Phytochemical, Antioxidant, Antimicrobial and Safety Profile of Glycyrrhiza glabra L. Extract Obtained from Romania
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Profile of the G. glabra Extract
2.2. Total Polyphenolic Content and Radical Scavenging Activity of the Licorice Root Extract
2.3. Antibacterial Activity
2.4. Metal Content of the G. glabra Extract
2.5. Irritative Potential Evaluation Using the HET-CAM Assay
3. Discussion
3.1. HPLC Profiling
3.2. Total Phenolic Content and Radical Scavenging Activity of the Licorice Root Extract
3.3. Antimicrobial Activity
3.4. Heavy Metals
3.5. HET-CAM Irritation
4. Materials and Methods
4.1. Plant Material and Preparation of Licorice Root Extract
4.2. HPLC-DAD-ESI+ Determination of Phytocompounds
4.2.1. Sample Preparation
4.2.2. Chromatographic Conditions
4.2.3. Chemical Reagents and Materials
4.3. Total Phenolic Content Determination
4.4. Free Radical Scavenging Capacity Using the DPPH Assay
4.5. Antimicrobial Activity Assay
4.6. Metal Analysis by Atomic Absorption Spectroscopy (AAS)
4.7. Irritative Potential Using the HET-CAM Assay
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Heinrich, M.; Anagnostou, S. From Pharmacognosia to DNA-Based Medicinal Plant Authentication—Pharmacognosy through the Centuries. Planta Med. 2017, 83, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Khan, M.S.; Ahmad, I. Herbal Medicine: Current Trends and Future Prospects. In New Look to Phytomedicine: Advancements in Herbal Products as Novel Drug Leads; Academic Press: Cambridge, MA, USA, 2019; pp. 3–13. [Google Scholar] [CrossRef]
- Global Herbal Medicines Industry. Available online: https://www.reportlinker.com/p06031785/Global-Herbal-Medicines-Industry.html?utm_source=GNW (accessed on 21 April 2024).
- WHO. Global Centre for Traditional Medicine. Available online: https://www.who.int/initiatives/who-global-centre-for-traditional-medicine (accessed on 5 January 2024).
- Fiore, C.; Eisenhut, M.; Ragazzi, E.; Zanchin, G.; Armanini, D. A History of the Therapeutic Use of Liquorice in Europe. J. Ethnopharmacol. 2005, 99, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Wahab, S.; Annadurai, S.; Abullais, S.S.; Das, G.; Ahmad, W.; Ahmad, M.F.; Kandasamy, G.; Vasudevan, R.; Ali, M.S.; Amir, M. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. Plants 2021, 10, 2751. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Pandey, S. Phytochemical Screening and Determination of Anti-Bacterial and Anti-Oxidant Potential of Glycyrrhiza glabra Root Extracts. J. Environ. Res. Dev. 2013, 7, 1552–1558. [Google Scholar]
- Rozi, P.; Abuduwaili, A.; Ma, S.; Bao, X.; Xu, H.; Zhu, J.; Yadikar, N.; Wang, J.; Yang, X.; Yili, A. Isolations, Characterizations and Bioactivities of Polysaccharides from the Seeds of Three Species Glycyrrhiza. Int. J. Biol. Macromol. 2020, 145, 364–371. [Google Scholar] [CrossRef]
- Simayi, Z.; Rozi, P.; Yang, X.; Ababaikeri, G.; Maimaitituoheti, W.; Bao, X.; Ma, S.; Askar, G.; Yadikar, N. Isolation, Structural Characterization, Biological Activity, and Application of Glycyrrhiza Polysaccharides: Systematic Review. Int. J. Biol. Macromol. 2021, 183, 387–398. [Google Scholar] [CrossRef]
- Bhusal, S.; Sharma, K.R. Evaluation of Antioxidant and Antibacterial Activity of Glycyrrhiza glabra Root Extracts. Asian J. Pharm. Clin. Res. 2020, 13, 166–170. [Google Scholar] [CrossRef]
- Chopra, P.K.P.G.; Gaitry Chopra, P.K.P.; Saraf, B.D.; Inam, F.; Deo, S.S. Antimicrobial and Antioxidant Activities of Methanol Extract Roots of Glycyrrhiza glabra and HPLC Analysis. Int. J. Pharm. Pharm. Sci. 2013, 5, 157–160. [Google Scholar]
- Gupta, V.K.; Fatima, A.; Faridi, U.; Negi, A.S.; Shanker, K.; Kumar, J.K.; Rahuja, N.; Luqman, S.; Sisodia, B.S.; Saikia, D.; et al. Antimicrobial Potential of Glycyrrhiza glabra Roots. J. Ethnopharmacol. 2008, 116, 377–380. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, Y.; Zhang, Z.; Hou, J.; Tian, S.; Liu, Y. The Anti-Diabetic Activity of Licorice, a Widely Used Chinese Herb. J. Ethnopharmacol. 2020, 263, 113216. [Google Scholar] [CrossRef]
- Sharma, V.; Katiyar, A.; Agrawal, R.C.; Sharma, V.; Katiyar, A. Glycyrrhiza glabra: Chemistry and Pharmacological Activity. In Sweeteners; Springer Nature: Berlin/Heidelberg, Germany, 2018; pp. 87–100. [Google Scholar] [CrossRef]
- Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M.B.P.P. Liquorice (Glycyrrhiza glabra): A Phytochemical and Pharmacological Review. Phytother. Res. 2018, 32, 2323–2339. [Google Scholar] [CrossRef] [PubMed]
- Speciale, A.; Muscarà, C.; Molonia, M.S.; Cristani, M.; Cimino, F.; Saija, A. Recent Advances in Glycyrrhetinic Acid-Functionalized Biomaterials for Liver Cancer-Targeting Therapy. Molecules 2022, 27, 1775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ye, M. Chemical Analysis of the Chinese Herbal Medicine Gan-Cao (Licorice). J. Chromatogr. A 2009, 1216, 1954–1969. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.; Zhang, T.; Wang, Z.; Li, G.; Zhao, W.; Lv, X.; Zhuang, L. Differences in the Endophytic Fungal Community and Effective Ingredients in Root of Three Glycyrrhiza Species in Xinjiang, China. PeerJ 2021, 9, e11047. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, A.; Kalinowska-Lis, U. 18β-Glycyrrhetinic Acid: Its Core Biological Properties and Dermatological Applications. Int. J. Cosmet. Sci. 2019, 41, 325–331. [Google Scholar] [CrossRef]
- Shou, Q.; Jiao, P.; Hong, M.; Jia, Q.; Prakash, I.; Hong, S.; Wang, B.; Bechman, A.; Ma, G. Triterpenoid Saponins from the Roots of Glycyrrhiza glabra. Nat. Prod. Commun. 2019, 14, 19–22. [Google Scholar] [CrossRef]
- Schmid, C.; Dawid, C.; Peters, V.; Hofmann, T. Saponins from European Licorice Roots (Glycyrrhiza glabra). J. Nat. Prod. 2018, 81, 1734–1744. [Google Scholar] [CrossRef]
- Tao, W.; Duan, J.; Zhao, R.; Li, X.; Yan, H.; Li, J.; Guo, S.; Yang, N.; Tang, Y. Comparison of Three Officinal Chinese Pharmacopoeia Species of Glycyrrhiza Based on Separation and Quantification of Triterpene Saponins and Chemometrics Analysis. Food Chem. 2013, 141, 1681–1689. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and Nutritional Antioxidants in Human Diseases. Front. Physiol. 2018, 9, 360203. [Google Scholar] [CrossRef]
- Bardaweel, S.K.; Gul, M.; Alzweiri, M.; Ishaqat, A.; Alsalamat, H.A.; Bashatwah, R.M. Reactive Oxygen Species: The Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian J. Med. 2018, 50, 193. [Google Scholar] [CrossRef] [PubMed]
- Chandra, H.J.; Gunasekaran, H. Screening Phytochemical, Antimicrobial G.Glabra. J. Environ. Biol. 2017, 38, 161–165. [Google Scholar] [CrossRef]
- Astaf’eva, O.V.; Sukhenko, L.T. Comparative Analysis of Antibacterial Properties and Chemical Composition of Glycyrrhiza glabra L. from Astrakhan Region (Russia) and Calabria Region (Italy). Bull. Exp. Biol. Med. 2014, 156, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Quintana, S.E.; Cueva, C.; Villanueva-Bermejo, D.; Moreno-Arribas, M.V.; Fornari, T.; García-Risco, M.R. Antioxidant and Antimicrobial Assessment of Licorice Supercritical Extracts. Ind. Crops Prod. 2019, 139, 111496. [Google Scholar] [CrossRef]
- Fukai, T.; Marumo, A.; Kaitou, K.; Kanda, T.; Terada, S.; Nomura, T. Antimicrobial Activity of Licorice Flavonoids against Methicillin-Resistant Staphylococcus aureus. Fitoterapia 2002, 73, 536–539. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wu, P.; Gu, M.; Xue, J. Trace Heavy Metals and Harmful Elements in Roots and Rhizomes of Herbs: Screening Level Analysis and Health Risk Assessment. Chin. Herb. Med. 2022, 14, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Petrosyan, H.R.; Nigaryan, A.A.; Hovhannisyan, H.A.; Soloyan, A.M.; Vardapetyan, V.V.; Martiryan, A.I. Evaluation of Antioxidant Activity and Heavy Metals Content in Licorice (Glycyrrhiza glabra L.) Growing Wild in Armenia. Heliyon 2023, 9, e22442. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Khan Abdul Wali Khan, H.; Ali Khan, M. Quantification of Various Metals and Cytotoxic Profile of Aerial Parts of Polygonatum Verticillatum. Pak. J. Bot. 2010, 42, 3995–4002. [Google Scholar]
- Street, R.A. Heavy Metals in Medicinal Plant Products—An African Perspective. S. Afr. J. Bot. 2012, 82, 67–74. [Google Scholar] [CrossRef]
- Avram, Ș.; Bora, L.; Vlaia, L.L.; Muț, A.M.; Olteanu, G.E.; Olariu, I.; Magyari-Pavel, I.Z.; Minda, D.; Diaconeasa, Z.; Sfirloaga, P.; et al. Cutaneous Polymeric-Micelles-Based Hydrogel Containing Origanum vulgare L. Essential Oil: In Vitro Release and Permeation, Angiogenesis, and Safety Profile In Ovo. Pharmaceuticals 2023, 16, 940. [Google Scholar] [CrossRef]
- Luepke, N.P. Hen’s Egg Chorioallantoic Membrane Test for Irritation Potential. Food Chem. Toxicol. 1985, 23, 287–291. [Google Scholar] [CrossRef]
- Badr, S.E.A.; Sakr, D.M.; Mahfouz, S.A. Licorice (Glycyrrhiza glabra L.): Chemical Composition and Biological Impacts. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 606–621. [Google Scholar]
- Velvizhi, S.; Annapurani, S. Estimation of Total Flavonoid, Phenolic Content, and Free Radical Scavenging Potential of Glycyrrhiza glabra Root Extract. Asian J. Pharm. Clin. Res. 2018, 11, 231–235. [Google Scholar] [CrossRef]
- Čižmárová, B.; Hubková, B.; Tomečková, V.; Birková, A. Flavonoids as Promising Natural Compounds in the Prevention and Treatment of Selected Skin Diseases. Int. J. Mol. Sci. 2023, 24, 6324. [Google Scholar] [CrossRef]
- Brinckmann, J.A. The Long Road to Sustainable Licorice. J. Med. Plant Conserv. 2020, 19–21. [Google Scholar]
- Popescu, A.; Dinu, T.A.; Stoian, E.; Şerban, V. Climate Change and Its Impact on Wheat, Maize and Sunflower Yield in Romania in the Period 2017–2021. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2023, 23, 587–602. [Google Scholar]
- Sohail, M.; Rakha, A.; Butt, M.S.; Asghar, M. Investigating the Antioxidant Potential of Licorice Extracts Obtained through Different Extraction Modes. J. Food Biochem. 2018, 42, e12466. [Google Scholar] [CrossRef]
- Charpe, T.W.; Rathod, V.K. Extraction of Glycyrrhizic Acid from Licorice Root Using Ultrasound: Process Intensification Studies. Chem. Eng. Process. Process Intensif. 2012, 54, 37–41. [Google Scholar] [CrossRef]
- Doğan, K.; Akman, P.K.; Tornuk, F. Improvement of Bioavailability of Sage and Mint by Ultrasonic Extraction. Int. J. Life Sci. Biotechnol. 2019, 2, 122–135. [Google Scholar] [CrossRef]
- Behdad, A.; Mohsenzadeh, S.; Azizi, M. Comparison of Phytochemical Compounds of Two Glycyrrhiza glabra L. Populations and Their Relationship with the Ecological Factors. Acta Physiol. Plant. 2020, 42, 133. [Google Scholar] [CrossRef]
- Esmaeili, H.; Karami, A.; Hadian, J.; Saharkhiz, M.J.; Nejad Ebrahimi, S. Variation in the Phytochemical Contents and Antioxidant Activity of Glycyrrhiza glabra Populations Collected in Iran. Ind. Crops Prod. 2019, 137, 248–259. [Google Scholar] [CrossRef]
- Wang, Y.C.; Yang, Y.S. Simultaneous Quantification of Flavonoids and Triterpenoids in Licorice Using HPLC. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 850, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Shibano, M.; Kusano, G.; Yamamoto, H.; Ikeshiro, Y. A Field Survey of Glycyrrhiza glabra L. in Sicily and Spain. Nat. Med. 1998, 52, 259–264. [Google Scholar]
- Vlaisavljević, S.; Šibul, F.; Sinka, I.; Zupko, I.; Ocsovszki, I.; Jovanović-Šanta, S. Chemical Composition, Antioxidant and Anticancer Activity of Licorice from Fruska Gora Locality. Ind. Crops Prod. 2018, 112, 217–224. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Son, D.H.; Chung, T.H.; Lee, Y.J. A Review of the Pharmacological Efficacy and Safety of Licorice Root from Corroborative Clinical Trial Findings. J. Med. Food 2020, 23, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kaur, H.; Dhindsa, A.S. Glycyrrhiza glabra: A Phytopharmacological Review. Int. J. Pharm. Sci. Res. 2013, 4, 2470. [Google Scholar] [CrossRef]
- Eissa, T.F.; Gonzalez-Burgos, E.; Carretero, M.E.; Pilar Gomez-Serranillos, M. Chemical Characterization of Polyphenols of Egyptian Achillea Fragrantissima with in Vitro Antioxidant Study. Chiang Mai J. Sci. 2018, 45, 897–904. [Google Scholar]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef]
- Sunila, A.V.; Murugan, K. Variation in Phenolics, Flavonoids, at Different Stages of Fruit Development of Pouteria Campechiana (Kunth) Baehni and Its Antioxidant Activity. Int. J. Pharm. Pharm. Sci. 2017, 9, 70. [Google Scholar] [CrossRef]
- Çoruh, İ.; Gomez, A.A.; Sengul, M. Total Phenolics, Mineral Contents, Antioxidant and Antibacterial Activities of Glycyrrhiza glabra L. Roots Grown Wild in Turkey. Ital. J. Food Sci. 2008, 20, 91–99. [Google Scholar]
- Rodino, S.; Butu, A.; Butu, M.; Cornea, P.C. Comparative Study on Antibacterial Activity of Licorice, Elderberry and Dandelion. Dig. J. Nanomater. Biostruct. 2015, 10, 947–955. [Google Scholar]
- Chociej, P.; Foss, K.; Jabłońska, M.; Ustarbowska, M.; Sawicki, T. The Profile and Content of Polyphenolic Compounds and Antioxidant and Anti-Glycation Properties of Root Extracts of Selected Medicinal Herbs. Plant Foods Hum. Nutr. 2024, 79, 468–473. [Google Scholar] [CrossRef]
- Hejazi, I.I.; Khanam, R.; Mehdi, S.H.; Bhat, A.R.; Moshahid Alam Rizvi, M.; Islam, A.; Thakur, S.C.; Athar, F. New Insights into the Antioxidant and Apoptotic Potential of Glycyrrhiza glabra L. during Hydrogen Peroxide Mediated Oxidative Stress: An in Vitro and in Silico Evaluation. Biomed. Pharmacother. 2017, 94, 265–279. [Google Scholar] [CrossRef]
- Hamad, G.; Elaziz, A.; Hassan, S.; Shalaby, M.; Mohdaly, A.A. Chemical Composition, Antioxidant, Antimicrobial and Anticancer Activities of Licorice (Glycyrrhiza glabra L.) Root and Its Application in Functional Yoghurt. J. Food Nutr. Res. 2020, 8, 707–715. [Google Scholar] [CrossRef]
- Tohma, H.S.; Gulçin, I. Antioxidant and Radical Scavenging Activity of Aerial Parts and Roots of Turkish Liquorice (Glycyrrhiza glabra L.). Int. J. Food Prop. 2010, 13, 657–671. [Google Scholar] [CrossRef]
- Asan-Ozusaglam, M.; Karakoca, A.K. Evaluation of Biological Activity and Antioxidant Capacity of Turkish Licorice Root Extracts. Rom. Biotechnol. Lett. 2014, 19, 8994–9005. [Google Scholar]
- Ghica, A.; Drumea, V.; Moroșan, A.; Mihaiescu, D.E.; Costea, L.; Luță, E.A.; Mihai, D.P.; Balaci, D.T.; Fița, A.C.; Olaru, O.T.; et al. Phytochemical Screening and Antioxidant Potential of Selected Extracts from Betula Alba Var. Pendula Roth., Glycyrrhiza glabra L., and Avena sativa L. Plants 2023, 12, 2510. [Google Scholar] [CrossRef]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The Chemistry Behind the Folin–Ciocalteu Method for the Estimation of (Poly)Phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. J. Agric. Food Chem. 2023, 71, 17543. [Google Scholar] [CrossRef]
- Okada, K.; Tamura, Y.; Yamamoto, M.; Inoue, Y.; Takagaki, R.; Takahashi, K.; Demizu, S.; Kajiyama, K.; Hiraga, Y.; Kinoshita, T. Identification of Antimicrobial and Antioxidant Constituents from Licorice of Russian and Xinjiang Origin. Chem. Pharm. Bull. 1989, 37, 2528–2530. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kikuzak, H.; Fukuda, S.; Nakatani, N. Antibacterial Compounds of Licorice against Upper Airway Respiratory Tract Pathogens. J. Nutr. Sci. Vitarninol. 2001, 47, 270–273. [Google Scholar] [CrossRef]
- Kazi, Y.F.; Khatoon, S.; Kumar, P.; Qazi, N. Ph ton Antibacterial effect of ethanol and aqueous root extracts from Glycyrrhiza glabra (Licorice) against Streptococcus pyogenes isolated from throat infection. J. Ear Nose Throat 2014, 105, 140–147. [Google Scholar]
- Martins, N.; Barros, L.; Dueñas, M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Characterization of Phenolic Compounds and Antioxidant Properties of Glycyrrhiza glabra L. Rhizomes and Roots. RSC Adv. 2015, 5, 26991–26997. [Google Scholar] [CrossRef]
- Gomaa, A.A.; Abdel-Wadood, Y.A. The Potential of Glycyrrhizin and Licorice Extract in Combating COVID-19 and Associated Conditions. Phytomed. Plus 2021, 1, 100043. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Roșca, M.; Hagiu-Zaleschi, L.; Simion, I.M.; Daraban, G.M.; Stoleru, V. Medicinal Plant Growth in Heavy Metals Contaminated Soils: Responses to Metal Stress and Induced Risks to Human Health. Toxics 2022, 10, 499. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues. Available online: https://iris.who.int/handle/10665/43510 (accessed on 23 November 2023).
- Locatelli, C.; Melucci, D.; Locatelli, M. Toxic Metals in Herbal Medicines. A Review. Curr. Bioact. Compd. 2014, 10, 181–188. [Google Scholar] [CrossRef]
- Arif, N.; Yadav, V.; Singh, S.; Singh, S.; Ahmad, P.; Mishra, R.K.; Sharma, S.; Tripathi, D.K.; Dubey, N.K.; Chauhan, D.K. Influence of High and Low Levels of Plant-Beneficial Heavy Metal Ions on Plant Growth and Development. Front. Environ. Sci. 2016, 4, 217521. [Google Scholar] [CrossRef]
- Cobbina, S.J.; Chen, Y.; Zhou, Z.; Wu, X.; Feng, W.; Wang, W.; Mao, G.; Xu, H.; Zhang, Z.; Wu, X.; et al. Low Concentration Toxic Metal Mixture Interactions: Effects on Essential and Non-Essential Metals in Brain, Liver, and Kidneys of Mice on Sub-Chronic Exposure. Chemosphere 2015, 132, 79–86. [Google Scholar] [CrossRef]
- Utami, S.M.; Djajadisastra, J.; Saputri, F.C. Using Hair Growth Activity, Physical Stability, and Safety Tests to Study Hair Tonics Containing Ethanol Extract of Licorice (Glycyrrhiza glabra Linn.). Int. J. Appl. Pharm. 2017, 9, 44–48. [Google Scholar] [CrossRef]
- Zabihi, M.; Hatefi, B.; Ardakani, M.E.; Ranjbar, A.M.; Mohammadi, F. Impact of Licorice Root on the Burn Healing Process: A Double-Blinded Randomized Controlled Clinical Trial. Complement. Ther. Med. 2023, 73, 102941. [Google Scholar] [CrossRef]
- Ghiulai, R.; Avram, S.; Stoian, D.; Pavel, I.Z.; Coricovac, D.; Oprean, C.; Vlase, L.; Farcas, C.; Mioc, M.; Minda, D.; et al. Lemon Balm Extracts Prevent Breast Cancer Progression In Vitro and In Ovo on Chorioallantoic Membrane Assay. Evid. Based Complement. Altern. Med. 2020, 2020, 6489159. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Santos, U.P.; Campos, J.F.; Torquato, H.F.V.; Paredes-Gamero, E.J.; Carollo, C.A.; Estevinho, L.M.; De Picoli Souza, K.; Dos Santos, E.L. Antioxidant, Antimicrobial and Cytotoxic Properties as Well as the Phenolic Content of the Extract from Hancornia Speciosa Gomes. PLoS ONE 2016, 11, e0167531. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Gupta, R.K. Bioprotective Properties of Dragon’s Blood Resin: In Vitro Evaluation of Antioxidant Activity and Antimicrobial Activity. BMC Complement. Altern. Med. 2011, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Magyari-Pavel, I.Z.; Moacă, E.-A.; Avram, Ș.; Diaconeasa, Z.; Haidu, D.; Ștefănuț, M.N.; Rostas, A.M.; Muntean, D.; Bora, L.; Badescu, B.; et al. Antioxidant Extracts from Greek and Spanish Olive Leaves: Antimicrobial, Anticancer and Antiangiogenic Effects. Antioxidants 2024, 13, 774. [Google Scholar] [CrossRef]
- Danciu, C.; Borcan, F.; Soica, C.; Zupko, I.; Csányi, E.; Ambrus, R.; Muntean, D.; Sass, C.; Antal, D.; Toma, C.; et al. Polyurethane Microstructures-a Good or Bad in Vitro Partner for the Isoflavone Genistein? Nat. Prod. Commun. 2015, 10, 1934578X1501000640. [Google Scholar] [CrossRef]
- Buda, V.; Brezoiu, A.M.; Berger, D.; Pavel, I.Z.; Muntean, D.; Minda, D.; Dehelean, C.A.; Soica, C.; Diaconeasa, Z.; Folescu, R.; et al. Biological Evaluation of Black Chokeberry Extract Free and Embedded in Two Mesoporous Silica-Type Matrices. Pharmaceutics 2020, 12, 838. [Google Scholar] [CrossRef]
- Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. Development of the EUCAST Disk Diffusion Antimicrobial Susceptibility Testing Method and Its Implementation in Routine Microbiology Laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef]
- Batista-Duharte, A.; Jorge Murillo, G.; Pérez, U.M.; Tur, E.N.; Portuondo, D.F.; Martínez, B.T.; Téllez-Martínez, D.; Betancourt, J.E.; Pérez, O. The Hen’s Egg Test on Chorioallantoic Membrane. Int. J. Toxicol. 2016, 35, 627–633. [Google Scholar] [CrossRef]
- Nowak-Sliwinska, P.; Segura, T.; Iruela-Arispe, M.L. The Chicken Chorioallantoic Membrane Model in Biology, Medicine and Bioengineering. Angiogenesis 2014, 17, 779–804. [Google Scholar] [CrossRef]
- Ribatti, D.; Vacca, A.; Roncali, L.; Dammacco, F. The Chick Embryo Chorioallantoic Membrane as a Model for in vivo Research on Anti-Angiogenesis. Curr. Pharm. Biotechnol. 2000, 1, 73–82. [Google Scholar] [CrossRef]
Peak No. | Rt (min) | UV λmax (nm) | [M + H]+ (m/z) | Compound | Class | LRE (mg/g d.e.) |
---|---|---|---|---|---|---|
1 | 13.27 | 340, 260 | 595, 287 | Luteolin-rutinoside | Flavone | 0.231 ± 0.038 |
2 | 14.19 | 341, 256 | 565, 271 | Apigenin-apiosyl-glucoside | Flavone | 0.295 ± 0.022 |
3 | 15.06 | 341, 256 | 579, 271 | Apigenin-rutinoside | Flavone | 2.571 ± 0.075 |
4 | 16.84 | 340, 260 | 449, 287 | Luteolin-glucoside | Flavone | 0.471 ± 0.007 |
5 | 19.01 | 340, 260 | 463, 287 | Luteolin-methylether-glucoside | Flavone | 0.393 ± 0.005 |
6 | 19.19 | 341, 256 | 447, 271 | Apigenin- methylether-glucoside | Flavone | 0.996 ± 0.026 |
7 | 18.25 | 360 | 418, 257 | Liquiritin | Flavanone | 5.037 ± 0.054 |
8 | 18.49 | 360 | 551, 418, 257 | Liquiritigenin-apiosyl-glucoside | Flavanone | 2.946 ± 0.046 |
9 | 20.85 | 360 | 257 | Liquiritigenin | Flavanone | 1.268 ± 0.064 |
10 | 15.67 | 254 | 823 | Glycyrrhizin | Triterpenic saponin | 13.927 ± 0.016 |
Extract | TPC (mg GAE/g d.e.) | DPPH Scavenging Activity (IC50 µg/mL) |
---|---|---|
LRE | 169.83 ± 0.74 | 385.85 ± 1.15 |
Microbial Strains | Disk Diffusion Method (Inhibition Zones in mm) | MIC (mg/mL) |
---|---|---|
Streptococcus pneumoniae ATCC 49619 | 17 | 2.5 |
Streptococcus pyogenes ATCC 19615 | 16 | 5 |
Staphylococcus aureus ATCC 25923 | 13 | 5 |
Escherichia coli ATCC 25922 | 9 | NA |
Pseudomonas aeruginosa ATCC 27853 | 7 | NA |
Sample | Element Concentration (μg/g) * | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fe | Cu | Ni | Mn | As | Al | Zn | Co | Pb | Cr | Cd | |
LR extract | 129.529 ± 7.050 | 4.482 ± 0.046 | ND ** | 1.029 ± 0.030 | ND | 557.017 ± 27.781 | 16.935 ± 0.364 | ND | ND | 19.739 ± 0.458 | ND |
Samples | Irritation Score | Type of Effect |
---|---|---|
SLS | 17.19 ± 0.24 | strong irritant |
H2O | 0 ± 0 | non-irritant |
DMSO | 0 ± 0 | non-irritant |
LRE | 0 ± 0 | non-irritant |
Digestion Parameters | T1 | t1 | p1 | T2 | t2 | p2 | T3 | t3 | p3 |
160 °C | 15 min | 80% | 210 °C | 15 min | 90% | Gradual decrease in temperature | 15 min | 0 |
No | Metal | Wavelength, λ (nm) | Calibration Range, (μg/L) | Calibration Curve Abs = f(conc.) | R2 |
---|---|---|---|---|---|
1 | Fe | 248.3 | 0–14.4 | y = 0.021707 + 0.010187x | 0.9988 |
2 | Cu | 324.8 | 0–18.0 | y = 0.038506 + 0.048577x | 0.9931 |
3 | Ni | 232.0 | 0–31.5 | y = 0.115634+ 0.006821x | 0.9998 |
4 | Mn | 279.5 | 0–3.36 | y = 0.007792 + 0.112496x | 0.9925 |
5 | As | 193.7 | 0–52.8 | y = −0.001185 + 0.001544x | 0.9927 |
6 | Al | 309.3 | 0–52.8 | y = 0.006978 + 0.001749x | 0.9971 |
7 | Zn | 213.9 | 0–8.0 | y = 0.071658 + 0.092202x | 0.9827 |
8 | Co | 240.7 | 0–21.6 | y = 0.007448 + 0.008841x | 0.9974 |
9 | Pb | 283.3 | 0–38.0 | y = 0.004606 + 0.004331x | 0.9959 |
10 | Cr | 357.9 | 0–20.0 | y = 0.013314 + 0.018746x | 0.9932 |
11 | Cd | 228.8 | 0–2.0 | y = 0.007384 + 0.100405x | 0.9903 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenescu, I.; Avram, S.; Similie, D.; Minda, D.; Diaconeasa, Z.; Muntean, D.; Lazar, A.E.; Gurgus, D.; Danciu, C. Phytochemical, Antioxidant, Antimicrobial and Safety Profile of Glycyrrhiza glabra L. Extract Obtained from Romania. Plants 2024, 13, 3265. https://doi.org/10.3390/plants13233265
Semenescu I, Avram S, Similie D, Minda D, Diaconeasa Z, Muntean D, Lazar AE, Gurgus D, Danciu C. Phytochemical, Antioxidant, Antimicrobial and Safety Profile of Glycyrrhiza glabra L. Extract Obtained from Romania. Plants. 2024; 13(23):3265. https://doi.org/10.3390/plants13233265
Chicago/Turabian StyleSemenescu, Iulia, Stefana Avram, Diana Similie, Daliana Minda, Zorita Diaconeasa, Delia Muntean, Antonina Evelina Lazar, Daniela Gurgus, and Corina Danciu. 2024. "Phytochemical, Antioxidant, Antimicrobial and Safety Profile of Glycyrrhiza glabra L. Extract Obtained from Romania" Plants 13, no. 23: 3265. https://doi.org/10.3390/plants13233265
APA StyleSemenescu, I., Avram, S., Similie, D., Minda, D., Diaconeasa, Z., Muntean, D., Lazar, A. E., Gurgus, D., & Danciu, C. (2024). Phytochemical, Antioxidant, Antimicrobial and Safety Profile of Glycyrrhiza glabra L. Extract Obtained from Romania. Plants, 13(23), 3265. https://doi.org/10.3390/plants13233265