Efficiency of Desiccation, Biomass Production, and Nutrient Accumulation in Zuri and Quênia Guinea Grasses in Integrated Crop–Livestock Systems and Second-Crop Maize
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Area Description
4.2. Experimental Design, Treatments, and Crop Establishment
4.3. Desiccation Efficiency, Biomass Production, Decomposition, and Nutrient Accumulation
4.4. Soybean Establishment in the 2023/2024 Season and Crop Management
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadowski, A.; Wojcieszak-Zbierska, M.M.; Zmyślona, J. Agricultural production in the least developed countries and its impact on emission of greenhouse gases–An energy approach. Land Use Policy 2024, 136, 106968. [Google Scholar] [CrossRef]
- Santos, C.O.; de Siqueira Pinto, A.; dos Santos, M.P.; Alves, B.J.R.; Neto, M.B.R.; Ferreira, L.G. Livestock intensification and environmental sustainability: An analysis based on pasture management scenarios in the Brazilian savanna. J. Environ. Manag. 2024, 355, 120473. [Google Scholar] [CrossRef]
- Oliveira, D.M.; Santos, R.S.; Chizzotti, F.H.; Bretas, I.L.; Franco, A.L.; Lima, R.P.; Cerri, C.E. Crop, livestock, and forestry integration to reconcile soil health, food production, and climate change mitigation in the Brazilian Cerrado: A review. Geoderma Reg. 2024, 37, e00796. [Google Scholar] [CrossRef]
- Leal, V.N.; Santos, D.D.C.; Paim, T.D.P.; Santos, L.P.D.; Alves, E.M.; Claudio, F.L.; Salviano, P.A.P. Economic Results of Forage Species Choice in Crop–Livestock Integrated Systems. Agriculture 2023, 13, 637. [Google Scholar] [CrossRef]
- Silva, J.A.G.; Habermann, E.; de Pinho Costa, K.A.; da Silva, L.M.; da Costa Severiano, E.; Costa, A.C.; Martinez, C.A. Integration crop-livestock system increases the sustainability of soybean cultivation through improved soil health and plant physiology. Agric. Ecosyst. Environ. 2024, 359, 108770. [Google Scholar] [CrossRef]
- Dias, M.B.C.; Costa, K.A.P.; Severiano, E.C.; Bilego, U.; Lourival, V.; Souza, W.F.; Oliveira, I.P.; Silva, A.C.G.C. Cattle performance with Brachiaria and Panicum maximum forages in an integrated crop-livestock system. Afr. J. Range Forage Sci. 2021, 39, 230–243. [Google Scholar] [CrossRef]
- Silva, J.A.G.; Costa, K.A.P.; da Silva, L.M.; Severiano, E.C.; Silva, F.G.; Habermann, E.; de Oliveira, K.J. Integrated systems improve the sustainability of soybean cultivation in the tropical region. Front. Sustain. Food Syst. 2023, 7, 1224530. [Google Scholar] [CrossRef]
- Mello, C.E.; Jakelaitis, A.; Silva, C.H.L.E.; Sousa, G.D.D.; Silva, J.O.D. Glyphosate doses in the suppression of Megathyrsus maximus cv. BRS Quênia intercropped with transgenic maize. Rev. Bras. Eng. Agric. Ambient. 2023, 27, 892–899. [Google Scholar] [CrossRef]
- Muniz, M.P.; Costa, K.A.P.; Severiano, E.C.; Bilego, U.O.; Almeida, D.P.; Furtini Neto, A.E.; Vilela, L.; Lana, M.A.; Leandro, W.M.; Dias, M.B.C. Soybean yield in integrated crop–livestock system in comparison to soybean–maize succession system. J. Agric. Sci. 2021, 159, 188–198. [Google Scholar] [CrossRef]
- Leal, V.N.; do Prado Paim, T.; de Castro Santos, D.; Fernandes, P.B.; dos Santos, L.P.; Souza, B.R.; Alves, E.M. Grazing effect on different forage species in yield of soybean-pasture succession. J. Agric. Food Res. 2024, 15, 101053. [Google Scholar] [CrossRef]
- Alghamdi, R.S.; Cihacek, L. Do post-harvest crop residues in no-till systems provide for nitrogen needs of following crops? Agron. J. 2022, 114, 835–852. [Google Scholar] [CrossRef]
- Lima, J.D.P.; Torino, A.B.; Silva, L.M.; Nascimento Júnior, L.F.; Brito, M.F.; Costa, K.A.P.; Silva, B.M.; Severiano, E. Crop-livestock integration improves physical soil, agronomic and environmental aspects in soybean cultivation. Plants 2023, 12, 3746. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.M.D.; Almeida, R.E.M.D.; Pierozan, C.; Reis, A.F.B.; Souza, L.F.N.; Favarin, J.L. Contribution of corn intercropped with Brachiaria species to nutrient cycling. Pesq. Agropecu. Trop. 2019, 49, e55018. [Google Scholar] [CrossRef]
- Torres, J.L.R.; Júnior, J.M.; Júnior, J.S.; Vieira, D.D.S.; Souza, Z.M.; Assis, R.L.; Lemes, E.M. Soil physical attributes and organic matter accumulation under no-tillage systems in the Cerrado. Soil Res. 2019, 57, 712–718. [Google Scholar] [CrossRef]
- Maia, S.M.F.; Medeiros, A.S.; Santos, T.C.; Lyra, G.B.; Lal, R.; Assad, E.D.; Cerri, C.E.P. Potential of no-till agriculture as a nature-based solution for climate-change mitigation in Brazil. Soil Tillage Res. 2023, 220, 105368. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Hendrickson, J.R. Should we consider integrated crop–livestock systems for ecosystem services, carbon sequestration, and agricultural resilience to climate change? Agron. J. 2024, 116, 415–432. [Google Scholar] [CrossRef]
- Chakraborty, P.; Thotakuri, G.; Singh, N.; Dhaliwal, J.K.; Kumar, S. Crop-livestock integration influenced soil profile organic carbon and hydro-physical properties in converted grasslands to row crops. Soil Tillage Res. 2024, 240, 106093. [Google Scholar] [CrossRef]
- Silva, J.A.G.; Costa, K.A.P.; Severiano, E.C.; Silva, A.G.; Vilela, L.; Leandro, W.M.; Muniz, M.P.; Silva, L.M.; Mendonca, K.T.M.; Barros, V.M. Efficiency of desiccation, decomposition and release of nutrients in the biomass of forage plants of the genus Brachiaria after intercropping with sorghum in integrated systems for soybean productivity. Commun. Soil Sci. Plant Anal. 2024, 55, 1644–1662. [Google Scholar] [CrossRef]
- Dias, M.B.C.; Costa, K.A.P.; Severiano, E.C.; Bilego, U.; Furtini Neto, A.E.; Almeida, D.P.; Brand, S.C.; Lourival, V. Brachiaria and Panicum maximum in an integrated crop-livestock system and a second-crop corn system in succession with soybean. J. Agric. Sci. 2020, 158, 206–217. [Google Scholar] [CrossRef]
- Silva, J.A.G.; Costa, K.A.P.; Silva, L.M.; Carvalho, A.; Severiano, E.C.; Martinez, C.A.; Habermann, E.; Fernandes, P.B.; Bento, J.C.; Marques, B.S. Soybean performance under the biomass of Quênia guinea grass cover crops after intercropping with maize. J. Plant Nutr. 2024, 47, 20. [Google Scholar] [CrossRef]
- Tesk, C.R.; Cavalli, J.; Pina, D.S.; Pereira, D.H.; Pedreira, C.G.; Jank, L.; Sollenberger, L.; Pedreira, B.C. Herbage responses of Tamani and Quênia guinea grasses to grazing intensity. Agron. J. 2020, 112, 2081–2091. [Google Scholar] [CrossRef]
- Cruvinel, A.G.; Gonçalo, T.P.; Moraes, K.L.; Pereira, B.C.S.; Sousa, J.V.A.; Andrade, D.N. Effects of herbicide underdoses on the vegetative development of Panicum maximum cultivars. Científica 2021, 49, 121–127. [Google Scholar] [CrossRef]
- Silva, C.H.; Mello, C.E.; da Silva, J.O.; Jakelaitis, A.; Marques, R.P.; de Sousa, G.D.; da Silva, E.J. Use of glyphosate in the management of Panicum maximum cv. BRS Zuri intercropped with maize. R. Bras. Eng. Agríc. Ambient. 2023, 27, 795. [Google Scholar] [CrossRef]
- Jenkins, M.; Hillhouse, H.; Guretzky, J.A. Herbage mass responses to sod suppression with glyphosate in pastures interseeded with sorghum× sudangrass. Agrosyst. Geosci. Environ. 2024, 7, e20552. [Google Scholar] [CrossRef]
- Almeida, E.M.D.; Montagner, D.B.; Difante, G.S.; Araújo, A.R.; Santana, J.C.S.; Gurgel, A.L.C.; Scariot, C. Growth dynamics and nutrient uptake of Panicum maximum under nitrogen fertilisation. N. Z. J. Agric. Res. 2022, 66, 244–258. [Google Scholar] [CrossRef]
- Valote, P.D.; Carvalho, C.A.B.D.; Freitas, C.A.S.; Morenz, M.J.F.; Paciullo, D.S.C.; Gomide, C.A.M. Forage mass and canopy structure of Zuri and Quênia guinea grasses pasture under rotational stocking. Rev. Bras. Zootec. 2021, 50, e20200225. [Google Scholar] [CrossRef]
- Thapa, V.R.; Ghimire, R.; Vanleeuwen, D.; Acosta-Martínez, V.; Shukla, M. Response of soil organic matter to cover cropping in water-limited environments. Geoderma 2022, 406, 115497. [Google Scholar] [CrossRef]
- Pereira, R.R.; Garcia, I.M.; Modesto, V.C.; Sekiya, B.M.S.; Soares, D.D.A.; Andreotti, M. Soybean performance in succession to the intercropping of corn with marandu grass and pigeonpea in an integrated agricultural production system. Rev. Ceres. 2023, 70, 72–80. [Google Scholar] [CrossRef]
- Miguel, A.S.D.C.S.; Pacheco, L.P.; Carvalho, I.C.D.; Souza, E.D.D.; Feitosa, P.B.; Petter, F.A. Phytomass and nutrient release in soybean cultivation systems under no-tillage. Pesqui. Agropecu. Bras. 2018, 53, 1119–1131. [Google Scholar] [CrossRef]
- Truong, T.H.H.; Marschner, P. Respiration, available N and microbial biomass N in soil amended with mixes of organic materials differing in C/N ratio and decomposition stage. Geoderma 2018, 319, 167–174. [Google Scholar] [CrossRef]
- Vieira, G.H.S.; Silva, A.S.; Jani, A.D.; Prezotti, L.; Monaco, P.A.V.L. Surface residues: Effects on soil moisture and temperature. Rev. Caatinga 2021, 34, 887–894. [Google Scholar] [CrossRef]
- Oliveira Junior, A.; Castro, C.; Pereira, L.R.; Domingos, C.S. Estádios Fenológicos E Marcha De Absorção De Nutrientes Da Soja; Embrapa Soja: Londrina, Brazil, 2016. [Google Scholar]
- Huot, C.; Zhou, Y.; Philp, J.N.; Denton, M.D. Root depth development in tropical perennial forage grasses is related to root angle, root diameter and leaf area. Plant Soil 2020, 456, 145–158. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal, 6th ed.; Artmed: Porto Alegre, Brazil, 2017. [Google Scholar]
- Volf, M.R.; Crusciol, C.A.; Kovar, J.L.; Rosolem, C.A. Unraveling the role of ruzigrass in soil K cycling in tropical cropping systems. Nutr. Cycl. Agroecosyst. 2023, 126, 181–194. [Google Scholar] [CrossRef]
- Wang, X.; Hu, W.; Ning, X.; Wei, W.; Tang, Y.; Gu, Y. Effects of potassium fertilizer and straw on maize yield, potassium utilization efficiency and soil potassium balance. Arch. Agron. Soil Sci. 2022, 69, 679–692. [Google Scholar] [CrossRef]
- Baptistella, J.L.C.; de Andrade, S.A.L.; Favarin, J.L.; Mazzafera, P. Urochloa in tropical agroecosystems. Front. Sustain. Food Syst. 2020, 4, 119. [Google Scholar] [CrossRef]
- Costa, N.R.; Andreotti, M.; Crusciol, C.A.C.; Pariz, C.M.; Bossolani, J.W.; Pascoaloto, I.M.; Lima, C.G.R.; Bonini, C.S.B.; Castilhos, A.M.; Calonego, J.C. Soybean yield and nutrition after tropical forage grasses. Nutr. Cycl. Agroecosyst. 2021, 121, 31–49. [Google Scholar] [CrossRef]
- Gurgel, A.L.C.; Difante, G.D.S.; Araujo, A.R.D.; Montagner, D.B.; Euclides, V.P.B.; Silva, M.G.P. Carbon and nitrogen stocks and soil quality in an area cultivated with guinea grass under the residual effect of nitrogen doses. Sustainability 2020, 12, 9381. [Google Scholar] [CrossRef]
- Koudahe, K.; Simon, L.M.; Obour, A.K.; Allen, S.C.; Djaman, K. Critical review of the impact of cover crops on soil properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- Cavalli, E.; Lange, A.; Cavalli, C.; Behling, M. Decomposition and release of nutrients from crop residues on soybean-maize cropping systems. Rev. Bras. Cienc. Agrar. 2018, 13, 1–8. [Google Scholar] [CrossRef]
- Pires, M.D.F.M.; de Souza, H.A.; Medeiros, J.C.; Dalla Rosa, J.; de Martins, R.V.S.; Sobral, A.H.S.; Sagrilo, E. Nutrient uptake by soybean plants in succession of cover crops in northeast of Brazil. Commun. Soil Sci. Plant Anal. 2023, 54, 945–963. [Google Scholar] [CrossRef]
- Carmello, Q.A.C.; Oliveira, F.A. Nutrição de lavouras de soja: Situação atual e perspectivas. Visão Agrícola 2006, 3, 8–11. [Google Scholar]
- Soares, D.D.A.; Lupatini, G.C.; Sekiya, B.M.S.; Mateus, G.P.; Andrighetto, C.; Modesto, V.C.; Andreotti, M. Integrated Crop–Livestock Systems as a Strategy for the Sustainable Production of Corn and Soybean Grain in Tropical Sandy Soils. Agronomy 2024, 14, 2071. [Google Scholar] [CrossRef]
- He, Z.; Pagliari, P.H.; Waldrip, H.M. Applied and environmental chemistry of animal manure: A review. Pedosphere 2016, 26, 779–816. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Maia, S.M.F.; Damian, J.M.; Cerri, C.E.P. Matéria orgânica do solo em áreas de pastagens no Brasil. In Entendendo a matéria orgânica do solo em ambientes tropicais e subtropicais; Bettiol, W., Silva, C.A., Cerri, C.E.P., Martin-Neto, L., Andrade, C.A., Eds.; Embrapa: Brasília, DF, USA, 2023; pp. 601–625. [Google Scholar]
- Vincent-Caboud, L.; Casagrande, M.; David, C.; Ryan, M.R.; Silva, E.M.; Peigne, J. Using mulch from cover crops to facilitate organic no-till soybean and maize production. A review. Agron. Sustain. Dev. 2019, 39, 1–15. [Google Scholar] [CrossRef]
- Grzebisz, W.; Diatta, J.; Barłóg, P.; Biber, M.; Potarzycki, J.; Łukowiak, R.; Szczepaniak, W. Soil fertility clock—Crop rotation as a paradigm in nitrogen fertilizer productivity control. Plants 2022, 11, 2841. [Google Scholar] [CrossRef]
- Peterson, C.A.; Bell, L.W.; Carvalho, P.C.D.F.; Gaudin, A.C. Resilience of an integrated crop–livestock system to climate change: A simulation analysis of cover crop grazing in southern Brazil. Front. Sustain. Food Syst. 2020, 4, 604099. [Google Scholar] [CrossRef]
- Delandmeter, M.; de Faccio Carvalho, P.C.; Bremm, C.; dos Santos Cargnelutti, C.; Bindelle, J.; Dumont, B. Integrated crop and livestock systems increase both climate change adaptation and mitigation capacities. Sci. Total Environ. 2024, 912, 169061. [Google Scholar] [CrossRef] [PubMed]
- Sentelhas, P.C.; Battisti, R.; Câmara, G.M.D.S.; Farias, J.R.B.; Hampf, A.C.; Nendel, C. The soybean yield gap in Brazil–magnitude, causes and possible solutions for sustainable production. J. Agric. Sci. 2015, 153, 1394–1411. [Google Scholar] [CrossRef]
- Junior, A.A.B.; Debiasi, H.; Franchini, J.C.; de Oliveira, M.A.; Coelho, A.E.; de Moraes, M.T. Soybean yield, seed protein and oil concentration, and soil fertility affected by off-season crops. Eur. J. Agron. 2024, 153, 127039. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Cunha, T.J.F.; Oliveira, J.B. Sistema Brasileiro de Classificação de Solos; Embrapa CNPS: Brasília, Brazil, 2018; 356p. [Google Scholar]
- Gazziero, D.L.P. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas; Sociedade Brasileira da Ciência de Plantas Daninhas, Embrapa Soja: Londrina, Brazil, 1995. [Google Scholar]
- Thomas, R.J.; Asakawa, N.M. Decomposition of leaf litter tropical forage grasses and legumes. Soil Biol. Biochem. 1993, 25, 1351–1361. [Google Scholar] [CrossRef]
- Malavolta, E.; Vitti, G.C.; Oliveira, S.A. Avaliação do estado nutricional de plantas: Princípios e aplicações, 2nd ed.; Potafos: Piracicaba, Brazil, 1997; 319p. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, octave ed.; Iowa State University Press: Ames, IA, USA, 1989. [Google Scholar]
- Paul, E.A.; Clark, F.E. Soil Microbiology and Biochemistry; Academic Press: San Diego, CA, USA, 1989; p. 275. [Google Scholar]
- Ferreira, E.B.; Cavalcanti, P.P.; Nogueira, D.A. ExpDes: An R Package for ANOVA and Experimental Designs. Appl. Math. 2014, 5, 2952. [Google Scholar] [CrossRef]
Cultivation System | Plant Height (cm) | Insertion 1st Pod (cm) | Pod/Plant Number |
---|---|---|---|
Zuri guinea grass | 94.57 | 13.35 | 33.07 |
Quênia guinea grass | 92.25 | 12.70 | 34.11 |
Maize | 89.67 | 11.37 | 33.40 |
SEM | 0.534 | 0.559 | 0.501 |
P-value | 0.109 | 0.111 | 0.118 |
Number of grains/pods | 1000-grain weight(g) | Soybean Yield (kg ha−1) | |
Zuri guinea grass | 2.50 | 204.7 | 4966 |
Quênia guinea grass | 2.63 | 202.4 | 5040 |
Maize | 2.60 | 198.2 | 5106 |
SEM | 0.033 | 3.102 | 69.15 |
P-value | 0.161 | 0.169 | 0.065 |
Variables | CP1 | CP2 |
---|---|---|
Biomass | 0.99 | −0.07 |
CN | −0.95 | −0.02 |
Nitrogen | 0.99 | 0 |
Phosphorous | 0.99 | −0.1 |
Potassium | 0.99 | −0.06 |
Sulfur | 0.99 | 0.01 |
Equivalent N | 0.99 | 0 |
Equivalent P2O5 | 0.99 | −0.1 |
Equivalent K2O | 0.99 | −0.06 |
Productivity | −0.41 | −0.91 |
Eigenvalue | 8.95 | 0.86 |
Variance | 89.53 | 8.62 |
Cumulative variance | 89.53 | 98.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, B.d.S.; Costa, K.A.d.P.; do Nascimento, H.L.B.; Bilego, U.O.; Hara, E.; Tavares, R.L.M.; Cabral, J.S.R.; da Silva, L.M.; Bento, J.C.; de Morais, B.F.; et al. Efficiency of Desiccation, Biomass Production, and Nutrient Accumulation in Zuri and Quênia Guinea Grasses in Integrated Crop–Livestock Systems and Second-Crop Maize. Plants 2024, 13, 3250. https://doi.org/10.3390/plants13223250
Marques BdS, Costa KAdP, do Nascimento HLB, Bilego UO, Hara E, Tavares RLM, Cabral JSR, da Silva LM, Bento JC, de Morais BF, et al. Efficiency of Desiccation, Biomass Production, and Nutrient Accumulation in Zuri and Quênia Guinea Grasses in Integrated Crop–Livestock Systems and Second-Crop Maize. Plants. 2024; 13(22):3250. https://doi.org/10.3390/plants13223250
Chicago/Turabian StyleMarques, Bruno de Souza, Kátia Aparecida de Pinho Costa, Hemython Luís Bandeira do Nascimento, Ubirajara Oliveira Bilego, Eduardo Hara, Rose Luiza Moraes Tavares, Juliana Silva Rodrigues Cabral, Luciana Maria da Silva, José Carlos Bento, Breno Furquim de Morais, and et al. 2024. "Efficiency of Desiccation, Biomass Production, and Nutrient Accumulation in Zuri and Quênia Guinea Grasses in Integrated Crop–Livestock Systems and Second-Crop Maize" Plants 13, no. 22: 3250. https://doi.org/10.3390/plants13223250
APA StyleMarques, B. d. S., Costa, K. A. d. P., do Nascimento, H. L. B., Bilego, U. O., Hara, E., Tavares, R. L. M., Cabral, J. S. R., da Silva, L. M., Bento, J. C., de Morais, B. F., Costa, A. C., & Paim, T. d. P. (2024). Efficiency of Desiccation, Biomass Production, and Nutrient Accumulation in Zuri and Quênia Guinea Grasses in Integrated Crop–Livestock Systems and Second-Crop Maize. Plants, 13(22), 3250. https://doi.org/10.3390/plants13223250