Effects of Sugarcane/Peanut Intercropping on Root Exudates and Rhizosphere Soil Nutrient
Abstract
:1. Introduction
2. Results
2.1. Effects of Sugarcane/Peanut Intercropping on the Organic Acid Content
2.2. Effects of Sugarcane/Peanut Intercropping on the Soluble Sugar Content
2.3. Effects of Sugarcane/Peanut Intercropping on the Amino Acid Content
2.4. Effects of Sugarcane/Peanut Intercropping on the Phenolic Acid Content
2.5. Effects of Sugarcane/Peanut Intercropping on Rhizosphere Soil Enzyme Activity
2.6. Effects of Sugarcane/Peanut Intercropping on Rhizosphere Soil Nutrients
2.7. Effects of Sugarcane/Peanut Intercropping on Root Metabolites
2.8. Correlation Analysis
3. Materials and Methods
3.1. Test Site and Materials
3.2. Experimental Design
3.3. Sample Collection and Determination
3.4. Data Analysis
4. Discussion
4.1. Response of Root Exudates to Sugarcane/Peanut Intercropping
4.2. Response of Rhizosphere Soil Enzyme Activity to Sugarcane/Peanut Intercropping
4.3. Response of Rhizosphere Soil Nutrients to Sugarcane/Peanut Intercropping
4.4. Response of Root Metabolites to Sugarcane/Peanut Intercropping
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, P.; Wang, Y.; Liu, Q.; Zhang, Y.; Li, X.; Li, H.; Li, W. Phase changes of continuous cropping obstacles in strawberry (Fragaria × ananassa Duch.) production. Appl. Soil Ecol. 2020, 155, 103626. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, J.; Zeng, S.; Wu, D.; Jacobs, D.F.; Sloan, J.L. Soil pH, organic matter, and nutrient content change with the continuous cropping of Cunninghamia lanceolata plantations in South China. J. Soils Sediments 2017, 17, 2230–2238. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, J.; Huang, Z.; Wu, H.; Wang, J.; He, L.; Xiong, F.; Zhong, R.; Liu, J.; Han, Z.; et al. Sugarcane/peanut intercropping system improves the soil quality and increases the abundance of beneficial microbes. J. Basic Microbiol. 2021, 61, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Solanki, M.K.; Wang, F.-Y.; Wang, Z.; Li, C.-N.; Lan, T.-J.; Singh, R.K.; Singh, P.; Yang, L.-T.; Li, Y.-R. Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems. J. Soils Sediments 2019, 19, 1911–1927. [Google Scholar] [CrossRef]
- Solanki, M.K.; Wang, Z.; Wang, F.-Y.; Li, C.-N.; Lan, T.-J.; Singh, R.K.; Singh, P.; Yang, L.-T.; Li, Y.-R. Intercropping in Sugarcane Cultivation Influenced the Soil Properties and Enhanced the Diversity of Vital Diazotrophic Bacteria. Sugar Tech 2017, 19, 136–147. [Google Scholar] [CrossRef]
- Javanmard, A.; Amani Machiani, M.; Lithourgidis, A.; Morshedloo, M.R.; Ostadi, A. Intercropping of maize with legumes: A cleaner strategy for improving the quantity and quality of forage. Clean. Eng. Technol. 2020, 1, 100003. [Google Scholar] [CrossRef]
- Dong, Q.; Zhao, X.; Zhou, D.; Liu, Z.; Shi, X.; Yuan, Y.; Jia, P.; Liu, Y.; Song, P.; Wang, X.; et al. Maize and peanut intercropping improves the nitrogen accumulation and yield per plant of maize by promoting the secretion of flavonoids and abundance of Bradyrhizobium in rhizosphere. Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef]
- Song, Y.N.; Zhang, F.S.; Marschner, P.; Fan, F.L.; Gao, H.M.; Bao, X.G.; Sun, J.H.; Li, L. Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biol. Fertil. Soils 2007, 43, 565–574. [Google Scholar] [CrossRef]
- Brooker, R.W.; Karley, A.J.; Newton, A.C.; Pakeman, R.J.; Schöb, C. Facilitation and sustainable agriculture: A mechanistic approach to reconciling crop production and conservation. Funct. Ecol. 2016, 30, 98–107. [Google Scholar] [CrossRef]
- Raza, M.A.; Gul, H.; Wang, J.; Yasin, H.S.; Qin, R.; Bin Khalid, M.H.; Naeem, M.; Feng, L.Y.; Iqbal, N.; Gitari, H.; et al. Land productivity and water use efficiency of maize-soybean strip intercropping systems in semi-arid areas: A case study in Punjab Province, Pakistan. J. Clean. Prod. 2021, 308, 127282. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Yang, F.; Song, C.; Yong, T.; Liu, J.; Zhang, C.; Yang, W. PAR Interception and Utilization in Different Maize and Soybean Intercropping Patterns. PLoS ONE 2017, 12, e0169218. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Fallah, N.; Weng, P.; Zhou, Y.; Tang, X.; Tayyab, M.; Liu, Y.; Liu, Q.; Xiao, Y.; Hu, C.; et al. Sugarcane–Peanut Intercropping System Enhances Bacteria Abundance, Diversity, and Sugarcane Parameters in Rhizospheric and Bulk Soils. Front. Microbiol. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Duchene, O.; Vian, J.-F.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Badri, D.V.; Vivanco, J.M. Regulation and function of root exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, Z.; Wang, C.; Zhong, Z. Effects of intercropping with persimmon on the rhizosphere environment of tea. Front. Biol. China 2006, 1, 407–410. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.; Li, J.; Wu, X.; Long, Y.; Su, Y. Intercropping Vicia sativa L. Improves the Moisture, Microbial Community, Enzyme Activity and Nutrient in Rhizosphere Soils of Young Kiwifruit Plants and Enhances Plant Growth. Horticulturae 2021, 7, 335. [Google Scholar] [CrossRef]
- Tang, X.M.; Meng, X.Z.; Jiang, J.; Hang, Z.P.; Wu, H.N.; Liu, J.; He, L.Q.; Xiong, F.Q.; Zhong, R.C.; Han, Z.Q.; et al. Effects of intercropping peanut on soil microecology in different topsoil layers. Chin. J. Oil Crops 2020, 42, 713–722. [Google Scholar]
- Zhang, J.E.; Gao, A.X.; Xu, H.Q.; Luo, M.Z. Effects of maize/peanut intercropping on soil microorganisms and soil nutrient status. Chin. J. Appl. Ecol. 2009, 20, 1597–1602. [Google Scholar]
- Zhang, D.; Lyu, Y.; Li, H.; Tang, X.; Hu, R.; Rengel, Z.; Zhang, F.; Whalley, W.R.; Davies, W.J.; Cahill, J.F., Jr.; et al. Neighbouring plants modify maize root foraging for phosphorus: Coupling nutrients and neighbours for improved nutrient-use efficiency. New Phytol. 2020, 226, 244–253. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.-Y.; Wu, H.-M.; Zhang, F.-F.; Li, C.-J.; Li, X.-X.; Lambers, H.; Li, L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc. Natl. Acad. Sci. USA 2016, 113, 6496–6501. [Google Scholar] [CrossRef]
- Tian, Z.M.; Qin, F.L.; Wang, B. Comparative study on collection methods of root exudates from Lupine alba. J. Northwest AF Univ. (Nat. Sci.Ed.) 2003, 4, 154–158. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Tan, G.R.; Huang, Y.J. Experimental Techniques in Plant Physiology; Liaoning Science and Technology Press: Shenyang, China, 1989; pp. 56–57. [Google Scholar]
- Wen, S.J. Experimental Guidance of Basic Biochemistry; Shanxi Science and Technology Press: Beijing, China, 1994. [Google Scholar]
- Zhang, Z.L.; Qu, W.J. Experimental Supervision of Plant Physiology; Higher Education Press: Beijing, China, 2003; pp. 127–128. [Google Scholar]
- Cao, W.; Su, Z.R. Determination of total phenolic acids in honey by Folin-Ciocalteu colorimetry. Food Ferment. Ind. 2003, 12, 80–82. [Google Scholar]
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Guan, S.Y. Soil Enzymes and Their Research Methods; Agriculture Press: Beijing, China, 1986. [Google Scholar]
- Xiao, J.X.; Zheng, Y.; Tang, L. Effect of wheat-broad bean intercropping on root secretion of low molecular weight organic acids. Chin. J. Appl. Ecol. 2014, 25, 1739–1744. [Google Scholar]
- Xiao, J.X.; Zheng, Y.; Tang, L.; Dong, Y. Effects of wheat-broad bean intercropping on root secretion of sugars and amino acids. J. Ecol. Environ. 2015, 24, 1825–1830. [Google Scholar]
- Qiu, J.M.; Wu, H.N.; Huang, Z.P.; He, L.Q.; Li, Z.; Zhong, R.C.; Han, Z.Q.; Jiang, J.; Li, B.; Tang, X.M.; et al. Effects of sugarcane/peanut intercropping on root physiology and rhizosphere soil nu-trients. Chin. J. Oil Crops 2024, 46, 889–896. [Google Scholar]
- Liu, P.; Zhao, H.J.; Tang, Z.H.; Zhang, Y.F.; Lin, H.T.; Shen, Y.W.; Wang, J.T.; Wang, S.B. Effects of continuous cropping on root exudates and allelopathic substances in soil of dif-ferent resistant peanut varieties. Chin. J. Oil Crops 2015, 37, 467–474. [Google Scholar]
- Leitão, A.L.; Duarte, M.P.; Oliveira, J.S. Degradation of phenol by a halotolerant strain of Penicillium chrysogenum. Int. Biodeterior. Biodegrad. 2007, 59, 220–225. [Google Scholar] [CrossRef]
- Ma, Y.; Fu, S.; Zhang, X.; Zhao, K.; Chen, H.Y.H. Intercropping improves soil nutrient availability, soil enzyme activity and tea quantity and quality. Appl. Soil Ecol. 2017, 119, 171–178. [Google Scholar] [CrossRef]
- Cuartero, J.; Pascual, J.A.; Vivo, J.-M.; Özbolat, O.; Sánchez-Navarro, V.; Egea-Cortines, M.; Zornoza, R.; Mena, M.M.; Garcia, E.; Ros, M. A first-year melon/cowpea intercropping system improves soil nutrients and changes the soil microbial community. Agric. Ecosyst. Environ. 2022, 328, 107856. [Google Scholar] [CrossRef]
- Curtright, A.J.; Tiemann, L.K. Intercropping increases soil extracellular enzyme activity: A meta-analysis. Agric. Ecosyst. Environ. 2021, 319, 107489. [Google Scholar] [CrossRef]
- Bai, Y.-C.; Li, B.-X.; Xu, C.-Y.; Raza, M.; Wang, Q.; Wang, Q.-Z.; Fu, Y.-N.; Hu, J.-Y.; Imoulan, A.; Hussain, M.; et al. Intercropping Walnut and Tea: Effects on Soil Nutrients, Enzyme Activity, and Microbial Communities. Front. Microbiol. 2022, 13, 852342. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.B.; Hu, F.C.; Zhao, Y.; Wang, X.H.; Chen, Z.; Zhang, S.Q.; Wu, F.Z.; Fan, H.Y. Effects of intercropping of Pinto peanut on soil physicochemical properties, enzyme activi-ties, bacterial community structure and diversity in litchi orchard. Soil Fertil. Sci. China 2022, 05, 203–210. [Google Scholar]
- Yin, T.G.; Dou, X.L.; Liu, J.J.; Li, Y.Z. Effects of different land use types on soil organic matter, nutrients and enzyme activities in Lanzhou New District. Soil Fertil. Sci. China 2019, 32–37. [Google Scholar]
- Fu, Z.; Zhou, L.; Chen, P.; Du, Q.; Pang, T.; Song, C.; Wang, X.; Liu, W.; Yang, W.; Yong, T. Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community. J. Integr. Agric. 2019, 18, 2006–2018. [Google Scholar] [CrossRef]
- Qin, C.X.; Peng, C.; Guo, Q.; Ma, W.Q.; Chen, H.S.; Mo, Z.M.; Wei, C.Z.; Nong, Y.Q.; Qin, X.M. Effects of sugarcane peanut intercropping on available phosphorus and pH values of red soil. Jiangsu Agric. Sci. 2019, 47, 137–140. [Google Scholar]
- Jiang, D.D.; Zhou, L.R.; Yi, H.T.; Dai, J.J. Effects of different planting methods of soybean and maize on soil enzyme activity and soil inorganic nitrogen content. Anhui Agric. Sci. 2012, 40, 7115–7118. [Google Scholar]
- Dong, J.; Shen, X.; Li, Q.; Xue, Z.; Hou, X.; Miao, H.; Ning, H. Irrigation and Fertilization Scheduling for Peanut Cultivation under Mulched Drip Irrigation in a Desert–Oasis Area. Plants 2024, 13, 144. [Google Scholar] [CrossRef]
- Wu, H.; Huang, Z.; Tang, X.; Xiong, F.; Jiang, J.; Zhong, R.; Han, Z.; Liu, J.; He, L.; Tang, R. Effects of different nitrogen, phosphorus and potassium combined ap-plication on nutrient absorption and yield benefit of peanut under sugarcane and peanut intercropping. Chin. J. Oil Crops 2023, 45, 155–163. (In Chinese) [Google Scholar] [CrossRef]
- Latati, M.; Blavet, D.; Alkama, N.; Laoufi, H.; Drevon, J.J.; Gérard, F.; Pansu, M.; Ounane, S.M. The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil. Plant Soil 2014, 385, 181–191. [Google Scholar] [CrossRef]
- Lu, W.; Shen, X.; Chen, Y. Effects of Intercropping Peanut on Soil Nutrient Status and Microbial Activity within Young Camellia oleifera Plantation. Commun. Soil Sci. Plant Anal. 2019, 50, 1232–1238. [Google Scholar] [CrossRef]
- Manna, M.C.; Singh, M.V. Long-term effects of intercropping and bio-litter recycling on soil biological activity and fertility status of sub-tropical soils. Bioresour. Technol. 2001, 76, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Nyawade, S.O.; Karanja, N.N.; Gachene, C.K.K.; Gitari, H.I.; Schulte-Geldermann, E.; Parker, M.L. Short-term dynamics of soil organic matter fractions and microbial activity in smallholder potato-legume intercropping systems. Appl. Soil Ecol. 2019, 142, 123–135. [Google Scholar] [CrossRef]
- Römheld, V.; Kirkby, E.A. Research on potassium in agriculture: Needs and prospects. Plant Soil 2010, 335, 155–180. [Google Scholar] [CrossRef]
- Zhao, D.; Oosterhuis, D.M.; Bednarz, C.W. Influence of Potassium Deficiency on Photosynthesis, Chlorophyll Content, and Chloroplast Ultrastructure of Cotton Plants. Photosynthetica 2001, 39, 103–109. [Google Scholar] [CrossRef]
- Zhang, D.S.; Wang, Y.Y.; Tang, L.; Zheng, Y.; Zuo, J.H. Effect of wheat and broad bean intercropping on available phosphorus in red soil and its relationship with rhizosphere pH value. Plant Nutr. Fertil. J. 2013, 19, 127–133. [Google Scholar] [CrossRef]
- Tang, C.; Yu, Q. Impact of chemical composition of legume residues and initial soil pH on pH change of a soil after residue incorporation. Plant Soil 1999, 215, 29–38. [Google Scholar] [CrossRef]
- Chia, D.W.; Yoder, T.J.; Reiter, W.-D.; Gibson, S.I. Fumaric acid: An overlooked form of fixed carbon in Arabidopsis and other plant species. Planta 2000, 211, 743–751. [Google Scholar] [CrossRef]
- Drake, J.E.; Darby, B.A.; Giasson, M.-A.; Kramer, M.A.; Phillips, R.P.; Finzi, A.C. Stoichiometry constrains microbial response to root exudation- insights from a model and a field experiment in a temperate forest. Biogeosciences 2013, 10, 821–838. [Google Scholar] [CrossRef]
- Meier, I.C.; Finzi, A.C.; Phillips, R.P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol. Biochem. 2017, 106, 119–128. [Google Scholar] [CrossRef]
- Li, L.; Li, S.-M.; Sun, J.-H.; Zhou, L.-L.; Bao, X.-G.; Zhang, H.-G.; Zhang, F.-S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl. Acad. Sci. USA 2007, 104, 11192–11196. [Google Scholar] [CrossRef]
- Zhu, D.D.; Wang, J.; Cong, R.H.; Li, X.K. Effect of low molecular weight organic acids on potassium release and kinetic model of potassium-containing minerals. Chin. J. Ecol. 2017, 36, 2910–2916. [Google Scholar]
- Cao, X.C.; Wu, L.Y.; Chen, X.Y.; Han, K.F. Effects of partial replacing of NO-3-N with amino acids on yield, quality and root secretion of pakchoi (Brassica chinensis L.). Plant Nutr. Fertil. Sci. 2012, 18, 699–705. [Google Scholar]
- Cao, X.C.; Wu, L.Y.; Ma, Q.X.; Jin, Q.Y. Advances in studies of absorption and utilization of amino acids by plants: A review. J. Appl. Ecol. 2015, 26, 919–929. [Google Scholar]
Treatment | Stage | Protease (mg·g−1) | Acid Phosphatase (mg·g−1) | Urease (mg·g−1) | Catalase (mg·g−1) | Catalase (mg·g−1) |
---|---|---|---|---|---|---|
MP | Seedling stage | 0.78 ± 0.12 abcd | 190.95 ± 6.53 b | 3.79 ± 0.6 bcdef | 75.53 ± 6.22 ef | 9.94 ± 2.93 b |
Flowering-pegging stage | 0.63 ± 0.06 efg | 132.53 ± 11.31 efgh | 3.85 ± 0.29 bcdef | 87.39 ± 6.49 de | 2.21 ± 1.33 f | |
Podding stage | 0.72 ± 0.05 bcdef | 128.25 ± 18.63 ghi | 4.41 ± 0.22 abcd | 72.4 ± 11.9 f | 6.81 ± 0.91 cd | |
Pod-filling stage | 0.74 ± 0.04 bcde | 121.13 ± 6.53 hi | 2.73 ± 0.6 f | 77.54 ± 7.21 ef | 5.87 ± 2.6 cd | |
IP | Seedling stage | 0.87 ± 0.07 a | 188.1 ± 8.55 bc | 3.6 ± 0.43 cdef | 95.51 ± 3.76 abcd | 2.11 ± 0.9 f |
Flowering-pegging stage | 0.68 ± 0.05 cdef | 128.25 ± 11.31 ghi | 4.66 ± 1.04 abcd | 100.14 ± 6.72 abcd | 1.61 ± 0.58 f | |
Podding stage | 0.71 ± 0.05 bcdef | 149.63 ± 12.83 ef | 3.29 ± 0.43 def | 95.29 ± 4.37 abcd | 6.77 ± 2.68 cd | |
Pod-filling stage | 0.61 ± 0.03 fg | 128.25 ± 17.1 ghi | 4.29 ± 0.56 abcd | 102 ± 3.38 abc | 0.89 ± 0.43 f | |
MS | Seedling stage | 0.63 ± 0.02 efg | 209.48 ± 8.55 a | 4.04 ± 0.29 bcdef | 98.42 ± 3.66 abcd | 6.62 ± 0.75 cd |
Flowering-pegging stage | 0.75 ± 0.1 bcd | 173.14 ± 6.41 cd | 5.48 ± 0.71 a | 107.97 ± 0.34 a | 5.64 ± 1.98 cde | |
Podding stage | 0.81 ± 0.07 ab | 114 ± 4.94 i | 4.1 ± 0.94 b cde | 101.85 ± 2.11 abc | 8.1 ± 1.35 bc | |
Pod-filling stage | 0.77 ± 0.06 abcd | 138.23 ± 2.47 fgh | 4.85 ± 0.99 abc | 106.33 ± 1.37 ab | 2.29 ± 0.59 f | |
IS | Seedling stage | 0.72 ± 0.04 bcdef | 218.03 ± 4.28 a | 2.91 ± 0.39 ef | 89.92 ± 5.26 cd | 2.75 ± 2.56 ef |
Flowering-pegging stage | 0.65 ± 0.03 defg | 162.45 ± 8.55 de | 3.48 ± 0.6 cdef | 96.18 ± 5.5 abcd | 3.92 ± 0.62 def | |
Podding stage | 0.56 ± 0.07 g | 116.85 ± 6.53 i | 3.79 ± 1.03 b cdef | 90.97 ± 15.05 cd | 16.85 ± 1.27 a | |
Pod-filling stage | 0.63 ± 0.06 efg | 145.35 ± 8.55 efg | 5.1 ± 1.15 ab | 93.87 ± 10.03 bcd | 3.95 ± 0.32 def |
Treatment | Stage | TN (g·kg−1) | TP (g·kg−1) | TK (g·kg−1) | AN (mg·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) | SOM (g·kg−1) | pH |
---|---|---|---|---|---|---|---|---|---|
MP | Seedling stage | 1.42 ± 0.11 cde | 1.01 ± 0.05 h | 199 ± 7.5 g | 19.83 ± 4.55 g | 24.58 ± 0.23 cde | 61.3 ± 25.56 bc | 135.02 ± 34.84 cdef | 7.52 ± 0.09 g |
Flowering-pegging stage | 1.34 ± 0.69 cde | 0.57 ± 0.03 k | 211.5 ± 8.66 fg | 75.83 ± 13.25 cde | 23.47 ± 0.32 efg | 55.3 ± 21.34 c | 74.34 ± 20.65 fg | 7.82 ± 0.21 de | |
Podding stage | 0.24 ± 0.15 e | 1.37 ± 0.02 c | 199 ± 15 g | 57.63 ± 1.76 def | 23.85 ± 0.91 def | 55.8 ± 12.49 c | 66.75 ± 26.38 gh | 7.78 ± 0.11 e | |
Pod-filling stage | 1.31 ± 1.35 cde | 0.89 ± 0.05 i | 226.5 ± 8.66 cdef | 64.63 ± 16.95 def | 24.72 ± 0.38 cde | 43.8 ± 18.33 c | 12.52 ± 1.14 h | 7.85 ± 0.07 cde | |
IP | Seedling stage | 1.42 ± 0.06 cde | 1.05 ± 0.02 gh | 214 ± 7.5 efg | 11.9 ± 1.21 g | 24.62 ± 0.18 cde | 80.3 ± 16.9 abcd | 172.95 ± 48.65 abcd | 7.57 ± 0.07 fg |
Flowering-pegging stage | 3.56 ± 0.73 a | 0.9 ± 0.05 i | 274 ± 7.5 a | 65.33 ± 16.17 def | 23.63 ± 0.14 ef | 114.05 ± 6.75 a | 157.02 ± 19.84 abcde | 8.09 ± 0.06 ab | |
Podding stage | 0.6 ± 0.32 de | 1.6 ± 0.04 b | 234 ± 18.87 cde | 110.83 ± 14.15 b | 23.27 ± 0.42 fg | 115.55 ± 6.75 a | 103.16 ± 53.68 defg | 7.92 ± 0.1 abcde | |
Pod-filling stage | 0.97 ± 0.66 cde | 1.25 ± 0.04 d | 259 ± 7.5 ab | 52.03 ± 10.53 f | 24.73 ± 0.4 cde | 102.8 ± 35.27 a | 88.75 ± 34.36 fg | 8.11 ± 0.16 a | |
MS | Seedling stage | 1.32 ± 0.07 cde | 1.09 ± 0.01 fg | 199 ± 0 g | 10.03 ± 0.81 g | 25.02 ± 0.18 cd | 105.3 ± 16.04 a | 137.3 ± 28.09 bcdef | 7.19 ± 0.05 h |
Flowering-pegging stage | 0.67 ± 0.28 de | 0.86 ± 0.05 i | 246.5 ± 11.46 bc | 48.3 ± 4.59 f | 22.38 ± 0.43 gh | 54.8 ± 12 c | 128.2 ± 34.08 cdefg | 7.75 ± 0.1 ef | |
Podding stage | 1.86 ± 1.57 bcd | 1.14 ± 0.03 ef | 236.5 ± 19.84 cd | 94.03 ± 13.9 bc | 24.17 ± 0.13 cdef | 101.8 ± 28.71 a | 155.5 ± 36.29 abcde | 7.91 ± 0.03 bcde | |
Pod-filling stage | 0.5 ± 0.03 de | 2.07 ± 0.02 a | 224 ± 8.66 d ef | 79.33 ± 10.69 cd | 26.2 ± 0.77 ab | 113.3 ± 15.22 a | 200.87 ± 35.94 ab | 7.98 ± 0.04 abcd | |
IS | Seedling stage | 1.43 ± 0.01 cde | 0.72 ± 0.03 j | 201.5 ± 4.33 g | 10.97 ± 1.62 g | 25.38 ± 0.26 bc | 102.8 ± 30.11 a | 213.16 ± 37.55 a | 7.5 ± 0.01 g |
Flowering-pegging stage | 2.19 ± 1.38 bc | 1.1 ± 0.04 fg | 261.5 ± 18.87 ab | 57.63 ± 13.76 def | 21.8 ± 1.26 h | 80.3 ± 19.62 abcd | 113.78 ± 31.86 cdefg | 7.85 ± 0.05 cde | |
Podding stage | 3 ± 0.33 ab | 1.25 ± 0.03 d | 239 ± 4.33 cd | 147 ± 24.25 a | 23.57 ± 0.26 efg | 98.8 ± 25.16 ab | 97.1 ± 28.45 efg | 7.74 ± 0.21 ef | |
Pod-filling stage | 0.56 ± 0.07 de | 1.19 ± 0.02 e | 219 ± 4.33 defg | 103.13 ± 24.66 b | 26.65 ± 1.78 a | 107.3 ± 22.1 a | 163.09 ± 41.16 abcd | 8.04 ± 0.07 abc |
TP | AP | TN | AN | TK | AP | SOM | pH | ||
---|---|---|---|---|---|---|---|---|---|
Root extract | organic acid | −0.224 | 0.292 * | −0.048 | −0.721 ** | −0.597 ** | −0.027 | 0.341 * | −0.800 ** |
soluble sugar | 0.203 | 0.478 ** | −0.406 ** | −0.093 | −0.378 ** | −0.16 | −0.109 | 0.175 | |
phenolic acid | 0.024 | 0.1 | −0.243 | −0.011 | −0.044 | −0.227 | −0.245 | 0.241 | |
Amino acids | 0.052 | −0.14 | 0.441 ** | 0.540 ** | 0.12 | −0.007 | −0.226 | 0.109 | |
Root exudates | organic acids | −0.239 | 0.237 | 0.007 | −0.734 ** | −0.440 ** | −0.021 | 0.349 * | −0.674 ** |
soluble sugars | 0.252 | 0.470 ** | −0.315 * | 0.362 * | −0.129 | −0.12 | −0.257 | 0.416 ** | |
phenolic acid | 0.153 | 0.223 | −0.251 | 0.075 | 0.268 | 0.03 | −0.313 * | 0.438 ** | |
amino acids | 0.079 | 0.307 * | −0.192 | 0.091 | 0.244 | −0.119 | −0.362 * | 0.431 ** | |
protease | 0.065 | 0.045 | −0.192 | −0.351 * | −0.211 | −0.126 | 0.16 | −0.079 | |
Acid phosphatase | −0.249 | 0.123 | −0.103 | −0.740 ** | −0.442 ** | −0.001 | 0.456 ** | −0.705 ** | |
urease | 0.2 | 0.036 | −0.062 | 0.106 | 0.224 | 0.126 | 0.243 | 0.157 | |
catalase | 0.225 | 0 | 0.086 | 0.025 | 0.487 ** | 0.458 ** | 0.481 ** | 0.255 | |
sucrase | 0.098 | −0.173 | 0.131 | 0.409 ** | −0.145 | −0.072 | −0.24 | −0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Liao, L.; Wu, H.; Xiong, J.; Li, Z.; Huang, Z.; He, L.; Jiang, J.; Zhong, R.; Han, Z.; et al. Effects of Sugarcane/Peanut Intercropping on Root Exudates and Rhizosphere Soil Nutrient. Plants 2024, 13, 3257. https://doi.org/10.3390/plants13223257
Tang X, Liao L, Wu H, Xiong J, Li Z, Huang Z, He L, Jiang J, Zhong R, Han Z, et al. Effects of Sugarcane/Peanut Intercropping on Root Exudates and Rhizosphere Soil Nutrient. Plants. 2024; 13(22):3257. https://doi.org/10.3390/plants13223257
Chicago/Turabian StyleTang, Xiumei, Lulu Liao, Haining Wu, Jun Xiong, Zhong Li, Zhipeng Huang, Liangqiong He, Jing Jiang, Ruichun Zhong, Zhuqiang Han, and et al. 2024. "Effects of Sugarcane/Peanut Intercropping on Root Exudates and Rhizosphere Soil Nutrient" Plants 13, no. 22: 3257. https://doi.org/10.3390/plants13223257
APA StyleTang, X., Liao, L., Wu, H., Xiong, J., Li, Z., Huang, Z., He, L., Jiang, J., Zhong, R., Han, Z., & Tang, R. (2024). Effects of Sugarcane/Peanut Intercropping on Root Exudates and Rhizosphere Soil Nutrient. Plants, 13(22), 3257. https://doi.org/10.3390/plants13223257