Beyond Essential Oils: Diterpenes, Lignans, and Biflavonoids from Juniperus communis L. as a Source of Multi-Target Lead Compounds
Abstract
:1. Introduction
2. Botanical Aspects
3. General Chemical Composition of the Juniper Plant
3.1. Diterpenes
3.1.1. Totarol
3.1.2. Ferruginol
3.1.3. Sugiol
3.1.4. Pimaric Acid, Sandaracopimaric Acid and Isopimaric Acid
3.1.5. Imbricatolic Acid
3.1.6. Agathadiol, Agathic Acid, Dihydroagathic Acid
3.1.7. Isocupressic Acid
3.1.8. Cryptojaponol
3.1.9. Communic Acids
3.2. Lignans
3.2.1. Deoxypodophyllotoxin and Podophyllotoxin
3.2.2. Yatein
3.2.3. Matairesinol
3.2.4. Lariciresinol
3.2.5. Secoisolariciresinol
3.2.6. Pinoresinol
3.3. Biflavonoids
3.3.1. Amentoflavone
3.3.2. Hinokiflavone
3.3.3. Cupressuflavone
3.3.4. Podocarpusflavone A
3.3.5. Bilobetin
3.3.6. Agathisflavone
3.3.7. Robustaflavone
4. Recent Data on the Bioactivity of Juniperus communis Extracts
4.1. Antioxidant Activity
4.2. Antimicrobial Activity
4.3. Anti-Inflammatory Activity
4.4. Anti-Cancer Activity
5. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Petrovska, B.B. Historical Review of Medicinal Plants’ Usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Sinha, D.; Odoh, U.E.; Ganguly, S.; Muhammad, M.; Chatterjee, M.; Chikeokwu, I.; Egbuna, C. Chapter 1—Phytochemistry, History, and Progress in Drug Discovery. In Phytochemistry, Computational Tools and Databases in Drug Discovery; Egbuna, C., Rudrapal, M., Tijjani, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–26. [Google Scholar]
- Oliveira-Alves, S.C.; Andrade, F.; Prazeres, I.; Silva, A.B.; Capelo, J.; Duarte, B.; Caçador, I.; Coelho, J.; Serra, A.T.; Bronze, M.R. Impact of Drying Processes on the Nutritional Composition, Volatile Profile, Phytochemical Content and Bioactivity of Salicornia ramosissima J. Woods. Antioxidants 2021, 10, 1312. [Google Scholar] [CrossRef] [PubMed]
- Barba-Ostria, C.; Carrera-Pacheco, S.E.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Mayorga-Ramos, A.; Rodríguez-Pólit, C.; Zúñiga-Miranda, J.; Arias-Almeida, B.; Guamán, L.P. Evaluation of Biological Activity of Natural Compounds: Current Trends and Methods. Molecules 2022, 27, 4490. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.N.S. Herbal Pharmacopoeias– an Overview of International and Indian Representation. J. Ayurvedic Herb. Med. 2015, 1, 59–60. [Google Scholar] [CrossRef]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef]
- Bareetseng, S. The Worldwide Herbal Market: Trends and Opportunities. J. Biomed. Res. Environ. Sci. 2022, 3, 575–584. [Google Scholar] [CrossRef]
- Dzobo, K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. In Comprehensive Pharmacology; Kenakin, T., Ed.; Elsevier: Oxford, UK, 2022; pp. 408–422. [Google Scholar]
- Kačániová, M.; Galovičová, L.; Valková, V.; Ďuranová, H.; Štefániková, J.; Čmiková, N.; Vukic, M.; Vukovic, N.L.; Kowalczewski, P.Ł. Chemical Composition, Antioxidant, In Vitro and In Situ Antimicrobial, Antibiofilm, and Anti-Insect Activity of Cedar Atlantica Essential Oil. Plants 2022, 11, 358. [Google Scholar] [CrossRef]
- Khamis, A.D.S.; Chai, L.C. Chemical and Antimicrobial Analyses of Juniperus chinensis and Juniperus seravschanica Essential Oils and Comparison with Their Methanolic Crude Extracts. Int. J. Anal. Chem. 2021, 2021, 9937522. [Google Scholar] [CrossRef]
- Ben Mrid, R.; Bouchmaa, N.; Bouargalne, Y.; Ramdan, B.; Karrouchi, K.; Kabach, I.; El Karbane, M.; Idir, A.; Zyad, A.; Nhiri, M. Phytochemical Characterization, Antioxidant and In Vitro Cytotoxic Activity Evaluation of Juniperus oxycedrus Subsp. oxycedrus Needles and Berries. Molecules 2019, 24, 502. [Google Scholar] [CrossRef]
- Raina, R.; Verma, P.K.; Peshin, R.; Kour, H. Potential of Juniperus communis L as a Nutraceutical in Human and Veterinary Medicine. Heliyon 2019, 5, e02376. [Google Scholar] [CrossRef]
- Alkhedaide, A.Q. Anti-Inflammatory Effect of Juniperus procera Extract in Rats Exposed to Streptozotocin Toxicity. Antiinflamm. Antiallergy Agents Med. Chem. 2018, 18, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Maitituersun, A.; Li, C.; Li, Q.; Xu, F.; Liu, T. Evaluation on Analgesic and Anti-Inflammatory Activities of Total Flavonoids from Juniperus sabina. eCAM 2018, 2018, 7965306. [Google Scholar] [CrossRef] [PubMed]
- Ved, A.; Gupta, A.; Rawat, A. Antioxidant and Hepatoprotective Potential of Phenol-Rich Fraction of Juniperus communis Linn. Leaves. Pharmacogn. Mag. 2017, 13, 108–113. [Google Scholar] [PubMed]
- Orhan, N. Juniperus Species: Features, Profile, and Applications to Diabetes. In Bioactive Food as Dietary Interventions for Diabetes; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 447–459. [Google Scholar]
- Kapadnis, M.S.; Pawar, S.; Dhikale, R.; Jadhav, A. Studies on Several Medicinal Benefits of Plant Juniperus communis. Asian Pac. J. Health Sci. 2022, 9, 238–245. [Google Scholar] [CrossRef]
- Dumitrescu, E.; Muselin, F.; Dumitrescu, C.S.; Orasan-Alic, S.A.; Moruzi, R.F.; Doma, A.O.; Mohamed, E.A.; Cristina, R.T. Juniper communis L. Essential Oils from Western Romanian Carpathians: Bio-Structure and Effective Antibacterial Activity. Appl. Sci. 2022, 12, 2949. [Google Scholar] [CrossRef]
- Popescu, D.I.; Botoran, O.R.; Cristea, R.; Mihăescu, C.; Șuțan, N.A. Effects of Geographical Area and Harvest Times on Chemical Composition and Antibacterial Activity of Juniperus communis L. Pseudo-Fruits Extracts: A Statistical Approach. Horticulturae 2023, 9, 325. [Google Scholar] [CrossRef]
- Jocienė, L.; Krokaitė, E.; Rekašius, T.; Vilčinskas, R.; Judžentienė, A.; Marozas, V.; Kupčinskienė, E. Ionomic Parameters of Populations of Common Juniperus communis L. Depending on the Habitat Type. Plants 2023, 12, 961. [Google Scholar] [CrossRef]
- Salamon, I.; Otepka, P.; Kryvtsova, M.; Kolesnyk, O.; Hrytsyna, M. Selected Biotopes of Juniperus communis L. in Slovakia and Their Chemotype Determination. Horticulturae 2023, 9, 686. [Google Scholar] [CrossRef]
- Thomas, P.A.; El-Barghathi, M.; Polwart, A. Biological Flora of the British Isles: Juniperus communis L. J. Ecol. 2007, 95, 1404–1440. [Google Scholar] [CrossRef]
- Bais, S.; Gill, N.S.; Rana, N.; Shandil, S. A Phytopharmacological Review on a Medicinal Plant: Juniperus communis. Int. Sch. Res. Not. 2014, 2014, 634723. [Google Scholar] [CrossRef]
- Tufail, T.; Ain, H.B.U.; Saeed, A.; Imran, M.; Basharat, S.; Nayik, G.A. Chapter 17—Juniper Essential Oil: An Overview of Bioactive Compounds and Functional Aspects. In Essential Oils; Nayik, G.A., Ansari, M.J., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 415–427. [Google Scholar]
- Bajac, J.; Zengin, G.; Mitrović, I.; Antić, I.; Radojković, M.; Nikolovski, B.; Terzić, M. Juniper Berry Essential Oils as Natural Resources of Biological and Pharmacological High-Valuable Molecules. Ind. Crop. Prod. 2023, 204, 117248. [Google Scholar] [CrossRef]
- Belov, T.; Terenzhev, D.; Bushmeleva, K.N.; Davydova, L.; Burkin, K.; Fitsev, I.; Gatiyatullina, A.; Egorova, A.; Nikitin, E. Comparative Analysis of Chemical Profile and Biological Activity of Juniperus communis L. Berry Extracts. Plants 2023, 12, 3401. [Google Scholar] [CrossRef] [PubMed]
- Höferl, M.; Stoilova, I.; Schmidt, E.; Wanner, J.; Jirovetz, L.; Trifonova, D.; Krastev, L.; Krastanov, A. Chemical Composition and Antioxidant Properties of Juniper Berry (Juniperus communis L.) Essential Oil. Antioxidants 2014, 3, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Majewska, E.; Kozłowska, M.; Kowalska, D.; Gruczyńska, E. Characterization of the Essential Oil from Cone-Berries of Juniperus communis L. (Cupressaceae). Herba Pol. 2017, 63, 48–55. [Google Scholar] [CrossRef]
- Judžentienė, A. Juniperus communis L.: A Review of Volatile Organic Compounds of Wild and Cultivated Common Juniper in Lithuania. Chemija 2019, 30, 184–193. [Google Scholar] [CrossRef]
- Albrecht, U.; Madisch, A. Therapeutic Potentials Associated with Biological Properties of Juniper Berry Oil (Juniperus communis L.) and Its Therapeutic Use in Several Diseases—A Review. Bioact. Compd. Health Dis. 2022, 5, 174–185. [Google Scholar] [CrossRef]
- Opruţa, T.; Tiţa, M.; Constantinescu, A.; Rusu, L.; Tiţa, O. Characterization of Juniperus communis L. essential oil obtained from berries harvested from the Balkan area. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2024, 25, 91–99. [Google Scholar]
- Hajdari, A.; Mustafa, B.; Nebija, D.; Miftari, E.; Quave, C.L.; Novak, J. Chemical composition of Juniperus communis L. cone essential oil and its variability among wild populations in Kosovo. Chem. Biodivers. 2015, 12, 1706–1717. [Google Scholar] [CrossRef]
- Seca, A.M.L.; Silva, A.M.S. The chemical composition of the Juniperus genus (1970–2004). In Recent Progress in Medicinal Plants, Volume 16, Phytomedicines; Govil, J.N., Singh, V.K., Eds.; Studium Press LLC: Houston, TX, USA, 2006; pp. 401–522. [Google Scholar]
- Seca, A.M.; Pinto, D.C.; Silva, A.M. The current status of bioactive metabolites from the genus Juniperus. In Bioactive Phytochemicals: Perspectives for Modern Medicine; M/S Daya Publishing House: New Delhi, India, 2015; Volume 3, pp. 365–407. [Google Scholar]
- Gonçalves, A.C.; Flores-Félix, J.D.; Coutinho, P.; Alves, G.; Silva, L.R. Zimbro (Juniperus communis L.) as a promising source of bioactive compounds and biomedical activities: A review on recent trends. Int. J. Mol. Sci. 2022, 23, 3197. [Google Scholar] [CrossRef]
- Tavares, W.R.; Seca, A.M. The current status of the pharmaceutical potential of Juniperus L. metabolites. Medicines 2018, 5, 81. [Google Scholar] [CrossRef]
- Kakkar, S.; Bais, S. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol. 2014, 9, 952943. [Google Scholar] [CrossRef]
- Falcão, S.; Bacém, I.; Igrejas, G.; Rodrigues, P.J.; Vilas-Boas, M.; Amaral, J.S. Chemical composition and antimicrobial activity of hydrodistilled oil from juniper berries. Ind. Crop. Prod. 2018, 124, 878–884. [Google Scholar] [CrossRef]
- Hwang, B.; Lee, J.; Liu, Q.H.; Woo, E.R.; Lee, D.G. Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii. Molecules 2010, 15, 3507–3516. [Google Scholar] [CrossRef]
- Cavaleiro, C.; Pinto, E.; Gonçalves, M.J.; Salgueiro, L. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus, and Candida strains. J. Appl. Microbiol. 2006, 100, 1333–1340. [Google Scholar] [CrossRef]
- Filipowicz, N.; Kamiński, M.; Kurlenda, J.; Asztemborska, M.; Ochocka, J.R. Antibacterial and antifungal activity of juniper berry oil and its selected components. Phytother. Res. 2003, 17, 227–231. [Google Scholar] [CrossRef]
- Fierascu, I.; Ungureanu, C.; Avramescu, S.M.; Cimpeanu, C.; Georgescu, M.I.; Fierascu, R.C.; Ortan, A.; Sutan, A.N.; Anuta, V.; Zanfirescu, A.; et al. Genoprotective, antioxidant, antifungal and anti-inflammatory evaluation of hydroalcoholic extract of wild-growing Juniperus communis L. (Cupressaceae) native to Romanian southern sub-Carpathian hills. BMC Complement. Altern. Med. 2018, 18, 3. [Google Scholar] [CrossRef]
- Han, X.; Parker, T.L. Anti-inflammatory activity of juniper (Juniperus communis) berry essential oil in human dermal fibroblasts. Cogent Med. 2017, 4, 1306200. [Google Scholar] [CrossRef]
- Huang, N.C.; Huang, R.L.; Huang, X.F.; Chang, K.F.; Lee, C.J.; Hsiao, C.Y.; Lee, S.C.; Tsai, N.M. Evaluation of anticancer effects of Juniperus communis extract on hepatocellular carcinoma cells in vitro and in vivo. Biosci. Rep. 2021, 41, BSR20211143. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, X.; Tian, M.; Ma, Y.; Jin, B.; Gao, W.; Cui, G.; Guo, J.; Huang, L. Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants. Med. Res. Rev. 2021, 41, 2971–2997. [Google Scholar] [CrossRef]
- Li, H.; Dickschat, J.S. Diterpene biosynthesis from geranylgeranyl diphosphate analogues with changed reactivities expands skeletal diversity. Angew. Chem. Int. Ed. 2022, 61, e202211054. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Zhang, C. Sustainable biosynthesis of valuable diterpenes in microbes. Eng. Microbiol. 2023, 3, 100058. [Google Scholar] [CrossRef]
- Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M.I. Terpenoids. In Pharmacognosy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 233–266. [Google Scholar]
- Khan, R.A.; Hossain, R.; Siyadatpanah, A.; Al-Khafaji, K.; Khalipha, A.B.R.; Dey, D.; Asha, U.H.; Biswas, P.; Saikat, A.S.M.; Chenari, H.A.; et al. Diterpenes/diterpenoids and their derivatives as potential bioactive leads against dengue virus: A computational and network pharmacology study. Molecules 2021, 26, 6821. [Google Scholar] [CrossRef]
- Toyomasu, T.; Sassa, T. Diterpenes. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Oxford, UK, 2010; pp. 643–672. [Google Scholar]
- Zhou, L.; Wang, J.; Wang, K.; Xu, J.; Zhao, J.; Shan, T.; Luo, C. Secondary metabolites with antinematodal activity from higher plants. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 37, pp. 67–114. [Google Scholar]
- Bendall, J.G.; Cambie, R.C. ChemInform Abstract: Totarol: A Non-Conventional Diterpenoid. ChemInform 1995, 48, 883–917. [Google Scholar] [CrossRef]
- Gordien, A.Y.; Gray, A.I.; Franzblau, S.G.; Seidel, V. Antimycobacterial terpenoids from Juniperus communis L. (Cuppressaceae). J. Ethnopharmacol. 2009, 126, 500–505. [Google Scholar] [CrossRef]
- Shi, C.; Che, M.; Zhang, X.; Liu, Z.; Meng, R.; Bu, X.; Ye, H.; Guo, N. Antibacterial activity and mode of action of totarol against Staphylococcus aureus in carrot juice. J. Food Sci. Technol. 2018, 55, 924–934. [Google Scholar] [CrossRef]
- Harkenthal, M.; Reichling, J.; Geiss, H.K.; Saller, R. Comparative study on the in vitro antibacterial activity of Australian tea tree oil, cajuput oil, niaouli oil, manuka oil, kanuka oil, and eucalyptus oil. Pharmazie 1999, 54, 460–463. [Google Scholar] [PubMed]
- Reddy, P.J.; Ray, S.; Sathe, G.J.; Gajbhiye, A.; Prasad, T.S.; Rapole, S.; Panda, D.; Srivastava, S. A comprehensive proteomic analysis of totarol induced alterations in Bacillus subtilis by multipronged quantitative proteomics. J. Proteom. 2015, 114, 247–262. [Google Scholar] [CrossRef]
- Han, J.; Li, Q.; Liu, Y.; Zhao, L.; Li, X. Totarol: A natural antimicrobial and antifungal agent. J. Biosci. Bioeng. 2015, 120, 556–561. [Google Scholar]
- Gao, Y.; Xu, X.; Chang, S.; Wang, Y.; Xu, Y.; Ran, S.; Huang, Z.; Li, P.; Li, J.; Zhang, L.; et al. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction. Toxicol. Appl. Pharmacol. 2015, 289, 142–154. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Wong, S.K.; Chan, H.T. Ferruginol and sugiol: A short review of their chemistry, sources, contents, pharmacological properties, and patents. Trop. J. Nat. Prod. Res. 2023, 7, 2325–2336. [Google Scholar]
- Salih, A.M.; Al-Qurainy, F.; Tarroum, M.; Khan, S.; Nadeem, M.; Shaikhaldein, H.O.; Alansi, S. Phytochemical compound profile and the estimation of the ferruginol compound in different parts (roots, leaves, and seeds) of Juniperus procera. Separations 2022, 9, 352. [Google Scholar] [CrossRef]
- Feliciano, A.S.; Medarde, M.; Gordaliza, M.; Lucas, M.J. Structure elucidation of germacrane alcohols from Juniperus communis subsp. hemisphaerica. J. Nat. Prod. 1995, 58, 1059–1064. [Google Scholar] [CrossRef]
- Thamaraiselvan, R.; Rengarajan, S.; Keerthiga, S.; Sivakumar, D.; Duraikannu, P.; Velu, P.; Velu, P. Cancer+ Exploring the anticancer and anti-inflammatory activities of ferruginol in MCF-7 breast cancer cells. C+ 2018, 1, 255–266. [Google Scholar]
- Rodríguez, J.A.; Theoduloz, C.; Yáñez, T.; Becerra, J.; Schmeda-Hirschmann, G. Gastroprotective and ulcer healing effect of ferruginol in mice and rats: Assessment of its mechanism of action using in vitro models. Life Sci. 2006, 78, 2503–2509. [Google Scholar] [CrossRef]
- Olha, A.; Maranha, A.; Salvador, J.A.R.; Empadinhas, N.; Moreira, V.M. Bi- and tricyclic diterpenoids: Landmarks from a decade (2013–2023) in search of leads against infectious diseases. Nat. Prod. Rep. 2024, 21, 1–22. [Google Scholar]
- Takei, M.; Umeyama, A.; Arihara, S. Epicubenol and ferruginol induce DC from human monocytes and differentiate IL-10-producing regulatory T cells in vitro. Biochem. Biophys. Res. Commun. 2005, 337, 730–738. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Sonwal, S.; Hwang, S.K.; Shukla, S.; Khan, I.; Dey, D.K.; Chen, L.; Simal-Gandara, J.; Xiao, J.; Huh, Y.S.; et al. Sugiol, a diterpenoid: Therapeutic actions and molecular pathways involved. Pharmacol. Res. 2021, 163, 105059. [Google Scholar] [CrossRef]
- Hao, S.; Meng, Q.; Sun, H.; Li, Y.; Li, Y.; Gu, L.; Liu, B.; Zhang, Y.; Zhou, H.; Xu, Z.; et al. The role of transketolase in human cancer progression and therapy. Biomed. Pharmacother. 2022, 154, 113607. [Google Scholar] [CrossRef]
- Azemard, C.; Menager, M.; Vieillescazes, C. Analysis of diterpenic compounds by GC-MS/MS: Contribution to the identification of main conifer resins. Anal. Bioanal. Chem. 2016, 408, 6599–65612. [Google Scholar] [CrossRef]
- Song, H.; Kim, J.; Shin, Y.K.; Kim, K.Y. Antibacterial activity of pimaric acid against the causative agent of American foulbrood, Paenibacillus larvae. J. Apic. Res. 2022, 61, 219–226. [Google Scholar] [CrossRef]
- Ishida, M.; Yamamura, A.; Fujiwara, M.; Amano, T.; Ota, M.; Hikawa, Y.; Kondo, R.; Suzuki, Y.; Imaizumi, Y.; Yamamura, H. Pimaric acid reduces vasoconstriction via BKCa channel activation and VDCC inhibition in rat pulmonary arterial smooth muscles. J. Pharmacol. Sci. 2023, 153, 84–88. [Google Scholar] [CrossRef]
- Suh, S.J.; Kwak, C.H.; Chung, T.W.; Park, S.J.; Cheeeei, M.; Park, S.S.; Seo, C.S.; Son, J.K.; Chang, Y.C.; Park, Y.G.; et al. Pimaric acid from Aralia cordata has an inhibitory effect on TNF-α-induced MMP-9 production and HASMC migration via down-regulated NF-κB and AP-1. Chem. Biol. Interact. 2012, 199, 112–119. [Google Scholar] [CrossRef]
- Banerjee, S.; Manisha, C.; Murugan, D.; Justin, A. Natural products altering GABAergic transmission. In Natural Medicinal Plants; El-Shemy, H.A., Ed.; IntechOpen: Rijeka, Croatia, 2021; pp. 1–20. [Google Scholar]
- Gao, W.; Dong, X.; Xie, N.; Zhou, C.; Fan, Y.; Chen, G.; Wang, Y.; Wei, T.; Zhu, D. Dehydroabietic acid isolated from Commiphora opobalsamum causes endothelium-dependent relaxation of pulmonary artery via PI3K/Akt-eNOS signaling pathway. Molecules 2014, 19, 6503–6510. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Chen, L.; Zhu, X.; Yu, Z.; Dong, L.; Zhao, X.; Zou, H.; Wei, Q.; Feng, Y.; et al. Isopimaric acid, an ion channel regulator, regulates calcium and oxidative phosphorylation pathways to inhibit breast cancer proliferation and metastasis. Toxicol. Appl. Pharmacol. 2023, 462, 116415. [Google Scholar] [CrossRef]
- Smith, E.; Williamson, E.; Zloh, M.; Gibbons, S. Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus. Phytother. Res. 2005, 19, 538–542. [Google Scholar] [CrossRef]
- De Marino, S.; Cattaneo, F.; Festa, C.; Zollo, F.; Iaccio, A.; Ammendola, R.; Incollingo, F.; Iorizzi, M. Imbricatolic acid from Juniperus communis L. prevents cell cycle progression in CaLu-6 cells. Planta Med. 2011, 77, 1822–1828. [Google Scholar] [CrossRef]
- Frezza, C.; Venditti, A.; De Vita, D.; Toniolo, C.; Franceschin, M.; Ventrone, A.; Tomassini, L.; Foddai, S.; Guiso, M.; Nicoletti, M.; et al. Phytochemistry, chemotaxonomy, and biological activities of the Araucariaceae family—A review. Plants 2020, 9, 888. [Google Scholar] [CrossRef]
- Woo, K.W.; Choi, S.U.; Park, J.C.; Lee, K.R. A new lignan glycoside from Juniperus rigida. Arch. Pharm. Res. 2011, 34, 2043–2049. [Google Scholar] [CrossRef]
- Schmeda-Hirschmann, G.; Aranda, C.; Kurina, M.; Rodríguez, J.A.; Theoduloz, C. Biotransformations of Imbricatolic Acid by Aspergillus niger and Rhizopus nigricans Cultures. Molecules 2007, 12, 1092–1100. [Google Scholar] [CrossRef]
- Demetzos, C.; Dimas, K.S. Labdane-Type Diterpenes: Chemistry and Biological Activity. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 25, pp. 235–292. [Google Scholar]
- Grant, P.S.; Brimble, M.A. Seco-Labdanes: A Study of Terpenoid Structural Diversity Resulting from Biosynthetic C−C Bond Cleavage. Chem. Eur. J. 2021, 27, 6367–6389. [Google Scholar] [CrossRef]
- Basas-Jaumandreu, J.; López, J.F.; de las Heras, F.X. Labdane-type diterpenoids from Juniperus communis needles. Ind. Crop. Prod. 2015, 76, 333–345. [Google Scholar] [CrossRef]
- Salamone, S.; Appendino, G.; Khalili, A.; Pollastro, F.; Munoz, E.; Unciti-Broceta, J.D. Agathadiol, a Labdane Diterpenoid from Juniper Berries, Is a Positive Allosteric Modulator of CB1R. Fitoterapia 2021, 155, 105059. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.S.; Chen, J.C.; Sheu, S.Y.; Huang, C.C.; Kuo, Y.H.; Chiu, C.H.; Lian, W.X.; Yang, C.J.; Kaphle, K.; Lin, J.H. Isocupressic Acid Blocks Progesterone Production from Bovine Luteal Cells. Am. J. Chin. Med. 2002, 30, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Stegelmeier, B.L.; Gardner, D.R.; James, L.F.; Panter, K.E.; Molyneux, R.J. The Toxic and Abortifacient Effects of Ponderosa Pine. Vet. Pathol. 1996, 33, 22–28. [Google Scholar] [CrossRef]
- Matsumoto, T.; Ohsuga, Y.; Harada, S.; Fukui, K. Synthesis of Taxodione, Royleanone, Cryptojaponol, and Methyl 11-Hydroxy-12-Methoxy-7-Oxoabieta-8,11)13-Trien-18-Oate. Bull. Chem. Soc. Jpn. 1977, 50, 266–272. [Google Scholar] [CrossRef]
- Schneider, I.; Gibbons, S.; Bucar, F. Inhibitory activity of Juniperus communis on 12(S)-HETE production in human platelets. Planta Med. 2004, 70, 471–474. [Google Scholar]
- Kuźma, Ł.; Gomulski, J. Biologically Active Diterpenoids in the Clerodendrum Genus—A Review. Int. J. Mol. Sci. 2022, 23, 11001. [Google Scholar] [CrossRef]
- González, M.A. Aromatic abietane diterpenoids: Their biological activity and synthesis. Nat. Prod. Rep. 2015, 32, 684–704. [Google Scholar] [CrossRef]
- Barrero, A.F.; Herrador, M.M.; Arteaga, P.; Arteaga, J.F.; Arteaga, A.F. Communic Acids: Occurrence, Properties and Use as Chirons for the Synthesis of Bioactive Compounds. Molecules 2012, 17, 1448–1467. [Google Scholar] [CrossRef]
- Peters, R.J. Two Rings in Them All: The Labdane-Related Diterpenoids. Nat. Prod. Rep. 2010, 27, 1521–1530. [Google Scholar] [CrossRef]
- Osmakov, D.I.; Kalinovskii, A.P.; Belozerova, O.A.; Andreev, Y.A.; Kozlov, S.A. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int. J. Mol. Sci. 2022, 23, 6031. [Google Scholar] [CrossRef] [PubMed]
- Yoder, S.C.; Lancaster, S.M.; Hullar, M.A.J.; Lampe, J.W. Chapter 7—Gut Microbial Metabolism of Plant Lignans: Influence on Human Health. In Diet-Microbe Interactions in the Gut; Tuohy, K., Del Rio, D., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 103–117. [Google Scholar]
- Simpson, D.; Amos, S. Chapter 12—Other Plant Metabolites. In Pharmacognosy; Badal, S., Delgoda, R., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 267–280. [Google Scholar]
- Gulcin, İ. Antioxidants and Antioxidant Methods: An Updated Overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zhu, Z.; Xian, H.; Wang, H.; Chen, B.; Tang, Y.-J.; Tang, Y.; Liang, X. Insight into the Molecular Mechanism of Podophyllotoxin Derivatives as Anticancer Drugs. Front. Cell Dev. Biol. 2021, 9, 709075. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Pezzuto, J.M. Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents. Med. Princ. Pract. 2016, 25, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Shah, Z.; Farooq Gohar, U.; Jamshed, I.; Mushtaq, A.; Mukhtar, H.; Zia-Ui-Haq, M.; Toma, S.I.; Manea, R.; Moga, M.; Popovici, B. Biomolecules Podophyllotoxin: History, Recent Advances and Future Prospects. Biomolecules 2021, 11, 603. [Google Scholar] [CrossRef]
- Jin, L.; Song, Z.; Cai, F.; Ruan, L.; Jiang, R. Chemistry and Biological Activities of Naturally Occurring and Structurally Modified Podophyllotoxins. Molecules 2023, 28, 302. [Google Scholar] [CrossRef]
- Miranda-Vera, C.; Hernández, Á.P.; García-García, P.; Díez, D.; García, P.A.; Castro, M.Á. Podophyllotoxin: Recent Advances in the Development of Hybridization Strategies to Enhance Its Antitumoral Profile. Pharmaceutics 2023, 15, 2728. [Google Scholar] [CrossRef]
- Och, M.; Och, A.; Cieśla, Ł.; Kubrak, T.; Pecio, Ł.; Stochmal, A.; Kocki, J.; Bogucka-Kocka, A. Study of cytotoxic activity, podophyllotoxin, and deoxypodophyllotoxin content in selected Juniperus species cultivated in Poland. Pharm. Biol. 2015, 53, 831–837. [Google Scholar] [CrossRef]
- Mottaghi, S.; Abbaszadeh, H. A comprehensive insight into the antineoplastic activities and molecular mechanisms of deoxypodophyllotoxin: Recent trends, challenges, and future outlook. Eur. J. Pharmacol. 2022, 928, 175089. [Google Scholar] [CrossRef]
- Liu, F.; Zheng, A.; Li, M.; Chen, Y.; Liu, X. Study on pharmacokinetics and tissue distribution of deoxypodophyllotoxin and its metabolites in tumour-bearing mice. Xenobiotica 2024, 54, 316–321. [Google Scholar] [CrossRef]
- Khaled, M.; Jiang, Z.Z.; Zhang, L.Y. Deoxypodophyllotoxin: A promising therapeutic agent from herbal medicine. J. Ethnopharmacol. 2013, 149, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.I.; Slevin, M.L. The clinical pharmacology of etoposide and teniposide. Clin. Pharmacokinet. 1987, 12, 223–252. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, D.I.; Nedialkov, P.T.; Tashev, A.N.; Olech, M.; Nowak, R.; Ilieva, Y.E.; Kokanova-Nedialkova, Z.K.; Atanasova, T.N.; Angelov, G.; Najdenski, H.M. Junipers of various origins as potential sources of the anticancer drug precursor podophyllotoxin. Molecules 2021, 26, 5179. [Google Scholar] [CrossRef] [PubMed]
- Donoso-Fierro, C.; Tiezzi, A.; Ovidi, E.; Ceccarelli, D.; Triggiani, D.; Mastrogiovanni, F.; Taddei, A.R.; Pérez, C.; Becerra, J.; Silva, M.; et al. Antiproliferative activity of yatein isolated from Austrocedrus chilensis against murine myeloma cells: Cytological studies and chemical investigations. Pharm. Biol. 2015, 53, 378–385. [Google Scholar] [CrossRef]
- Ho, S.T.; Lin, C.C.; Tung, Y.T.; Wu, J.H. Molecular mechanisms underlying yatein-induced cell-cycle arrest and microtubule destabilization in human lung adenocarcinoma cells. Cancers 2019, 11, 1384. [Google Scholar] [CrossRef]
- Sakamoto, K.; Fujimoto, R.; Nakagawa, S.; Kamiyama, E.; Kanai, K.; Kawai, Y.; Kojima, H.; Hirasawa, A.; Wakamatsu, K.; Masutani, T. Juniper berry extract containing anthricin and yatein suppresses lipofuscin accumulation in human epidermal keratinocytes through proteasome activation, increases brightness and decreases spots in human skin. Int. J. Cosmet. Sci. 2023, 45, 655–671. [Google Scholar] [CrossRef]
- Mahajan, M.; Suryavanshi, S.; Bhowmick, S.; Alasmary, F.A.; Almutairi, T.M.; Islam, M.A.; Kaul-Ghanekar, R. Matairesinol, an active constituent of HC9 polyherbal formulation, exhibits HDAC8 inhibitory and anticancer activity. Biophys. Chem. 2021, 273, 106588. [Google Scholar] [CrossRef]
- Lee, W.; Song, G.; Bae, H. Matairesinol induces mitochondrial dysfunction and exerts synergistic anticancer effects with 5-fluorouracil in pancreatic cancer cells. Mar. Drugs 2022, 20, 473. [Google Scholar] [CrossRef]
- Wu, S.; Wang, J.; Fu, Z.; Familiari, G.; Relucenti, M.; Aschner, M.; Li, X.; Chen, H.; Chen, R. Matairesinol nanoparticles restore chemosensitivity and suppress colorectal cancer progression in preclinical models: Role of lipid metabolism reprogramming. Nano Lett. 2023, 23, 1970–1980. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Mo, X.; Xie, S.; Liu, S.; Zhao, N.; Zhang, H.; Chen, S.; Zeng, X.; Wang, S.; et al. Matairesinol blunts adverse cardiac remodeling and heart failure induced by pressure overload by regulating Prdx1 and PI3K/AKT/FOXO1 signaling. Phytomedicine 2024, 135, 156054. [Google Scholar] [CrossRef]
- Qin, W.; Wang, Y.; Li, Q. Matairesinol exerts anti-inflammatory and antioxidant effects in sepsis-mediated brain injury by repressing the MAPK and NF-κB pathways through up-regulating AMPK. Aging 2021, 13, 23780. [Google Scholar]
- Xu, P.; Huang, M.W.; Xiao, C.X.; Long, F.; Wang, Y.; Liu, S.Y.; Jia, W.W.; Wu, W.J.; Yang, D.; Hu, J.F.; et al. Matairesinol suppresses neuroinflammation and migration associated with Src and ERK1/2-NF-κB pathway in activating BV2 microglia. Neurochem. Res. 2017, 42, 2850–2860. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.B.; Ra, J.S.; Lim, J.Y.; Song, B.R.; Javed, A.; Lee, S.H. Lariciresinol displays anti-diabetic activity through inhibition of α-glucosidase and activation and enhancement of insulin signaling. Mol. Nutr. Food Res. 2022, 66, e2100751. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Alam, M.B.; Quan, K.T.; Kwon, K.R.; Ju, M.K.; Choi, H.J.; Lee, J.S.; Yoon, J.I.; Majumder, R.; Rather, I.A.; et al. Antioxidant efficacy and the upregulation of Nrf2-mediated HO-1 expression by (+)-lariciresinol, a lignan isolated from Rubia philippinensis, through the activation of p38. Sci. Rep. 2017, 7, 46035. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Shukla, S.; Paek, W.K.; Lim, J.; Kumar, P.; Kumar, P.; Na, M.K. Efficacy of (+)-Lariciresinol to control bacterial growth of Staphylococcus aureus and Escherichia coli O157. Front. Microbiol. 2017, 8, 804. [Google Scholar] [CrossRef]
- Mehta, J.; Rolta, R.; Dev, K. Role of medicinal plants from North Western Himalayas as an efflux pump inhibitor against MDR AcrAB-TolC Salmonella enterica serovar typhimurium: In vitro and in silico studies. J. Ethnopharmacol. 2022, 282, 114589. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Wang, R.; Shen, J.; Wang, J.; Li, L. Lariciresinol protects rats from complete Freund’s adjuvant-induced arthritis in rats via modulation of transforming growth factor-β and nuclear factor kappa B pathway: An in vivo and in silico study. Chem. Biol. Drug Des. 2023, 102, 168–176. [Google Scholar] [CrossRef]
- Saarinen, N.M.; Wärri, A.; Dings, R.P.; Airio, M.; Smeds, A.I.; Mäkelä, S. Dietary lariciresinol attenuates mammary tumor growth and reduces blood vessel density in human MCF-7 breast cancer xenografts and carcinogen-induced mammary tumors in rats. Int. J. Cancer 2008, 123, 1196–1204. [Google Scholar] [CrossRef]
- Ma, Z.J.; Lu, L.; Yang, J.J.; Wang, X.X.; Su, G.; Wang, Z.L.; Chen, G.H.; Sun, H.M.; Wang, M.Y.; Yang, Y. Lariciresinol induces apoptosis in HepG2 cells via mitochondrial-mediated apoptosis pathway. Eur. J. Pharmacol. 2018, 821, 1–10. [Google Scholar] [CrossRef]
- Kezimana, P.; Dmitriev, A.A.; Kudryavtseva, A.V.; Romanova, E.V.; Melnikova, N.V. Secoisolariciresinol Diglucoside of Flaxseed and Its Metabolites: Biosynthesis and Potential for Nutraceuticals. Front. Genet. 2018, 9, 641. [Google Scholar] [CrossRef]
- Felmlee, M.A.; Woo, G.; Simko, E.; Krol, E.S.; Muir, A.D.; Alcorn, J. Effects of the flaxseed lignans secoisolariciresinol diglucoside and its aglycone on serum and hepatic lipids in hyperlipidaemic rats. Br. J. Nutr. 2009, 102, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Ren, J.; Li, Z. Antibacterial Activity and Mechanism of Pinoresinol from Cinnamomum camphora Leaves against Food-Related Bacteria. Food Control 2017, 79, 192–199. [Google Scholar] [CrossRef]
- Wikul, A.; Damsud, T.; Kataoka, K.; Phuwapraisirisan, P. (+)-Pinoresinol is a putative hypoglycemic agent in defatted sesame (Sesamum indicum) seeds though inhibiting α-glucosidase. Bioorg. Med. Chem. Lett. 2012, 22, 5215–5217. [Google Scholar] [CrossRef] [PubMed]
- Soltani, M.; Fotovat, R.; Sharifi, M.; Ahmadian Chashmi, N.; Behmanesh, M. In Vitro Comparative Study on Antineoplastic Effects of Pinoresinol and Lariciresinol on Healthy Cells and Breast Cancer-Derived Human Cells. Iran. J. Med. Sci. 2024, 49, 30–39. [Google Scholar] [PubMed]
- Wei, Y.; Xiao, L.; Yingying, L.; Haichen, W. Pinoresinol diglucoside ameliorates H/R-induced injury of cardiomyocytes by regulating miR-142-3p and HIF1AN. J. Biochem. Mol. Toxicol. 2022, 36, e23175. [Google Scholar] [CrossRef] [PubMed]
- Youssef, F.S.; Ashour, M.L.; El-Beshbishy, H.A.; Ahmed Hamza, A.; Singab, A.N.B.; Wink, M. Pinoresinol-4-O-β-D-Glucopyranoside: A Lignan from Prunes (Prunus domestica) Attenuates Oxidative Stress, Hyperglycaemia and Hepatic Toxicity in Vitro and in Vivo. J. Pharm. Pharmacol. 2020, 72, 1830–1839. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, Y.; Yao, X.; Yi, J.; Feng, G. Pinoresinol diglucoside alleviates ischemia/reperfusion-induced brain injury by modulating neuroinflammation and oxidative stress. Chem. Biol. Drug Des. 2021, 98, 986–996. [Google Scholar] [CrossRef]
- Zuo, Y.; Chen, C.; Liu, F.; Hu, H.; Dong, S.; Shen, Q.; Zeng, J.; Huang, L.; Liao, X.; Cao, Z.; et al. Pinoresinol diglucoside mitigates dexamethasone-induced osteoporosis and chondrodysplasia in zebrafish. Toxicol. Appl. Pharmacol. 2024, 484, 116884. [Google Scholar] [CrossRef]
- Milder, I.E.J.; Feskens, E.J.M.; Arts, I.C.W.; de Mesquita, H.B.B.; Hollman, P.C.H.; Kromhout, D. Intake of the Plant Lignans Secoisolariciresinol, Matairesinol, Lariciresinol, and Pinoresinol in Dutch Men and Women. J. Nutr. 2005, 135, 1202–1207. [Google Scholar] [CrossRef]
- He, X.; Yang, F.; Huang, X. Proceedings of Chemistry, Pharmacology, Pharmacokinetics and Synthesis of Biflavonoids. Molecules 2021, 26, 6088. [Google Scholar] [CrossRef]
- Innocenti, M.; Michelozzi, M.; Giaccherini, C.; Ieri, F.; Vincieri, F.F.; Mulinacci, N. Flavonoids and biflavonoids in Tuscan berries of Juniperus communis L.: Detection and quantitation by HPLC/DAD/ESI/MS. J. Agric. Food Chem. 2007, 55, 6596–6602. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yan, H.; Zhang, L.; Shan, M.; Chen, P.; Ding, A.; Li, S.F.Y. A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules 2017, 22, 299. [Google Scholar] [CrossRef] [PubMed]
- Lamer-Zarawska, E. Biflavonoids in Juniperus species (Cupressaceae). Pol. J. Pharmacol. Pharm. 1975, 27, 81–87. [Google Scholar] [PubMed]
- Tuli, H.S.; Joshi, H.; Vashishth, K.; Ramniwas, S.; Varol, M.; Kumar, M.; Rani, I.; Rani, V.; Sak, K. Chemopreventive mechanisms of amentoflavone: Recent trends and advancements. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 865–876. [Google Scholar] [CrossRef]
- Xiong, X.; Tang, N.; Lai, X.; Zhang, J.; Wen, W.; Li, X.; Li, A.; Wu, Y.; Liu, Z. Insights into amentoflavone: A natural multifunctional biflavonoid. Front. Pharmacol. 2021, 12, 768708. [Google Scholar] [CrossRef]
- Deng, Z.; Sheng, F.; Yang, S.-Y.; Liu, Y.; Zou, L.; Zhang, L.-L. A Comprehensive Review on the Medicinal Usage of Podocarpus Species: Phytochemistry and Pharmacology. J. Ethnopharmacol. 2023, 310, 116401. [Google Scholar] [CrossRef]
- Ahmad, S.; Razaq, S. New Synthesis of Biflaves of Cupressuflavone Series; Pergamon Press: Oxford, UK, 1976; Volume 32, pp. 1–7. [Google Scholar]
- Qiao, Y.; Sun, W.-W.; Wang, J.-F.; Zhang, J.-D. Flavonoids from Podocarpus macrophyllus and Their Cardioprotective Activities. J. Asian Nat. Prod. Res. 2014, 16, 222–229. [Google Scholar] [CrossRef]
- Jegal, J.; Park, S.A.; Chung, K.; Chung, H.Y.; Lee, J.; Jeong, E.J.; Kim, K.H.; Yang, M.H. Tyrosinase inhibitory flavonoid from Juniperus communis fruits. Biosci. Biotechnol. Biochem. 2016, 80, 2311–2317. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y. Bilobetin, a Novel Small Molecule Inhibitor Targeting Influenza Virus Polymerase Acidic (PA) Endonuclease Was Screened from Plant Extracts. Nat. Prod. Res. 2021, 35, 5968–5971. [Google Scholar] [CrossRef]
- Lee, H.K.; Bae, S.; Lee, J.; Cha, H.S.; Nam, M.J.; Lee, J.; Park, K.; Yang, Y.H.; Jang, K.Y.; Liu, K.H.; et al. Bilobetin induces apoptosis in human hepatocellular carcinoma cells via ROS level elevation and inhibition of CYP2J2. Arab. J. Chem. 2023, 16, 105094. [Google Scholar] [CrossRef]
- Islam, M.T.; Zihad, S.M.N.K.; Rahman, M.S.; Sifat, N.; Khan, M.R.; Uddin, S.J.; Rouf, R. Agathisflavone: Botanical Sources, Therapeutic Promises, and Molecular Docking Study. IUBMB Life 2019, 71, 1192–1200. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.W.L.; Machado, K.D.C.; Machado, K.D.C.; Figueiredo, D.D.R.; David, J.M.; Islam, M.T.; Uddin, S.J.; Shilpi, J.A.; Costa, J.P. In Vitro Antioxidant Properties of the Biflavonoid Agathisflavone. Chem. Cent. J. 2018, 12, 75. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Zembower, D.E.; Flavin, M.T.; Schure, R.M.; Anderson, H.M.; Korba, B.E.; Chen, F.-C. Robustaflavone, a Naturally Occurring Biflavanoid, Is a Potent Non-Nucleoside Inhibitor of Hepatitis B Virus Replication in Vitro. Bioorg. Med. Chem. Lett. 1997, 7, 2325–2328. [Google Scholar] [CrossRef]
- Hiermann, A.; Kompek, A.; Reiner, J.; Auer, H.; Schubert-Zsilavecz, M. Investigation of flavonoid pattern in fruits of Juniperus communis L. Sci. Pharm. 1996, 64, 437–444. [Google Scholar]
- Lee, C.C.; Hsiao, C.Y.; Lee, S.C.; Huang, X.F.; Chang, K.F.; Lee, M.S.; Hsieh, M.C.; Tsai, N.M. Suppression of Oral Cancer by Induction of Cell Cycle Arrest and Apoptosis Using Juniperus communis Extract. Biosci. Rep. 2020, 40, BSR20202083. [Google Scholar] [CrossRef]
- Reddy, P.J.; Sinha, S.; Ray, S.; Sathe, G.J.; Chatterjee, A.; Prasad, T.S.; Dhali, S.; Srikanth, R.; Panda, D.; Srivastava, S. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment. PLoS ONE 2015, 10, e0120620. [Google Scholar] [CrossRef]
- Xu, Z.; Krajewski, S.; Weindl, T.; Loeffler, R.; Li, P.; Han, X.; Geis-Gerstorfer, J.; Wendel, H.P.; Scheideler, L.; Rupp, F. Application of Totarol as natural antibacterial coating on dental implants for prevention of peri-implantitis. Mater. Sci. Eng. C 2020, 110, 110701. [Google Scholar] [CrossRef]
- Scariot, D.B.; Volpato, H.; Fernandes, N.D.; Soares, E.F.; Ueda-Nakamura, T.; Dias-Filho, B.P.; Din, Z.U.; Rodrigues-Filho, E.; Rubira, A.F.; Borges, O.; et al. Activity and cell-death pathway in Leishmania infantum induced by sugiol: Vectorization using yeast cell wall particles obtained from Saccharomyces cerevisiae. Front. Cell. Infect. Microbiol. 2019, 9, 208. [Google Scholar] [CrossRef]
- Jung, S.N.; Shin, D.S.; Kim, H.N.; Jeon, Y.J.; Yun, J.; Lee, Y.J.; Kang, J.S.; Han, D.C.; Kwon, B.M. Sugiol inhibits STAT3 activity via regulation of transketolase and ROS-mediated ERK activation in DU145 prostate carcinoma cells. Biochem. Pharmacol. 2015, 97, 38–50. [Google Scholar] [CrossRef]
- Bakhsh, T.; Abuzahrah, S.S.; Qahl, S.H.; Akela, M.A.; Rather, I.A. Sugiol masters apoptotic precision to halt gastric cancer cell proliferation. Pharmaceuticals 2023, 16, 1528. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Sharma, A.; Chul Kang, S.; Baek, K.-H.; Chul Kang, S. Antioxidant, lipid peroxidation inhibition, and free radical scavenging efficacy of a diterpenoid compound sugiol isolated from Metasequoia glyptostroboides. Asian Pac. J. Trop. Med. 2014, 7, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Karalija, E.; Šamec, D. Amentoflavone: Structure, resources, bioactivity, and pharmacology. In Handbook of Dietary Flavonoids; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–35. [Google Scholar]
- Youn, K.W.; Lee, S.; Kim, J.H.; Park, Y.I.; So, J.; Kim, C.; Cho, C.W.; Park, J. Amentoflavone from Selaginella tamariscina inhibits SARS-CoV-2 RNA-dependent RNA polymerase. Heliyon 2024, 10, e36568. [Google Scholar] [CrossRef] [PubMed]
- Al-Sayed, E.; Gad, H.A.; El-Shazly, M.; Abdel-Daim, M.M.; Nasser Singab, A. Anti-inflammatory and analgesic activities of cupressuflavone from Cupressus macrocarpa: Impact on pro-inflammatory mediators. Drug Dev. Res. 2018, 79, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Al-Sayed, E.; Ke, T.Y.; Hwang, T.L.; Chen, S.R.; Korinek, M.; Chen, S.L.; Cheng, Y.B. Cytotoxic and anti-inflammatory effects of lignans and diterpenes from Cupressus macrocarpa. Bioorg. Med. Chem. Lett. 2020, 30, 127127. [Google Scholar] [CrossRef]
- Kim, C.E.; Le, D.D.; Lee, M. Diterpenoids isolated from Podocarpus macrophyllus inhibited the inflammatory mediators in LPS-induced HT-29 and RAW 264.7 cells. Molecules 2021, 26, 4326. [Google Scholar] [CrossRef]
- Mohamed, N.Z.; Shaaban, L.; Safan, S.; El-Sayed, A.S.A. Phytochemical and metabolic profiling of the different Podocarpus species in Egypt: Potential antimicrobial and antiproliferative activities. Heliyon 2023, 9, e20034. [Google Scholar] [CrossRef]
- Chaves, O.A.; Lima, C.R.; Fintelman-Rodrigues, N.; Sacramento, C.Q.; De Freitas, C.S.; Vazquez, L.; Temerozo, J.R.; Rocha, M.E.; Dias, S.S.; Carels, N.; et al. Agathisflavone, a natural biflavonoid that inhibits SARS-CoV-2 replication by targeting its proteases. Int. J. Biol. Macromol. 2022, 222, 1015–1026. [Google Scholar] [CrossRef]
- Jo, A.; Yoo, H.J.; Lee, M. Robustaflavone isolated from Nandina domestica using bioactivity-guided fractionation downregulates inflammatory mediators. Molecules 2019, 24, 1789. [Google Scholar] [CrossRef]
- Sim, W.K.; Park, J.H.; Kim, K.Y.; Chung, I.S. Robustaflavone induces G0/G1 cell cycle arrest and apoptosis in human umbilical vein endothelial cells and exhibits anti-angiogenic effects in vivo. Sci. Rep. 2020, 10, 67993. [Google Scholar] [CrossRef]
- El Jemli, M.; Kamal, R.; Marmouzi, I.; Zerrouki, A.; Cherrah, Y.; Alaoui, K. Radical-scavenging activity and ferric reducing ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.). Adv. Pharmacol. Sci. 2016, 2016, 6392656. [Google Scholar]
- Elmastaş, M.; Gülçin, I.; Beydemir, Ş.; Küfrevioğlu, Ö.I.; Aboul-Enein, H.Y. A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) fruit extracts. Anal. Lett. 2006, 39, 47–65. [Google Scholar] [CrossRef]
- Hiller, K.; Löw, D. Juniperi Pseudo-Fructus. In Teedrogen und Phytopharmaka; Wichtl, M., Ed.; Wissenschaftliche Verlagsgesellschaft: Stuttgart, Germany, 2009. [Google Scholar]
- Zheljazkov, V.D.; Semerdjieva, I.B.; Dincheva, I.; Kacaniova, M.; Astatkie, T.; Radoukova, T.; Schlegel, V. Antimicrobial and antioxidant activity of Juniper galbuli essential oil constituents eluted at different times. Ind. Crop. Prod. 2017, 109, 529–537. [Google Scholar] [CrossRef]
- Bojor, O. Ghidul Plantelor Medicinale şi Aromatice de la A la Z (Guide of Medicinal and Aromatic Plants from A to Z); Fiat Lux: București, Romania, 2003. (In Romanian) [Google Scholar]
- Muftah, H.; Ozçelik, B.; Oyardı, O.; Kutluk, İ.; Orhan, N. A comparative evaluation of Juniperus species with antimicrobial magistrals. Pharm. Sci. 2020, 33, 1443–1449. [Google Scholar]
- Kim, D.S.; Lee, H.J.; Jeon, Y.D.; Han, Y.H.; Kee, J.Y.; Kim, H.J.; Shin, H.J.; Kang, J.; Lee, B.S.; Kim, S.H.; et al. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am. J. Chin. Med. 2015, 43, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Darwish, R.S.; Hammoda, H.M.; Ghareeb, D.A.; Abdelhamid, A.S.A.; Bellah El Naggar, E.M.; Harraz, F.M.; Shawky, E. Efficacy-directed discrimination of the essential oils of three Juniperus species based on their in-vitro antimicrobial and anti-inflammatory activities. J. Ethnopharmacol. 2020, 259, 112971. [Google Scholar] [CrossRef]
- Lin, T.-C.; Lu, C.-W.; Chang, K.-F.; Lee, C.-J. Juniperus communis extract ameliorates lipopolysaccharide-induced acute kidney injury through the adenosine monophosphate–activated protein kinase pathway. Food Sci. Nutr. 2022, 10, 3405–3414. [Google Scholar] [CrossRef]
- Tsai, W.C.; Tsai, N.M.; Chang, K.F.; Wang, J.C. Juniperus communis extract exerts antitumor effects in human glioblastomas through blood-brain barrier. Cell. Physiol. Biochem. 2018, 49, 2443–2462. [Google Scholar] [CrossRef]
- Lai, W.L.; Lee, S.C.; Chang, K.F.; Huang, X.F.; Li, C.Y.; Lee, C.J.; Wu, C.Y.; Hsu, H.J.; Tsai, N.M. Juniperus communis extract induces cell cycle arrest and apoptosis of colorectal adenocarcinoma in vitro and in vivo. Braz. J. Med. Biol. Res. 2021, 54, e10891. [Google Scholar] [CrossRef]
- Li, C.Y.; Lee, S.C.; Lai, W.L.; Chang, K.F.; Huang, X.F.; Hung, P.Y.; Lee, C.P.; Hsieh, M.C.; Tsai, N.M. Cell cycle arrest and apoptosis induction by Juniperus communis extract in esophageal squamous cell carcinoma through activation of p53-induced apoptosis pathway. Food Sci. Nutr. 2020, 9, 1088–1098. [Google Scholar] [CrossRef]
- Abdelghany, T.M.; Hassan, M.M.; El-Naggar, M.A. GC/MS analysis of Juniperus procera extract and its activity with silver nanoparticles against Aspergillus flavus growth and aflatoxins production. Biotechnol. Rep. 2020, 27, e00496. [Google Scholar] [CrossRef]
- Gad El-Rab, S.M.F.; Halawani, E.M.; Alzahrani, S.S.S. Biosynthesis of silver nano-drug using Juniperus excelsa and its synergistic antibacterial activity against multidrug-resistant bacteria for wound dressing applications. 3 Biotech 2021, 11, 255. [Google Scholar] [CrossRef] [PubMed]
- Halawani, E.M.S.; Alzahrani, S.S.S.; Gad El-Rab, S.M.F. Biosynthesis strategy of gold nanoparticles and biofabrication of a novel amoxicillin gold nanodrug to overcome the resistance of multidrug-resistant bacterial pathogens MRSA and E. coli. Biomimetics 2023, 8, 452. [Google Scholar] [CrossRef] [PubMed]
Class | Chemical Compound | Biological Activity |
---|---|---|
Diterpenes |
| |
| ||
| ||
| ||
| ||
| ||
| ||
| ||
Lignans | ||
| ||
Biflavones | ||
| ||
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jojić, A.A.; Liga, S.; Uţu, D.; Ruse, G.; Suciu, L.; Motoc, A.; Şoica, C.M.; Tchiakpe-Antal, D.-S. Beyond Essential Oils: Diterpenes, Lignans, and Biflavonoids from Juniperus communis L. as a Source of Multi-Target Lead Compounds. Plants 2024, 13, 3233. https://doi.org/10.3390/plants13223233
Jojić AA, Liga S, Uţu D, Ruse G, Suciu L, Motoc A, Şoica CM, Tchiakpe-Antal D-S. Beyond Essential Oils: Diterpenes, Lignans, and Biflavonoids from Juniperus communis L. as a Source of Multi-Target Lead Compounds. Plants. 2024; 13(22):3233. https://doi.org/10.3390/plants13223233
Chicago/Turabian StyleJojić, Alina Arabela, Sergio Liga, Diana Uţu, Graţiana Ruse, Liana Suciu, Andrei Motoc, Codruța Marinela Şoica, and Diana-Simona Tchiakpe-Antal. 2024. "Beyond Essential Oils: Diterpenes, Lignans, and Biflavonoids from Juniperus communis L. as a Source of Multi-Target Lead Compounds" Plants 13, no. 22: 3233. https://doi.org/10.3390/plants13223233
APA StyleJojić, A. A., Liga, S., Uţu, D., Ruse, G., Suciu, L., Motoc, A., Şoica, C. M., & Tchiakpe-Antal, D. -S. (2024). Beyond Essential Oils: Diterpenes, Lignans, and Biflavonoids from Juniperus communis L. as a Source of Multi-Target Lead Compounds. Plants, 13(22), 3233. https://doi.org/10.3390/plants13223233