4.3. Microorganisms Cultivation Conditions
4.4. Construction of Vectors for CRISPR/Cas9 Editing
4.5. Plant Genotyping
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Primer Name | Sequence | Experiment Type |
---|---|---|
CRISPR Oligo MtNF-YB10 target 3 for | ATTGGTTTGCTATTGGCATGTAC | Cloning for editing |
CRISPR Oligo MtNF-YB10 target 3 rev | AAACGTACATGCCAATAGCAAAC | Cloning for editing |
MtNF-YB10_DT1-BsF | ATATATGGTCTCGATTGATACGAATCACGTTTGCTATGTT | Cloning for editing |
MtNF-YB10_DT1-F0 | TGATACGAATCACGTTTGCTATGTTTTAGAGCTAGAAATAGC | Cloning for editing |
MtNF-YB10_DT2-R0 | AACATTGCCCATAGTATATCTTCAATCTCTTAGTCGACTCTAC | Cloning for editing |
MtNF-YB10_DT2-BsR | ATTATTGGTCTCGAAACATTGCCCATAGTATATCTTCAA | Cloning for editing |
M13 for | GTAAAACGACGGCCAGT | Sequencing |
M13 rev | CAGGAAACAGCTATGAC | Sequencing |
MtNF-YB10_Medtr1g039040_target1_for | GGTTTTTCCAAATTATATATTGAGATTTT | Genotyping and sequencing |
MtNF-YB10_Medtr1g039040_target1_rev | CTTATGTATTCGGATACACATTCT | Genotyping and sequencing |
MtNF-YB10_Medtr1g039040_targets_rev | GGAAAAGAAGGAGGCAAAGCA | Genotyping and sequencing |
SpCas9 for | CCTGGAGGCGAAGGGCTACAA | Transgene identification |
SpCas9 rev | GAAGTTCACATACTTGGACGGCAGA | Transgene identification |
MtH3L_Medtr4g097170_for | CTTTGCTTGGTGCTGTTTAGATGG | PCR positive control |
MtH3L_Medtr4g097170_rev | ATTCCAAAGGCGGCTGCATAPCR positive control | PCR positive control |
References
- Ma, L.; Kong, F.; Sun, K.; Wang, T.; Guo, T. From Classical Radiation to Modern Radiation: Past, Present, and Future of Radiation Mutation Breeding. Front. Public Health 2021, 9, 768071. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.A. Mutation, Repair and Recombination. In Genomes, 2nd ed.; Wiley-Liss: Hoboken, NJ, USA, 2002. [Google Scholar]
- Chaudhary, J.; Deshmukh, R.; Sonah, H. Mutagenesis Approaches and Their Role in Crop Improvement. Plants 2019, 8, 467. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Doudna, J.A. CRISPR Technology: A Decade of Genome Editing Is Only the Beginning. Science 2023, 379, eadd8643. [Google Scholar] [CrossRef] [PubMed]
- Shamshirgaran, Y.; Liu, J.; Sumer, H.; Verma, P.J.; Taheri-Ghahfarokhi, A. Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR. Methods Mol. Biol. 2022, 2495, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Sauer, N.J.; Mozoruk, J.; Miller, R.B.; Warburg, Z.J.; Walker, K.A.; Beetham, P.R.; Schöpke, C.R.; Gocal, G.F.W. Oligonucleotide-directed Mutagenesis for Precision Gene Editing. Plant Biotechnol. J. 2016, 14, 496–502. [Google Scholar] [CrossRef]
- Carroll, D. Genome Editing: Past, Present, and Future. Yale J. Biol. Med. 2017, 90, 653–659. [Google Scholar]
- Van Eck, J. Applying Gene Editing to Tailor Precise Genetic Modifications in Plants. J. Biol. Chem. 2020, 295, 13267–13276. [Google Scholar] [CrossRef]
- Cardi, T.; Murovec, J.; Bakhsh, A.; Boniecka, J.; Bruegmann, T.; Bull, S.E.; Eeckhaut, T.; Fladung, M.; Galovic, V.; Linkiewicz, A.; et al. CRISPR/Cas-Mediated Plant Genome Editing: Outstanding Challenges a Decade after Implementation. Trends Plant Sci. 2023, 28, 1144–1165. [Google Scholar] [CrossRef]
- Zegeye, W.A.; Tsegaw, M.; Zhang, Y.; Cao, L. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement. Int. J. Mol. Sci. 2022, 23, 4454. [Google Scholar] [CrossRef]
- Agarwal, A.; Yadava, P.; Kumar, K.; Singh, I.; Kaul, T.; Pattanayak, A.; Agrawal, P.K. Insights into Maize Genome Editing via CRISPR/Cas9. Physiol Mol. Biol. Plants 2018, 24, 175–183. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, Y.; Ni, P.; Ni, Z.; Sun, Q.; Zong, Y. CRISPR-Mediated Acceleration of Wheat Improvement: Advances and Perspectives. J. Genet. Genom. 2023, 50, 815–834. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Zhou, J.; Zhang, A.; Wang, J.; Liu, Y.; Wang, L.; Pi, W.; Li, Z.; Yue, W.; Cai, J.; et al. Advances in CRISPR/Cas9-Based Research Related to Soybean [Glycine Max (Linn.) Merr] Molecular Breeding. Front. Plant Sci. 2023, 14, 1247707. [Google Scholar] [CrossRef] [PubMed]
- Hodgins, C.L.; Salama, E.M.; Kumar, R.; Zhao, Y.; Roth, S.A.; Cheung, I.Z.; Chen, J.; Arganosa, G.C.; Warkentin, T.D.; Bhowmik, P.; et al. Creating Saponin-Free Yellow Pea Seeds by CRISPR/Cas9-Enabled Mutagenesis on β-Amyrin Synthase. Plant Direct 2024, 8, e563. [Google Scholar] [CrossRef] [PubMed]
- Sami, A.; Xue, Z.; Tazein, S.; Arshad, A.; He Zhu, Z.; Ping Chen, Y.; Hong, Y.; Tian Zhu, X.; Jin Zhou, K. CRISPR-Cas9-Based Genetic Engineering for Crop Improvement under Drought Stress. Bioengineered 2021, 12, 5814–5829. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, L.; Li, R.; Zhao, R.; Yang, M.; Sheng, J.; Shen, L. Reduced Drought Tolerance by CRISPR/Cas9-Mediated SlMAPK3 Mutagenesis in Tomato Plants. J. Agric. Food Chem. 2017, 65, 8674–8682. [Google Scholar] [CrossRef] [PubMed]
- Lou, D.; Wang, H.; Liang, G.; Yu, D. OsSAPK2 Confers Abscisic Acid Sensitivity and Tolerance to Drought Stress in Rice. Front. Plant Sci. 2017, 8, 993. [Google Scholar] [CrossRef]
- Kim, D.; Alptekin, B.; Budak, H. CRISPR/Cas9 Genome Editing in Wheat. Funct. Integr. Genom. 2018, 18, 31–41. [Google Scholar] [CrossRef]
- Fizikova, A.; Tukhuzheva, Z.; Zhokhova, L.; Tvorogova, V.; Lutova, L. A New Approach for CRISPR/Cas9 Editing and Selection of Pathogen-Resistant Plant Cells of Wine Grape Cv. ‘Merlot’. Int. J. Mol. Sci. 2024, 25, 10011. [Google Scholar] [CrossRef]
- Confalonieri, M.; Carelli, M.; Gianoglio, S.; Moglia, A.; Biazzi, E.; Tava, A. CRISPR/Cas9-Mediated Targeted Mutagenesis of CYP93E2 Modulates the Triterpene Saponin Biosynthesis in Medicago truncatula. Front. Plant Sci. 2021, 12, 690231. [Google Scholar] [CrossRef]
- Curtin, S.J.; Xiong, Y.; Michno, J.-M.; Campbell, B.W.; Stec, A.O.; Čermák, T.; Starker, C.; Voytas, D.F.; Eamens, A.L.; Stupar, R.M. CRISPR/Cas9 and TALENs Generate Heritable Mutations for Genes Involved in Small RNA Processing of Glycine max and Medicago truncatula. Plant Biotechnol. J. 2018, 16, 1125–1137. [Google Scholar] [CrossRef]
- Wolabu, T.W.; Park, J.-J.; Chen, M.; Cong, L.; Ge, Y.; Jiang, Q.; Debnath, S.; Li, G.; Wen, J.; Wang, Z. Improving the Genome Editing Efficiency of CRISPR/Cas9 in Arabidopsis and Medicago truncatula. Planta 2020, 252, 15. [Google Scholar] [CrossRef] [PubMed]
- Čermák, T.; Curtin, S.J.; Gil-Humanes, J.; Čegan, R.; Kono, T.J.Y.; Konečná, E.; Belanto, J.J.; Starker, C.G.; Mathre, J.W.; Greenstein, R.L.; et al. A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants. Plant Cell 2017, 29, 1196–1217. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Xia, X.; Jiang, T.; Li, L.; Zhang, P.; Niu, L.; Cheng, H.; Wang, K.; Lin, H. In Planta Haploid Induction by Genome Editing of DMP in the Model Legume Medicago truncatula. Plant Biotechnol. J. 2022, 20, 22. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Ye, Q.; Chen, H.; Dong, J.; Wang, T. Multigene Editing Reveals That MtCEP1/2/12 Redundantly Control Lateral Root and Nodule Number in Medicago truncatula. J. Exp. Bot. 2021, 72, 3661–3676. [Google Scholar] [CrossRef]
- Cagliari, A.; Turchetto-Zolet, A.C.; Korbes, A.P.; Maraschin, F.D.S.; Margis, R.; Margis-Pinheiro, M. New Insights on the Evolution of Leafy Cotyledon1 (LEC1) Type Genes in Vascular Plants. Genomics 2014, 103, 380–387. [Google Scholar] [CrossRef]
- Pelletier, J.M.; Kwong, R.W.; Park, S.; Le, B.H.; Baden, R.; Cagliari, A.; Hashimoto, M.; Munoz, M.D.; Fischer, R.L.; Goldberg, R.B.; et al. LEC1 Sequentially Regulates the Transcription of Genes Involved in Diverse Developmental Processes during Seed Development. Proc. Natl. Acad. Sci. USA 2017, 114, E6710–E6719. [Google Scholar] [CrossRef]
- Manan, S.; Alabbosh, K.F.; Al-Andal, A.; Ahmad, W.; Khan, K.A.; Zhao, J. Soybean LEAFY COTYLEDON 1: A Key Target for Genetic Enhancement of Oil Biosynthesis. Agronomy 2023, 13, 2810. [Google Scholar] [CrossRef]
- Brand, A.; Quimbaya, M.; Tohme, J.; Chavarriaga-Aguirre, P. Arabidopsis LEC1 and LEC2 Orthologous Genes Are Key Regulators of Somatic Embryogenesis in Cassava. Front. Plant Sci. 2019, 10, 673. [Google Scholar] [CrossRef]
- Shen, B.; Allen, W.B.; Zheng, P.; Li, C.; Glassman, K.; Ranch, J.; Nubel, D.; Tarczynski, M.C. Expression of ZmLEC1 and ZmWRI1 Increases Seed Oil Production in Maize. Plant Physiol. 2010, 153, 980–987. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Xue, H.-W. OsLEC1/OsHAP3E Participates in the Determination of Meristem Identity in Both Vegetative and Reproductive Developments of Rice. J. Integr. Plant Biol. 2013, 55, 232–249. [Google Scholar] [CrossRef]
- Tan, H.; Yang, X.; Zhang, F.; Zheng, X.; Qu, C.; Mu, J.; Fu, F.; Li, J.; Guan, R.; Zhang, H.; et al. Enhanced Seed Oil Production in Canola by Conditional Expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in Developing Seeds. Plant Physiol. 2011, 156, 1577–1588. [Google Scholar] [CrossRef] [PubMed]
- Lotan, T.; Ohto, M.; Yee, K.M.; West, M.A.L.; Lo, R.; Kwong, R.W.; Yamagishi, K.; Fischer, R.L.; Goldberg, R.B.; Harada, J.J. Arabidopsis LEAFY COTYLEDON1 Is Sufficient to Induce Embryo Development in Vegetative Cells. Cell 1998, 93, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Harada, J.J. Role of Arabidopsis LEAFY COTYLEDON Genes in Seed Development. J. Plant Physiol. 2001, 158, 405–409. [Google Scholar] [CrossRef]
- Brocard-Gifford, I.M.; Lynch, T.J.; Finkelstein, R.R. Regulatory Networks in Seeds Integrating Developmental, Abscisic Acid, Sugar, and Light Signaling. Plant Physiol. 2003, 131, 78–92. [Google Scholar] [CrossRef]
- Santos-Mendoza, M.; Dubreucq, B.; Baud, S.; Parcy, F.; Caboche, M.; Lepiniec, L. Deciphering Gene Regulatory Networks That Control Seed Development and Maturation in Arabidopsis. Plant J. 2008, 54, 608–620. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, P.; Wu, Y.; Lian, G.; Yang, Z.; Liu, W.; Buerte, B.; Zhou, C.; Zhang, W.; Li, D.; et al. Rice LEAFY COTYLEDON1 Hinders Embryo Greening During the Seed Development. Front. Plant Sci. 2022, 13, 887980. [Google Scholar] [CrossRef]
- Potsenkovskaia, E.; Tvorogova, V.; Yakovleva, D.; Zlydneva, N.; Lutova, L. Novel NF-Y Genes Expressed during Somatic Embryogenesis in Medicago truncatula. Plant Gene 2022, 31, 100364. [Google Scholar] [CrossRef]
- Xing, H.-L.; Dong, L.; Wang, Z.-P.; Zhang, H.-Y.; Han, C.-Y.; Liu, B.; Wang, X.-C.; Chen, Q.-J. A CRISPR/Cas9 Toolkit for Multiplex Genome Editing in Plants. BMC Plant Biol. 2014, 14, 327. [Google Scholar] [CrossRef]
- Liu, H.; Ding, Y.; Zhou, Y.; Jin, W.; Xie, K.; Chen, L.-L. CRISPR-P 2.0: An Improved CRISPR-Cas9 Tool for Genome Editing in Plants. Mol. Plant 2017, 10, 530–532. [Google Scholar] [CrossRef]
- Mu, J.; Tan, H.; Zheng, Q.; Fu, F.; Liang, Y.; Zhang, J.; Yang, X.; Wang, T.; Chong, K.; Wang, X.-J.; et al. LEAFY COTYLEDON1 Is a Key Regulator of Fatty Acid Biosynthesis in Arabidopsis. Plant Physiol. 2008, 148, 1042–1054. [Google Scholar] [CrossRef]
- Niu, B.; Zhang, Z.; Zhang, J.; Zhou, Y.; Chen, C. The Rice LEC1-like Transcription Factor OsNF-YB9 Interacts with SPK, an Endosperm-Specific Sucrose Synthase Protein Kinase, and Functions in Seed Development. Plant J. 2021, 106, 1233–1246. [Google Scholar] [CrossRef] [PubMed]
- Kwong, R.W.; Bui, A.Q.; Lee, H.; Kwong, L.W.; Fischer, R.L.; Goldberg, R.B.; Harada, J.J. LEAFY COTYLEDON1-LIKE Defines a Class of Regulators Essential for Embryo Development. Plant Cell 2003, 15, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Yazawa, K.; Kamada, H. Identification and Characterization of Carrot HAP Factors That Form a Complex with the Embryo-Specific Transcription Factor C-LEC. J. Exp. Bot. 2007, 58, 3819–3828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, R.; Gao, J.; Gu, T.; Song, G.; Li, W.; Li, D.; Li, Y.; Li, G. Highly Efficient and Heritable Targeted Mutagenesis in Wheat via the Agrobacterium tumefaciens-Mediated CRISPR/Cas9 System. Int. J. Mol. Sci. 2019, 20, 4257. [Google Scholar] [CrossRef] [PubMed]
- Char, S.N.; Wei, J.; Mu, Q.; Li, X.; Zhang, Z.J.; Yu, J.; Yang, B. An Agrobacterium-Delivered CRISPR/Cas9 System for Targeted Mutagenesis in Sorghum. Plant Biotechnol. J. 2020, 18, 319–321. [Google Scholar] [CrossRef]
- Sashidhar, N.; Harloff, H.J.; Potgieter, L.; Jung, C. Gene Editing of Three BnITPK Genes in Tetraploid Oilseed Rape Leads to Significant Reduction of Phytic Acid in Seeds. Plant Biotechnol. J. 2020, 18, 2241–2250. [Google Scholar] [CrossRef]
- Wang, W.; Huang, P.; Dai, W.; Tang, H.; Qiu, Y.; Chang, Y.; Han, Z.; Li, X.; Du, L.; Ye, X.; et al. Application of Nicotinamide to Culture Medium Improves the Efficiency of Genome Editing in Hexaploid Wheat. Int. J. Mol. Sci. 2023, 24, 4416. [Google Scholar] [CrossRef]
- Hoffmann, B.; Trinh, T.H.; Leung, J.; Kondorosi, A.; Kondorosi, E. A New Medicago truncatula Line with Superior in Vitro Regeneration, Transformation, and Symbiotic Properties Isolated Through Cell Culture Selection. MPMI 1997, 10, 307–315. [Google Scholar] [CrossRef]
- Cosson, V.; Durand, P.; d’Erfurth, I.; Kondorosi, A.; Ratet, P. Medicago truncatula Transformation Using Leaf Explants. Methods Mol. Biol. 2006, 343, 115–127. [Google Scholar] [CrossRef]
- Krasnoperova, E.Y.; Tvorogova, V.E.; Smirnov, K.V.; Efremova, E.P.; Potsenkovskaia, E.A.; Artemiuk, A.M.; Konstantinov, Z.S.; Simonova, V.Y.; Brynchikova, A.V.; Yakovleva, D.V.; et al. MtWOX2 and MtWOX9-1 Effects on the Embryogenic Callus Transcriptome in Medicago Truncatula. Plants 2024, 13, 102. [Google Scholar] [CrossRef]
- Fåhraeus, G. The Infection of Clover Root Hairs by Nodule Bacteria Studied by a Simple Glass Slide Technique. J. Gen. Microbiol. 1957, 16, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Tvorogova, V.E.; Fedorova, Y.A.; Potsenkovskaya, E.A.; Kudriashov, A.A.; Efremova, E.P.; Kvitkovskaya, V.A.; Wolabu, T.W.; Zhang, F.; Tadege, M.; Lutova, L.A. The WUSCHEL-Related Homeobox Transcription Factor MtWOX9-1 Stimulates Somatic Embryogenesis in Medicago truncatula. Plant Cell Tiss. Organ. Cult. 2019, 138, 517–527. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-Project.org/ (accessed on 1 September 2024).
- Kassambara, A. Ggpubr: “ggplot2” Based Publication Ready Plots. 2023. Available online: https://rpkgs.datanovia.com/ggpubr/ (accessed on 1 September 2024).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. Dplyr: A Grammar of Data Manipulation. 2023. Available online: https://dplyr.tidyverse.org (accessed on 1 September 2024).
- Grothendieck, G. gsubfn: Utilities for Strings and Function Arguments, R Package Version 0.7. 2018. Available online: https://CRAN.R-Project.org/package=gsubfn (accessed on 1 September 2024).
- Wilke, C.O.; Wiernik, B.M. ggtext: Improved Text Rendering Support for ‘ggplot2’, R Package Version 0.1.2. 2022. Available online: https://CRAN.R-Project.org/package=ggtext (accessed on 1 September 2024).
- Hester, J.; Bryan, J. glue: Interpreted String Literals, R Package Version 1.7.0. 2024. Available online: https://CRAN.R-Project.org/package=glue (accessed on 1 September 2024).
- Meyer, D.; Zeileis, A.; Hornik, K. The Strucplot Framework: Visualizing Multi-Way Contingency Tables with Vcd. J. Stat. Softw. 2007, 17, 1–48. [Google Scholar] [CrossRef]
- Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations, R Package Version 1.5.1. 2023. Available online: https://CRAN.R-Project.org/package=stringr (accessed on 1 September 2024).
- Bae, S.; Park, J.; Kim, J.-S. Cas-OFFinder: A Fast and Versatile Algorithm That Searches for Potential off-Target Sites of Cas9 RNA-Guided Endonucleases. Bioinformatics 2014, 30, 1473–1475. [Google Scholar] [CrossRef] [PubMed]
- Tvorogova, V.; Potsenkovskaia, E. A Program for Searching for the Most Dangerous Off-Targets for Genome Editing. 2024. Available online: https://fips.ru/registers-doc-view/fips_servlet?DB=EVM&DocNumber=2023685244&TypeFile=html (accessed on 1 September 2024).
- Edwards, K.; Johnstone, C.; Thompson, C. A Simple and Rapid Method for the Preparation of Plant Genomic DNA for PCR Analysis. Nucleic Acids Res. 1991, 19, 1349. [Google Scholar] [CrossRef]
T0 Plant | Allele 1 | Allele 2 | Seeds |
---|---|---|---|
mtnf-yb10-1 | loss of 11 nucleotides in the target site | missense mutation in the 39th nucleotide (A39G) leading to the amino acid change I13M | No |
mtnf-yb10-25 | loss of 10 nucleotides | wt | Yes |
mtnf-yb10-31 | insertion of one nucleotide | wt | Yes |
T1 Plant | Allele 1 | Allele 2 | Seeds |
---|---|---|---|
mtnf-yb10-25-1 | loss of 10 nucleotides | wt | No |
mtnf-yb10-25-2 | loss of 10 nucleotides | loss of 10 nucleotides | Yes |
mtnf-yb10-31-1 | insertion of one nucleotide | wt | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potsenkovskaia, E.A.; Tvorogova, V.E.; Simonova, V.Y.; Konstantinov, Z.S.; Kiseleva, A.S.; Matveenko, A.G.; Brynchikova, A.V.; Lutova, L.A. CRISPR-Based Editing of the Medicago truncatula LEC1 Gene. Plants 2024, 13, 3226. https://doi.org/10.3390/plants13223226
Potsenkovskaia EA, Tvorogova VE, Simonova VY, Konstantinov ZS, Kiseleva AS, Matveenko AG, Brynchikova AV, Lutova LA. CRISPR-Based Editing of the Medicago truncatula LEC1 Gene. Plants. 2024; 13(22):3226. https://doi.org/10.3390/plants13223226
Chicago/Turabian StylePotsenkovskaia, Elina A., Varvara E. Tvorogova, Veronika Y. Simonova, Zakhar S. Konstantinov, Anna S. Kiseleva, Andrew G. Matveenko, Anna V. Brynchikova, and Ludmila A. Lutova. 2024. "CRISPR-Based Editing of the Medicago truncatula LEC1 Gene" Plants 13, no. 22: 3226. https://doi.org/10.3390/plants13223226
APA StylePotsenkovskaia, E. A., Tvorogova, V. E., Simonova, V. Y., Konstantinov, Z. S., Kiseleva, A. S., Matveenko, A. G., Brynchikova, A. V., & Lutova, L. A. (2024). CRISPR-Based Editing of the Medicago truncatula LEC1 Gene. Plants, 13(22), 3226. https://doi.org/10.3390/plants13223226