Deodeokaloid, a New Indole Alkaloid N-Glycoside and Bioactive Phenolic Compounds from the Roots of Codonopsis lanceolata
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Structural Elucidation of Compounds 1–4
2.2. Evaluation of Biological Activity of the Isolated Compounds
3. Materials and Methods
3.1. Equipment Used for Analyses
3.2. Plant Material
3.3. Extraction and Isolation
Deodeokaloid (1)
3.4. Enzymatic Hydrolysis and Sugar Identification of 1
3.5. Computational NMR Chemical Shift Calculations for DP4+ Analysis
3.6. Anti-Helicobacter Pylori Activity
3.7. Antioxidant Activity
3.8. Determination of Intracellular ROS Scavenging Activity
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, Y.G.; Kim, J.Y.; Lee, J.Y.; Byeon, S.E.; Hong, E.K.; Lee, J.; Rhee, M.H.; Park, H.J.; Cho, J.Y. Regulatory effects of Codonopsis lanceolata on macrophage-mediated immune responses. J. Ethnopharmacol. 2007, 112, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H. Immunostimulative effect of hot-water extract from Codonopsis lanceolata on lymphocyte and clonal macrophage. Korean J. Food Sci. Technol. 2002, 34, 732–736. [Google Scholar]
- Du, Y.E.; Lee, J.S.; Kim, H.M.; Ahn, J.-H.; Jung, I.H.; Ryu, J.H.; Choi, J.-H.; Jang, D.S. Chemical constituents of the roots of Codonopsis lanceolata. Arch. Pharm. Res. 2018, 41, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, M.; Ohta, S.; Komoto, N.; Ushijima, M.; Kodera, Y.; Hayama, M.; Shirota, O.; Sekita, S.; Kuroyanagi, M. Simultaneous determination of seven saponins in the roots of Codonopsis lanceolata by liquid chromatography–mass spectrometry. J. Nat. Med. 2009, 63, 52–57. [Google Scholar] [CrossRef]
- Cho, K.; Kim, S.-J.; Park, S.-H.; Kim, S.; Park, T. Protective effect of Codonopsis lanceolata root extract against alcoholic fatty liver in the rat. J. Med. Food 2009, 12, 1293–1301. [Google Scholar] [CrossRef]
- Choi, H.K.; Won, E.K.; Jang, Y.P.; Choung, S.Y. Antiobesity Effect of Codonopsis lanceolata in High-Calorie/High-Fat-Diet-Induced Obese Rats. Evid. Based Complement. Alternat. Med. 2013, 2013, 210297. [Google Scholar] [CrossRef]
- Han, C.; Li, L.; Piao, K.; Shen, Y.; Piao, Y. Experimental study on anti-oxygen and promoting intelligence development of Codonopsis lanceolata in old mice. Zhong Yao Cai 1999, 22, 136–138. [Google Scholar]
- Cho, Y.-R.; Kim, S.H.; Yoon, H.J.; Hong, S.Y.; Ko, H.-Y.; Park, E.-H.; Kim, M.-D.; Seo, D.-W. Anti-tumor effects of Codonopsis lanceolata extracts on human lung and ovarian cancer. Food Eng. Prog. 2011, 15, 1–5. [Google Scholar]
- Han, A.Y.; Lee, Y.S.; Kwon, S.; Lee, H.S.; Lee, K.W.; Seol, G.H. Codonopsis lanceolata extract prevents hypertension in rats. Phytomedicine 2018, 39, 119–124. [Google Scholar] [CrossRef]
- Shirota, O.; Nagamatsu, K.; Sekita, S.; Komoto, N.; Kuroyanagi, M.; Ichikawa, M.; Ohta, S.; Ushijima, M. Preparative separation of the saponin lancemaside a from Codonopsis lanceolata by centrifugal partition chromatography. Phytochem. Anal. 2008, 19, 403–410. [Google Scholar] [CrossRef]
- Ushijima, M.; Komoto, N.; Sugizono, Y.; Mizuno, I.; Sumihiro, M.; Ichikawa, M.; Hayama, M.; Kawahara, N.; Nakane, T.; Shirota, O.; et al. Triterpene glycosides from the roots of Codonopsis lanceolata. Chem. Pharm. Bull. 2008, 56, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Lin, Z.; Yuan, Z. Tangshenosides from Codonopsis lanceolata roots. Phytochem. Lett. 2013, 6, 567–569. [Google Scholar] [CrossRef]
- Dar, A.A.; Abrol, V.; Singh, N.; Gashash, E.A.; Dar, S.A. Recent bioanalytical methods for the isolation of bioactive natural products from genus Codonopsis. Phytochem. Anal. 2023, 34, 491–506. [Google Scholar] [CrossRef] [PubMed]
- Byeon, S.E.; Choi, W.S.; Hong, E.K.; Lee, J.; Rhee, M.H.; Park, H.J.; Cho, J.Y. Inhibitory effect of saponin fraction from Codonopsis lanceolata on immune cell-mediated inflammatory responses. Arch. Pharm. Res. 2009, 32, 813–822. [Google Scholar] [CrossRef]
- Hossen, M.J.; Kim, M.Y.; Kim, J.H.; Cho, J.Y. Codonopsis lanceolata: A Review of Its Therapeutic Potentials. Phytother. Res. 2016, 30, 347–356. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
- Kim, E.; Yang, W.S.; Kim, J.H.; Park, J.G.; Kim, H.G.; Ko, J.; Hong, Y.D.; Rho, H.S.; Shin, S.S.; Sung, G.H.; et al. Lancemaside A from Codonopsis lanceolata modulates the inflammatory responses mediated by monocytes and macrophages. Mediat. Inflamm. 2014, 2014, 405158. [Google Scholar] [CrossRef]
- Joh, E.-H.; Lee, I.-A.; Han, S.-J.; Chae, S.; Kim, D.-H. Lancemaside A ameliorates colitis by inhibiting NF-κB activation in TNBS-induced colitis mice. Int. J. Color. Dis. 2010, 25, 545–551. [Google Scholar] [CrossRef]
- Dar, A.A.; Sangwan, P.L.; Khan, I.; Gupta, N.; Qaudri, A.; Tasduq, S.A.; Kitchlu, S.; Kumar, A.; Koul, S. Simultaneous quantification of eight bioactive secondary metabolites from Codonopsis ovata by validated high performance thin layer chromatography and their antioxidant profile. J. Pharm. Biomed. Anal. 2014, 100, 300–308. [Google Scholar] [CrossRef]
- Hu, Q.; Li, X.; Huang, H.; Mu, H.; Tu, P.; Li, G. Phenylpropanoids from the roots of codonopsis cordifolioidea and their biological activities. Bull. Korean Chem. Soc. 2012, 33, 278–280. [Google Scholar] [CrossRef]
- Lee, B.S.; So, H.M.; Kim, S.; Kim, J.K.; Kim, J.C.; Kang, D.M.; Ahn, M.J.; Ko, Y.J.; Kim, K.H. Comparative evaluation of bioactive phytochemicals in Spinacia oleracea cultivated under greenhouse and open field conditions. Arch. Pharm. Res. 2022, 45, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Kim, K.H.; Han, S.H.; Kim, H.-J.; Cho, I.-H.; Lee, S. Structure determination of heishuixiecaoline A from Valeriana fauriei and its content from different cultivated regions by HPLC/PDA Analysis. Nat. Prod. Sci. 2022, 28, 181–186. [Google Scholar] [CrossRef]
- Yu, J.S.; Jeong, S.Y.; Li, C.; Oh, T.; Kwon, M.; Ahn, J.S.; Ko, S.-K.; Ko, Y.-J.; Cao, S.; Kim, K.H. New phenalenone derivatives from the Hawaiian volcanic soil-associated fungus Penicillium herquei FT729 and their inhibitory effects on indoleamine 2,3-dioxygenase 1 (IDO1). Arch. Pharm. Res. 2022, 45, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Lee, B.S.; Yu, J.S.; Kang, H.; Yoo, M.J.; Yi, S.A.; Han, J.-W.; Kim, S.; Kim, J.K.; Kim, J.-C. Identification of anti-adipogenic withanolides from the roots of Indian ginseng (Withania somnifera). J. Ginseng Res. 2022, 46, 357–366. [Google Scholar] [CrossRef]
- Lee, D.E.; Park, K.H.; Hong, J.-H.; Kim, S.H.; Park, K.-M.; Kim, K.H. Anti-osteoporosis effects of triterpenoids from the fruit of sea buckthorn (Hippophae rhamnoides) through the promotion of osteoblast differentiation in mesenchymal stem cells, C3H10T1/2. Arch. Pharm. Res. 2023, 46, 771–781. [Google Scholar] [CrossRef]
- Diem, S.; Bergmann, J.; Herderich, M. Tryptophan-N-glucoside in fruits and fruit juices. J. Agri. Food Chem. 2000, 48, 4913–4917. [Google Scholar] [CrossRef]
- Fabre, S.; Absalon, C.; Pinaud, N.; Venencie, C.; Teissedre, P.-L.; Fouquet, E.; Pianet, I. Isolation, characterization, and determination of a new compound in red wine. Anal. Bioanal. Chem. 2014, 406, 1201–1208. [Google Scholar] [CrossRef]
- Kim, C.S.; Kwon, O.W.; Kim, S.Y.; Choi, S.U.; Kim, J.Y.; Han, J.Y.; Choi, S.I.; Choi, J.G.; Kim, K.H.; Lee, K.R. Phenolic glycosides from the twigs of Salix glandulosa. J. Nat. Prod. 2014, 77, 1955–1961. [Google Scholar] [CrossRef]
- Huo, C.; Nguyen, Q.N.; Alishir, A.; Ra, M.J.; Jung, S.M.; Yu, J.N.; Gwon, H.J.; Kang, K.S.; Kim, K.H. Global Natural Products Social (GNPS)-Based Molecular-Networking-Guided Isolation of Phenolic Compounds from Ginkgo biloba Fruits and the Identification of Estrogenic Phenolic Glycosides. Plants 2023, 12, 3970. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Alishir, A.; Zhang, S.; Zhang, Y.; Choi, S.; Pang, C.; Bae, H.Y.; Jung, W.H.; Kim, K.H. Identification of Obscurolide-Type Metabolites and Antifungal Metabolites from the Termite-Associated Streptomyces neopeptinius BYF101. J. Nat. Prod. 2023, 86, 1891–1900. [Google Scholar] [CrossRef]
- Kang, H.; Lee, D.; Kang, K.S.; Kim, K.H. A New Labdane-Type Diterpene, 6-O-Acetyl-(12R)-epiblumdane, from Stevia rebaudiana Leaves with Insulin Secretion Effect. Biomedicines 2022, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, K.; Yuda, M.; Tanaka, O.; Saruwatari, Y.-i.; Jia, M.-R.; Ling, Y.-K.; Pu, X.-F. Tanghenosides I and II from Chuan-Dangshen, the Root of Codonopsis Tangshen Oliv. Chem. Pharm. Bull. 1988, 36, 2726–2729. [Google Scholar] [CrossRef]
- Yuda, M.; Ohtani, K.; Mizutani, K.; Kasai, R.; Tanaka, O.; Jia, M.-R.; Ling, Y.-R.; Pu, X.-F.; Saruwatari, Y.-I. Neolignan glycosides from roots of Codonopsis tangshen. Phytochemistry 1990, 29, 1989–1993. [Google Scholar] [CrossRef]
- Choi, Y.H.; Kim, H.K.; Linthorst, H.J.; Hollander, J.G.; Lefeber, A.W.; Erkelens, C.; Nuzillard, J.-M.; Verpoorte, R. NMR metabolomics to revisit the tobacco mosaic virus infection in nicotiana t abacum leaves. J. Nat. Prod. 2006, 69, 742–748. [Google Scholar] [CrossRef]
- Uemura, N.; Okamoto, S.; Yamamoto, S.; Matsumura, N.; Yamaguchi, S.; Yamakido, M.; Taniyama, K.; Sasaki, N.; Schlemper, R.J. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 2001, 345, 784–789. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Selgrad, M. Helicobacter pylori. Curr. Opin. Gastroenterol. 2014, 30, 589–595. [Google Scholar] [CrossRef]
- Brown, J.C.; Wang, J.; Kasman, L.; Jiang, X.; Haley-Zitlin, V. Activities of muscadine grape skin and quercetin against Helicobacter pylori infection in mice. J. Appl. Microbiol. 2011, 110, 139–146. [Google Scholar] [CrossRef]
- Seol, M.-K.; Bae, E.-Y.; Cho, Y.-J.; Park, S.-K.; Kim, B.-O. The anti-oxidant and anti-microbial activities of purified syringin from Cortex Fraxini. J. Life Sci. 2020, 30, 695–700. [Google Scholar]
- Butcher, L.D.; den Hartog, G.; Ernst, P.B.; Crowe, S.E. Oxidative stress resulting from Helicobacter pylori infection contributes to gastric carcinogenesis. Cell. Mole. Gastroenterol. Hepatol. 2017, 3, 316–322. [Google Scholar] [CrossRef]
- Kim, J.Y.; Yang, H.S.; Kang, H.; Choe, J.-s.; Hwang, I.G. Chemical composition, antioxidant and anti-inflammatory potential in whole, flesh, and peels of Codonopsis lanceolata roots. J. Korean Soc. Food Sci. Nutr. 2023, 52, 26–39. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Güçlü, K.; Özyürek, M.; Çelik, S.E. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- Tan, H.Y.; Wang, N.; Li, S.; Hong, M.; Wang, X.; Feng, Y. The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases. Oxid. Med. Cell Longev. 2016, 2016, 2795090. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Nakashima, T.; Ueda, T.; Tomii, K.; Kouno, I. Facile discrimination of aldose enantiomers by reversed-phase HPLC. Chem. Pharm. Bull. 2007, 55, 899–901. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, C.S.; Yu, J.S.; Kang, H.; Yoo, M.J.; Youn, U.J.; Ryoo, R.; Bae, H.Y.; Kim, K.H. Ergopyrone, a Styrylpyrone-Fused Steroid with a Hexacyclic 6/5/6/6/6/5 Skeleton from a Mushroom Gymnopilus orientispectabilis. Org. Lett. 2021, 23, 3315–3319. [Google Scholar] [CrossRef]
- Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond DP4: An Improved Probability for the Stereochemical Assignment of Isomeric Compounds using Quantum Chemical Calculations of NMR Shifts. J. Org. Chem. 2015, 80, 12526–12534. [Google Scholar] [CrossRef]
- Na, M.W.; Lee, E.; Kang, D.M.; Jeong, S.Y.; Ryoo, R.; Kim, C.Y.; Ahn, M.J.; Kang, K.B.; Kim, K.H. Identification of Antibacterial Sterols from Korean Wild Mushroom Daedaleopsis confragosa via Bioactivity- and LC-MS/MS Profile-Guided Fractionation. Molecules 2022, 27, 1865. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kang, Y.-A.; Bae, J.-Y. Seasonality of Coumarin Composition and Antioxidant Activities in Daphne jejudoensis. Nat. Prod. Sci. 2023, 29, 146–151. [Google Scholar] [CrossRef]
- Kang, D.M.; Kwon, J.M.; Jeong, W.J.; Jung, Y.J.; Kang, K.K.; Ahn, M.J. Antioxidant Constituents and Activities of the Pulp with Skin of Korean Tomato Cultivars. Molecules 2022, 27, 8741. [Google Scholar] [CrossRef]
- Kang, D.-M.; Kim, H.-J.; Park, W.S.; Bae, J.-Y.; Akter, K.-M.; Kim, Y.-u.; Khalil, A.A.K.; Ahn, M.-J. Antioxidant and Anti-inflammatory Activities of Rumex acetosa. Nat. Prod. Sci. 2023, 29, 330–336. [Google Scholar] [CrossRef]
- Kang, D.M.; Park, W.S.; Kim, H.J.; Jeong, W.J.; Kang, K.K.; Ahn, M.J. Anti-inflammatory constituents of Robinia pseudoacacia root bark. Kor. J. Pharmacogn. 2022, 53, 8–15. [Google Scholar] [CrossRef]
Position | 1 | |
---|---|---|
δH (J in Hz) | δC | |
2 | 7.31, s | 125.4, CH |
3 | 112.7, C | |
4 | 7.59, d (8.0) | 119.9, CH |
5 | 7.06, t (8.0) | 120.7, CH |
6 | 7.15, t (8.0) | 122.8, CH |
7 | 7.50, d (8.0) | 111.4, CH |
8 | 138.3, C | |
9 | 130.2, C | |
10 | 3.24, d (14.0); 3.09, dd (14.0, 7.0) | 31.4, CH2 |
11 | 4.41, br s | 71.9, CH |
12 | 179.1, C | |
1′ | 5.42, d (9.0) | 86.7, CH |
2′ | 3.92, t (9.0) | 73.7, CH |
3′ | 3.60, t (9.0) | 79.0, CH |
4′ | 3.49, t (9.0) | 71.5, CH |
5′ | 3.56, ddd (9.0, 6.0, 2.0) | 80.5, CH |
6′ | 3.70, dd (12.0, 6.0); 3.87, dd (12.0, 2.0) | 62.8, CH2 |
Compound | Inhibition (%) ** |
---|---|
1 | 13.4 ± 0.9 d |
2 | 22.2 ± 1.4 c |
3 | 36.8 ± 0.6 b |
4 | 11.9 ± 0.9 d |
Quercetin * | 38.4 ± 2.3 b |
Metronidazole * | 96.6 ± 0.5 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.R.; Hong, J.-H.; Kang, D.-M.; Ko, Y.-J.; Ahn, M.-J.; Kim, K.H. Deodeokaloid, a New Indole Alkaloid N-Glycoside and Bioactive Phenolic Compounds from the Roots of Codonopsis lanceolata. Plants 2024, 13, 3243. https://doi.org/10.3390/plants13223243
Cho YR, Hong J-H, Kang D-M, Ko Y-J, Ahn M-J, Kim KH. Deodeokaloid, a New Indole Alkaloid N-Glycoside and Bioactive Phenolic Compounds from the Roots of Codonopsis lanceolata. Plants. 2024; 13(22):3243. https://doi.org/10.3390/plants13223243
Chicago/Turabian StyleCho, Yeo Rang, Joo-Hyun Hong, Dong-Min Kang, Yoon-Joo Ko, Mi-Jeong Ahn, and Ki Hyun Kim. 2024. "Deodeokaloid, a New Indole Alkaloid N-Glycoside and Bioactive Phenolic Compounds from the Roots of Codonopsis lanceolata" Plants 13, no. 22: 3243. https://doi.org/10.3390/plants13223243
APA StyleCho, Y. R., Hong, J. -H., Kang, D. -M., Ko, Y. -J., Ahn, M. -J., & Kim, K. H. (2024). Deodeokaloid, a New Indole Alkaloid N-Glycoside and Bioactive Phenolic Compounds from the Roots of Codonopsis lanceolata. Plants, 13(22), 3243. https://doi.org/10.3390/plants13223243