Threshold Behavior Hidden in the Growth Response of Peat Moss Sphagnum riparium to Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Study Object
2.3. Experimental Design
2.4. Temperature Data Sources
2.5. Statistical Analysis
3. Results
3.1. Brief Description of the Data Collected from Growth Monitoring
3.2. Temperature Dependence of the Growth Rate Based on Linear and Exponential Models
3.3. Temperature Dependence of the Growth Rate, Based on a Moving Average, Reveals Temperature Threshold
3.4. Temperature Threshold in Different Years
3.5. Dependence of the Temperature Threshold on the Temperatures of the Previous Growing Season
4. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Carreras, B.; Sal, S.; Padfield, D.; Kontopoulos, D.G.; Bestion, E.; Schaum, C.E.; Yvon-Durocher, G.; Pawar, S. Role of carbon allocation efficiency in the temperature dependence of autotroph growth rates. Proc. Natl. Acad. Sci. USA 2018, 115, E7361–E7368. [Google Scholar] [CrossRef] [PubMed]
- Duffy, K.A.; Schwalm, C.R.; Arcus, V.L.; Koch, G.W.; Liang, L.L.; Schipper, L.A. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 2021, 7, eaay1052. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.S.; Meade, A.; Ardö, J.; Arriga, N.; Black, A.; Blanken, P.D.; Bonal, D.; Brümmer, C.; Cescatti, A.; Dušek, J.; et al. Temperature thresholds of ecosystem respiration at a global scale. Nat. Ecol. Evol. 2021, 5, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Wang, G.; Yang, Y.; Wu, H.; Wu, H.; Zhang, H.; Xia, Y. Temperature Thresholds for Carbon Flux Variation and Warming-Induced Changes. J. Geophys. Res. Atmos. 2023, 128, e2023JD039747. [Google Scholar] [CrossRef]
- Bauerle, W.L.; Hazlett, M. Humulus lupulus L. strobilus in situ photosynthesis and respiration temperature responses. Plants 2023, 12, 2030. [Google Scholar] [CrossRef]
- Lindroth, A.; Grelle, A.; Morén, A.S. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Glob. Chang. Biol. 1998, 4, 443–450. [Google Scholar] [CrossRef]
- Yuan, W.; Luo, Y.; Liang, S.; Yu, G.; Niu, S.; Stoy, P.; Varner, R. Thermal adaptation of net ecosystem exchange. Biogeosciences 2011, 8, 1453–1463. [Google Scholar] [CrossRef]
- Niu, S.; Luo, Y.; Fei, S.; Yuan, W.; Schimel, D.; Law, B.E.; Ammann, C.; Arain, M.A.; Arneth, A.; Aubinet, M.; et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol. 2012, 194, 775–783. [Google Scholar] [CrossRef]
- Huang, M.; Piao, S.; Ciais, P.; Peñuelas, J.; Wang, X.; Keenan, T.F.; Peng, S.; Berry, J.A.; Wang, K.; Mao, J.; et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 2019, 3, 772–779. [Google Scholar] [CrossRef]
- Chen, W.; Wang, S.; Wang, J.; Xia, J.; Luo, Y.; Yu, G.; Niu, S. Evidence for widespread thermal optimality of ecosystem respiration. Nat. Ecol. Evol. 2023, 7, 1379–1387. [Google Scholar] [CrossRef]
- Lambers, H.; Chapin, F.S., III; Pons, T.L. Plant Physiological Ecology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Bloom, A.J.; Chapin, F.S., III; Mooney, H.A. Resource limitation in plants—An economic analogy. Annu. Rev. Ecol. Syst. 1985, 16, 363–392. [Google Scholar] [CrossRef]
- Rydin, H.; Gunnarsson, U.; Sundberg, S. The role of Sphagnum in peatland development and persistence. Boreal Peatl. Ecosyst. 2006, 188, 47–65. [Google Scholar]
- Backéus, I. Weather variables as predictors of Sphagnum growth on a bog. Ecography 1988, 11, 146–150. [Google Scholar] [CrossRef]
- Moore, T.R. Growth and net production of Sphagnum at five fen sites, subarctic eastern Canada. Can. J. Bot. 1989, 67, 1203–1207. [Google Scholar] [CrossRef]
- Dorrepaal, E.; Aerts, R.; Cornelissen, J.H.; Callaghan, T.V.; Van Logtestijn, R.S. Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Glob. Chang. Biol. 2004, 10, 93–104. [Google Scholar] [CrossRef]
- Gunnarsson, U. Global patterns of Sphagnum productivity. J. Bryol. 2005, 27, 269–279. [Google Scholar] [CrossRef]
- Robroek, B.J.; Limpens, J.; Breeuwer, A.; Schouten, M.G. Effects of water level and temperature on performance of four Sphagnum mosses. Plant Ecol. 2007, 190, 97–107. [Google Scholar] [CrossRef]
- Breeuwer, A.; Heijmans, M.M.; Robroek, B.J.; Berendse, F. The effect of temperature on growth and competition between Sphagnum species. Oecologia 2008, 156, 155–167. [Google Scholar] [CrossRef]
- Krebs, M.; Gaudig, G.; Joosten, H. Record growth of Sphagnum papillosum in Georgia (Transcaucasus): Rain frequency, temperature and microhabitat as key drivers in natural bogs. Mires Peat 2016, 18, 1–16. [Google Scholar]
- Kosykh, N.P.; Koronatova, N.G.; Granath, G. Effect of temperature and precipitation on linear increment of Sphagnum fuscum and S. magellanicum in Western Siberia. Russ. J. Ecol. 2017, 48, 203–211. [Google Scholar] [CrossRef]
- Bengtsson, F.; Rydin, H.; Baltzer, J.L.; Bragazza, L.; Bu, Z.J.; Caporn, S.J.; Dorrepaal, E.; Flatberg, K.I.; Galanina, O.; Gałka, M.; et al. Environmental drivers of Sphagnum growth in peatlands across the Holarctic region. J. Ecol. 2021, 109, 417–431. [Google Scholar] [CrossRef]
- Mironov, V.L.; Kondratev, A.Y.; Mironova, A.V. Growth of Sphagnum is strongly rhythmic: Contribution of the seasonal, circalunar and third components. Physiol. Plant. 2020, 168, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Grabovik, S.I.; Kantserova, L.V.; Znamenskiy, S.R. Results of long-term studies of annual growth of mosses of the genus Sphagnum L. in the central taiga of Karelia. Russ. J. Ecol. 2024, 55, 253–266. [Google Scholar] [CrossRef]
- Mironov, V.L. Geomagnetic anomaly in the growth response of peat moss Sphagnum riparium to temperature. Plants 2024, 13, 48. [Google Scholar] [CrossRef]
- Mironov, V.L.; Kondratev, A.Y.; Mironova, A.V. Sphagnum growth as an indicator of wavelength-specific UV-B penetration through the ozone layer. Ecol. Indic. 2020, 116, 106430. [Google Scholar] [CrossRef]
- Mironov, V.L. Cloud cover disrupts the influence of the lunar cycle on the growth of peat moss Sphagnum riparium. Environ. Exp. Bot. 2022, 194, 104727. [Google Scholar] [CrossRef]
- Mironov, V.L. Unknown effects of daily-scale solar activity on the plant growth: Data from 6-year growth monitoring of Sphagnum riparium. Physiol. Plant. 2022, 174, e13733. [Google Scholar] [CrossRef]
- Mironov, V.L.; Grabovik, S.I.; Ignashov, P.A.; Kantserova, L.V. Geotropic curvatures of Sphagnum: Environmental features of their genesis and trial application for estimation shoot length increment. Arctoa 2016, 25, 353–363. [Google Scholar] [CrossRef]
- Mooney, H. The carbon balance of plants. Annu. Rev. Ecol. Syst. 1972, 3, 315–346. [Google Scholar] [CrossRef]
- Orbović, V.; Poff, K.L. Effect of temperature on growth and phototropism of Arabidopsis thaliana seedlings. J. Plant Growth Regul. 2007, 26, 222–228. [Google Scholar] [CrossRef]
- Parent, B.; Tardieu, F. Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytol. 2012, 194, 760–774. [Google Scholar] [CrossRef] [PubMed]
- Rydin, H.; Clymo, R.S. Transport of carbon and phosphorus compounds about Sphagnum. Proc. R. Soc. Lond. B Biol. Sci. 1989, 237, 63–84. [Google Scholar]
- Aldous, A.R. Nitrogen translocation in Sphagnum mosses: Effects of atmospheric nitrogen deposition. New Phytol. 2002, 156, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Van Oijen, M.; Schapendonk, A.; Höglind, M. On the relative magnitudes of photosynthesis, respiration, growth and carbon storage in vegetation. Ann. Bot. 2010, 105, 793–797. [Google Scholar] [CrossRef]
- Hartt, C.E. The effect of temperature upon translocation of C14 in sugarcane. Plant Physiol. 1965, 40, 74. [Google Scholar] [CrossRef]
- Shtang, A.; Ponomareva, T.; Skryabina, A. Pigment Complex, Growth and Chemical Composition Traits of Boreal Sphagnum Mosses (Mire System “Ilasskoe”, North-West of European Russia). Plants 2024, 13, 2478. [Google Scholar] [CrossRef]
- Gifford, R.M. Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature: Long-term vs. short-term distinctions for modelling. Glob. Chang. Biol. 1995, 1, 385–396. [Google Scholar] [CrossRef]
- Atkin, O.K.; Scheurwater, I.; Pons, T.L. Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at moderate, but not high, growth temperatures. New Phytol. 2007, 174, 367–380. [Google Scholar] [CrossRef]
- Jacob, J.; Lawlor, D.W. Extreme phosphate deficiency decreases the in vivo CO2/O2 specificity factor of ribulose 1,5-bisphosphate carboxylase-oxygenase in intact leaves of sunflower. J. Exp. Bot. 1993, 44, 1635–1641. [Google Scholar] [CrossRef]
- Valentini, R.; Epron, D.; De Angelis, P.; Matteucci, G.; Dreyer, E. In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: Diurnal cycles under different levels of water supply. Plant Cell Environ. 1995, 18, 631–640. [Google Scholar] [CrossRef]
- Walker, B.J.; VanLoocke, A.; Bernacchi, C.J.; Ort, D.R. The costs of photorespiration to food production now and in the future. Annu. Rev. Plant Biol. 2016, 67, 107–129. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.J.; Tenhunen, J.D.; Nowak, R.S. Photoinhibition as a control on photosynthesis and production of Sphagnum mosses. Oecologia 1993, 96, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Hájek, T.; Tuittila, E.S.; Ilomets, M.; Laiho, R. Light responses of mire mosses—A key to survival after water-level drawdown? Oikos 2009, 118, 240–250. [Google Scholar] [CrossRef]
- Schipperges, B.; Rydin, H. Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation. New Phytol. 1998, 140, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Berry, J.; Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 1980, 31, 491–543. [Google Scholar] [CrossRef]
- Holaday, A.S.; Martindale, W.; Alred, R.; Brooks, A.L.; Leegood, R.C. Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature. Plant Physiol. 1992, 98, 1105–1114. [Google Scholar] [CrossRef]
- Hurry, V.M.; Malmberg, G.; Gardestrom, P.; Oquist, G. Effects of a short-term shift to low temperature and of long-term cold hardening on photosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity in leaves of winter rye (Secale cereale L.). Plant Physiol. 1994, 106, 983–990. [Google Scholar] [CrossRef]
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2015–2023 | |
---|---|---|---|---|---|---|---|---|---|---|
Number of sampling events, days | 34 | 68 | 88 | 89 | 77 | 102 | 92 | 90 | 85 | 725 |
Number of sample plots | 4 | 11 | 13 | 6 | 3 | 10 | 10 | 10 | 8 | 3–13 |
Number of shoots measured | 9087 | 30,267 | 45,278 | 31,837 | 10,526 | 34,195 | 24,000 | 24,300 | 17,455 | 226,945 |
Number of growth rates from sample plots | 530 | 1365 | 1578 | 1020 | 544 | 1706 | 1608 | 1608 | 1196 | 11155 |
Number of growth rates from mire area | 178 | 178 | 178 | 180 | 156 | 205 | 184 | 180 | 170 | 1617 |
Mean sample size (±SD), shoots | 93.7 ± 29.6 | 59.7 ± 15.8 | 57.8 ± 16.7 | 60.0 ± 23.0 | 46.0 ± 6.1 | 39.9 ± 0.6 | 30.0 ± 0.0 | 30.0 ± 0.0 | 30.0 ± 0.0 | 30–94 |
Mean interval between sampling events (±SD), days | 5.2 ± 1.5 | 2.8 ± 0.9 | 2.0 ± 0.0 | 2.1 ± 0.2 | 2.1 ± 0.5 | 2.0 ± 0.1 | 2.0 ± 0.23 | 2.0 ± 0.0 | 2.0 ± 0.0 | 2.0–5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mironov, V.L. Threshold Behavior Hidden in the Growth Response of Peat Moss Sphagnum riparium to Temperature. Plants 2024, 13, 3241. https://doi.org/10.3390/plants13223241
Mironov VL. Threshold Behavior Hidden in the Growth Response of Peat Moss Sphagnum riparium to Temperature. Plants. 2024; 13(22):3241. https://doi.org/10.3390/plants13223241
Chicago/Turabian StyleMironov, Victor L. 2024. "Threshold Behavior Hidden in the Growth Response of Peat Moss Sphagnum riparium to Temperature" Plants 13, no. 22: 3241. https://doi.org/10.3390/plants13223241
APA StyleMironov, V. L. (2024). Threshold Behavior Hidden in the Growth Response of Peat Moss Sphagnum riparium to Temperature. Plants, 13(22), 3241. https://doi.org/10.3390/plants13223241