Development of a Tandem Mass Spectral Library for the Detection of Triterpenoids in Plant Metabolome Based on Reference Standards
Abstract
:1. Introduction
2. Results and Discussion
2.1. Liquid Chromatography–Mass Spectrometry Analysis
2.2. Optimization of MS/MS Spectral Features
S. No. | Compound Name | Log-p Values | Molecular Formula | RT (min) | Adduct Identified | m/z calc. | m/z meas. | Error (ppm) |
---|---|---|---|---|---|---|---|---|
1 | 5-Hydroxy-7-{{6-O-{[(4R/S)-4-(1-hydroxy-1-methylethyl)cyclohex-1-en-1-yl]-carbonyl}c-D-glucopyranosyl}oxy}-2-methyl-4H-1-benzopyran-4-one | 2.83 | C26H32O11 | 7.39 | [M + H]+ | 521.2017 | 521.2045 | −5.3 |
[M + Na]+ | 543.1837 | 543.1867 | −5.5 | |||||
2 | 11-Oxooleanolic acid | 6.78 | C30H46O4 | 9.76 | [M + H]+ | 471.3469 | 471.349 | −4.5 |
3 | Asiatic acid | 6.46 | C30H48O5 | 9.8 | [M + H]+ | 489.3575 | 489.356 | 2.9 |
[M + Na]+ | 511.3394 | 511.339 | 0.8 | |||||
4 | Euscaphic acid | 6.21 | C30H48O5 | 9.11 | [M + H]+ | 489.3575 | 489.356 | 2.9 |
[M + Na]+ | 511.3394 | 511.338 | 2.6 | |||||
5 | Silymin A | 4.92 | C30H44O5 | 9.9 | [M + H]+ | 485.3262 | 485.3249 | 2.6 |
[M + Na]+ | 507.3081 | 507.3038 | 8.4 | |||||
6 | β-Neriursate | 11.47 | C38H54O4 | 10.35 | [M + H]+ | 575.4095 | 575.4124 | −5.1 |
7 | 3β-Hydroxy-27-p-E-coumaroyloxy-urs-12-en-28-oic acid | 9.47 | C39H54O6 | 10.02 | [M + H]+ | 619.3993 | 619.3984 | 1.5 |
[M + Na]+ | 641.3813 | 641.3800 | 2.0 | |||||
8 | Ilelatifol D | 6.29 | C30H46O4 | 9.11 | [M + H]+ | 471.3469 | 471.3455 | 2.9 |
9 | Glycyrrhetic acid | 6.57 | C30H46O4 | 9.86 | [M + H]+ | 471.3469 | 471.3465 | 0.8 |
10 | Bellerigenin B | 3.65 | C30H48O7 | 8.84 | [M + H]+ | 521.3473 | 521.3466 | 1.3 |
[M + Na]+ | 543.3292 | 543.3287 | 1 | |||||
11 | Intybusoloid | 2.24 | C27H34O8 | 8.83 | [M + H]+ | 487.2326 | 487.2322 | 0.9 |
[M + Na]+ | 509.2146 | 509.2141 | 1 | |||||
12 | Ursolaldehyde | 9.14 | C30H48O2 | 11.43 | [M + H]+ | 441.3727 | 441.3711 | 3.7 |
[M + Na]+ | 463.3547 | 463.3536 | 2.3 | |||||
13 | Hydrazide of glycyrrhetinic acid | 5.28 | C32H50N2O5 | 9.63 | [M + H]+ | 543.3792 | 543.3769 | 4.4 |
[M + Na]+ | 565.3612 | 565.3586 | 4.5 | |||||
14 | Ethyl methyl sulfide ester of betulinic acid | 10.27 | C33H54O3S1 | 10.36 | [M + H]+ | 531.3866 | 531.3863 | 0.6 |
15 | 2, 3, 23-Triacetoxy derivative of asiatic acid | 8.59 | C36H54O8 | 10.19 | [M + H]+ | 615.3891 | 615.3878 | 2.2 |
[M + Na]+ | 637.3711 | 637.3695 | 2.5 | |||||
16 | Betulinic acid | 8.94 | C30H48O3 | 10.58 | [M + H]+ | 457.3676 | 457.3664 | 2.6 |
[M + Na]+ | 479.3496 | 479.3473 | 4.7 | |||||
17 | Betulin | 9.01 | C30H50O2 | 10.35 | [M + H]+ | 443.3884 | 443.3858 | 5.7 |
[M + Na]+ | 465.3703 | 465.3690 | 2.8 | |||||
18 | Lantanilic acid | 8.37 | C35H52O6 | 10.43 | [M + H]+ | 569.3837 | 569.3827 | 1.7 |
[M + Na]+ | 591.3656 | 591.3669 | −2.1 | |||||
19 | 3-Benzoyloxy-3-0-methyl ester of glycyrrhetinic acid | 9.91 | C38H52O5 | 10.89 | [M + H]+ | 589.3888 | 589.3866 | 3.7 |
[M + Na]+ | 611.3707 | 611.3697 | 1.6 | |||||
20 | Methyl acetate ester of betulinic acid | 9.50 | C33H52O5 | 10.87 | [M + H]+ | 529.3888 | 529.3902 | −2.6 |
[M + Na]+ | 551.3707 | 551.3721 | −2.5 | |||||
21 | Azadiradione | 4.21 | C28H34O5 | 8.54 | [M + H]+ | 451.2479 | 451.2486 | −1.5 |
[M + Na]+ | 473.2298 | 473.2306 | −1.6 | |||||
22 | Gedunin | 3.34 | C28H34O7 | 8.82 | [M + H]+ | 483.2377 | 483.2388 | −2.2 |
[M + Na]+ | 505.2197 | 505.2206 | −1.9 | |||||
23 | Ethyl acetate ester of glycyrrhetinic acid | 7.63 | C34H52O6 | 10.33 | [M + H]+ | 557.3837 | 557.3845 | −1.6 |
[M + Na]+ | 579.3656 | 579.3665 | −1.5 | |||||
24 | Oleanolic acid | 9.06 | C30H48O3 | 10.51 | [M + H]+ | 457.3676 | 457.3654 | 4.8 |
[M + Na]+ | 479.3496 | 479.3504 | −1.7 | |||||
25 | 3-Oxo-30-butyl ester of glycyrrhetinic acid | 8.35 | C34H52O4 | 10.94 | [M + H]+ | 525.3938 | 525.3952 | −2.7 |
[M + Na]+ | 547.3758 | 547.3772 | −2.5 | |||||
26 | β-amyrin | 11.06 | C30H50O | 10.50 | [M + H]+ | 427.3934 | 427.3920 | 3.3 |
[M + Na]+ | 449.3754 | 449.3730 | 5.3 | |||||
27 | Diethyl sulfide ester of betulinic acid | 10.80 | C34H56O3S1 | 10.69 | [M + H]+ | 545.4023 | 545.403 | −1.3 |
28 | Nimbinolide | 0.71 | C30H36O11 | 7.51 | [M + H]+ | 573.233 | 573.232 | 1.8 |
[M + Na]+ | 595.215 | 595.2139 | −1.8 | |||||
29 | Ursonic acid | 8.43 | C30H46O3 | 10.81 | [M + H]+ | 455.3520 | 455.3512 | 1.7 |
[M + Na]+ | 477.3339 | 477.3333 | 1.4 | |||||
30 | 3-Acetoxy-3-0-methyl ester of glycyrrhetinic acid | 7.89 | C33H50O5 | 10.88 | [M + H]+ | 527.3731 | 527.3722 | 1.7 |
[M + Na]+ | 549.355 | 549.3542 | 1.5 | |||||
31 | 3,25-Epoxy-3α-hydroxy-olean-12-en-28-oic acid | 7.29 | C30H46O4 | 10.62 | [M + H]+ | 471.3469 | 471.3451 | 3.8 |
[M + Na]+ | 493.3288 | 493.3286 | 0.5 | |||||
32 | Butyl ester of glycyrrhetinic acid | 8.59 | C34H54O4 | 10.89 | [M + H]+ | 527.4095 | 527.4097 | −0.4 |
[M + Na]+ | 549.3914 | 549.3917 | −0.5 | |||||
33 | Methyl acetate ester of glycyrrhetinic acid | 7.10 | C33H50O6 | 10.2 | [M + H]+ | 543.368 | 543.3683 | −0.6 |
[M + Na]+ | 565.35 | 565.3502 | −0.5 | |||||
34 | Glycyrrhetinic acid methyl ester | 7.00 | C31H48O4 | 10.32 | [M + H]+ | 485.3625 | 485.3615 | 2.1 |
[M + Na]+ | 507.3445 | 507.3446 | −0.3 | |||||
35 | Diethyl sulfide ester of ursolic acid | 10.87 | C34H56O3S1 | 10.58 | [M + H]+ | 545.4023 | 545.4021 | 0.3 |
36 | Oleanoic acid | 8.48 | C30H46O3 | 10.79 | [M + H]+ | 457.3676 | 457.3635 | 8.9 |
[M + Na]+ | 477.3339 | 477.334 | −0.2 | |||||
37 | Methyl acetate ester of oleanolic acid | 9.62 | C33H52O5 | 10.93 | [M + Na]+ | 551.3707 | 551.3708 | −0.2 |
38 | 3-Oxolup-1:12-diene, 28-al | 8.05 | C30H44O2 | 10.56 | [M + Na]+ | 459.3234 | 459.3279 | −10 |
39 | 3β-Hydroxyurs-11-en-13b(28)-olide | 7.48 | C30H46O3 | 10.53 | [M + H]+ | 455.352 | 455.3539 | 0.6 |
[M + Na]+ | 477.3339 | 477.3315 | 5.0 | |||||
40 | 2|A-Hydroxyursolic acid | 7.82 | C30H48O4 | 10.1 | [M + H]+ | 473.3625 | 473.3615 | 2.1 |
[M + Na]+ | 495.3445 | 495.3486 | −8.2 | |||||
41 | Friedelin | 10.87 | C30H50O | 10.60 | [M + H]+ | 427.3934 | 427.3926 | 1.8 |
[M + Na]+ | 449.3754 | 449.3740 | 3.1 | |||||
42 | Ursolic acid | 9.01 | C30H48O3 | 10.7 | [M + H]+ | 457.3676 | 457.3659 | 3.7 |
[M + Na]+ | 479.3496 | 479.3459 | 7.7 | |||||
43 | Atriplicin | 7.06 | C30H46O4 | 9.8 | [M + H]+ | 471.3469 | 471.3451 | 3.8 |
2.3. MS/MS Spectral Features of Standard Triterpenoids
2.4. Screening of Plant Extracts Against Library
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Standard Solution Preparation
3.3. Sample Solution Preparation
3.4. LC-MS and MS/MS Analysis
3.5. Data Processing Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cárdenas, P.D.; Almeida, A.; Bak, S. Evolution of structural diversity of triterpenoids. Front. Plant Sci. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Noushahi, H.A.; Khan, A.H.; Noushahi, U.F.; Hussain, M.; Javed, T.; Zafar, M.; Batool, M.; Ahmed, U.; Liu, K.; Harrison, M.T. Biosynthetic pathways of triterpenoids and strategies to improve their Biosynthetic Efficiency. Plant Growth Regul. 2022, 97, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sheng, R.; Fan, J.; Guo, R. A Review on Structure-Activity Relationships of Glycyrrhetinic Acid Derivatives with Diverse Bioactivities. Mini Rev. Med. Chem. 2022, 22, 2024–2066. [Google Scholar] [PubMed]
- Xu, C.; Wang, B.; Pu, Y.; Tao, J.; Zhang, T. Techniques for the analysis of pentacyclic triterpenoids in medicinal plants. J. Sep. Sci. 2018, 41, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, L.; Wang, H.; Xiong, Y. Recent Advances in Antiviral Activities of Triterpenoids. Pharmaceuticals 2022, 15, 1169. [Google Scholar] [CrossRef]
- Alqahtani, A.; Hamid, K.; Kam, A.; Wong, K.; Abdelhak, Z.; Razmovski-Naumovski, V.; Chan, K.; Li, K.M.; Groundwater, P.W.; Li, G.Q. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr. Med. Chem. 2013, 20, 908–931. [Google Scholar]
- Li, J.J.; Li, Y.; Bai, M.; Tan, J.F.; Wang, Q.; Yang, J. Simultaneous determination of corosolic acid and euscaphic acid in the plasma of normal and diabetic rat after oral administration of extract of Potentilla discolor Bunge by high-performance liquid chromatography/electrospray ionization mass spectrometry. Biomed. Chromatogr. 2014, 28, 717–724. [Google Scholar] [CrossRef]
- Yadav, V.R.; Prasad, S.; Sung, B.; Kannappan, R.; Aggarwal, B.B. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins 2010, 2, 2428–2466. [Google Scholar] [CrossRef]
- Penduka, D.; Mosa, R.; Simelane, M.; Basson, A.; Okoh, A.; Opoku, A. Evaluation of the anti-Listeria potentials of some plant-derived triterpenes. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 37. [Google Scholar] [CrossRef]
- Wang, X.; Ye, X.-L.; Liu, R.; Chen, H.-L.; Bai, H.; Liang, X.; Zhang, X.-D.; Wang, Z.; Li, W.-L.; Hai, C.-X. Antioxidant activities of oleanolic acid in vitro: Possible role of Nrf2 and MAP kinases. Chem. Biol. Interact. 2010, 184, 328–337. [Google Scholar] [CrossRef]
- Shanmugam, M.K.; Dai, X.; Kumar, A.P.; Tan, B.K.; Sethi, G.; Bishayee, A. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: Preclinical and clinical evidence. Cancer Lett. 2014, 346, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Peragón, J.; Rufino-Palomares, E.E.; Muñoz-Espada, I.; Reyes-Zurita, F.J.; Lupiáñez, J.A. A new HPLC-MS method for measuring maslinic acid and oleanolic acid in HT29 and HepG2 human cancer cells. Int. J. Mol. Sci. 2015, 16, 21681–21694. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.H.; Ismail, Z.; Al-Suede, F.S.R.; Aisha, A.F.; Hamil, M.S.R.; Saeed, M.A.A.; Laghari, M.; Majid, A.M.S.A. Isolation, characterization, crystal structure elucidation of two flavanones and simultaneous RP-HPLC determination of five major compounds from Syzygium campanulatum Korth. Molecules 2015, 20, 14212–14233. [Google Scholar] [CrossRef] [PubMed]
- V Patel, R.; Won Park, S. Journey describing the discoveries of anti-HIV triterpene acid families targeting HIV-entry/fusion, protease functioning and maturation stages. Curr. Top. Med. Chem. 2014, 14, 1940–1966. [Google Scholar] [CrossRef]
- Khedr, A.I.; Ibrahim, S.R.; Mohamed, G.A.; Ahmed, H.E.; Ahmad, A.S.; Ramadan, M.A.; El-Baky, A.E.A.; Yamada, K.; Ross, S.A. New ursane triterpenoids from Ficus pandurata and their binding affinity for human cannabinoid and opioid receptors. Arch. Pharmacal Res. 2016, 39, 897–911. [Google Scholar] [CrossRef]
- Mwangi, E.; Keriko, J.; Machocho, A.; Wanyonyi, A.; Malebo, H.; Chhabra, S.; Tarus, P. Antiprotozoal activity and cytotoxicity of metabolites from leaves of Teclea trichocarpa. J. Med. Plants Res. 2010, 4, 726–731. [Google Scholar]
- Wang, H.; Zhang, C.; Wu, Y.; Ai, Y.; Lee, D.Y.W.; Dai, R. Comparative pharmacokinetic study of two boswellic acids in normal and arthritic rat plasma after oral administration of Boswellia serrata extract or Huo Luo Xiao Ling Dan by LC-MS. Biomed. Chromatogr. 2014, 28, 1402–1408. [Google Scholar] [CrossRef]
- Huo, Y.; Win, S.; Than, T.A.; Yin, S.; Ye, M.; Hu, H.; Kaplowitz, N. Antcin H protects against acute liver injury through disruption of the interaction of c-Jun-N-terminal kinase with mitochondria. Antioxid. Redox Signal. 2017, 26, 207–220. [Google Scholar] [CrossRef]
- Quan, K.T.; Park, H.-S.; Oh, J.; Park, H.B.; Ferreira, D.; Myung, C.-S.; Na, M. Arborinane triterpenoids from Rubia philippinensis inhibit proliferation and migration of vascular smooth muscle cells induced by the platelet-derived growth factor. J. Nat. Prod. 2016, 79, 2559–2569. [Google Scholar] [CrossRef]
- Huang, F.-Q.; Dong, X.; Yin, X.; Fan, Y.; Fan, Y.; Mao, C.; Zhou, W. A mass spectrometry database for identification of saponins in plants. J. Chromatogr. A 2020, 1625, 461296. [Google Scholar] [CrossRef]
- O’Donnell, F.; Ramachandran, V.; Smyth, W.; Hack, C.; Patton, E. A study of the analytical behaviour of selected synthetic and naturally occurring quinolines using electrospray ionisation ion trap mass spectrometry, liquid chromatography and gas chromatography and the construction of an appropriate database for quinoline characterisation. Anal. Chim. Acta 2006, 572, 63–76. [Google Scholar] [PubMed]
- Zareena, B.; Khadim, A.; Jeelani, S.U.Y.; Hussain, S.; Ali, A.; Musharraf, S.G. High-Throughput Detection of an Alkaloidal Plant Metabolome in Plant Extracts Using LC-ESI-QTOF-MS. J. Proteome Res. 2021, 20, 3826–3839. [Google Scholar] [CrossRef] [PubMed]
- Shahaf, N.; Rogachev, I.; Heinig, U.; Meir, S.; Malitsky, S.; Battat, M.; Wyner, H.; Zheng, S.; Wehrens, R.; Aharoni, A. The WEIZMASS spectral library for high-confidence metabolite identification. Nat. Commun. 2016, 7, 12423. [Google Scholar] [CrossRef] [PubMed]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
- Musquiari, B.; Crevelin, E.J.; Bertoni, B.W.; Franca, S.D.C.; Pereira, A.M.S.; Castello, A.C.D.; Castillo-Ordonez, W.O.; Giuliatti, S.; Lopes, A.A. Precursor-directed biosynthesis in Tabernaemontana catharinensis as a new avenue for Alzheimer’s disease-modifying agents. Planta Medica 2021, 87, 136–147. Available online: https://www.thieme-connect.com/products/ejournals/abstract/10.1055/a-1315-2282 (accessed on 4 November 2024).
- Klont, F.; Jahn, S.; Grivet, C.; König, S.; Bonner, R.; Hopfgartner, G. SWATH data independent acquisition mass spectrometry for screening of xenobiotics in biological fluids: Opportunities and challenges for data processing. Talanta 2020, 211, 120747. [Google Scholar] [CrossRef]
- Pillai, S.R.; Damaghi, M.; Marunaka, Y.; Spugnini, E.P.; Fais, S.; Gillies, R.J. Causes, consequences, and therapy of tumors acidosis. Cancer Metastasis Rev. 2019, 38, 205–222. [Google Scholar] [CrossRef]
- Joseph, S.; Naegele, E. Maximizing Chromatographic Peak Capacity with the Agilent 1290 Infinity LC System Using Gradient Parameters; Agilent Publication: Santa Clara, CA, USA, 2010. [Google Scholar]
- Cuthbertson, D.J.; Johnson, S.R.; Piljac-Žegarac, J.; Kappel, J.; Schäfer, S.; Wüst, M.; Ketchum, R.E.; Croteau, R.B.; Marques, J.V.; Davin, L.B. Accurate mass–time tag library for LC/MS-based metabolite profiling of medicinal plants. Phytochemistry 2013, 91, 187–197. [Google Scholar] [CrossRef]
- Wolfender, J.-L. HPLC in natural product analysis: The detection issue. Planta Medica 2009, 75, 719–734. [Google Scholar] [CrossRef]
- Uddin, J.; Muhsinah, A.B.; Imran, M.; Khan, M.N.; Musharraf, S.G. Structure–fragmentation study of pentacyclic triterpenoids using electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI-QTOFMS/MS). Rapid Commun. Mass Spectrom. 2022, 36, e9243. [Google Scholar] [CrossRef]
- Demarque, D.P.; Crotti, A.E.; Vessecchi, R.; Lopes, J.L.; Lopes, N.P. Fragmentation reactions using electrospray ionization mass spectrometry: An important tool for the structural elucidation and characterization of synthetic and natural products. Nat. Prod. Rep. 2016, 33, 432–455. [Google Scholar] [CrossRef] [PubMed]
- Mulani, F.A.; Nandikol, S.S.; Haldar, S.; Thulasiram, H.V. Accurate Identification of Bioactive Meliaceae Limonoids by UHPLC–MS/MS Based Structure–Fragment Relationships (SFRs). ACS Omega 2021, 6, 26454–26476. [Google Scholar] [CrossRef] [PubMed]
- Schrimpe-Rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; McLean, J.A. Untargeted metabolomics strategies—challenges and emerging directions. J. Am. Soc. Mass Spectrom. 2016, 27, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
Source | Compound Name | RT [min] | Drift RT [min] | Fragments Ions |
---|---|---|---|---|
Peganum harmala L. | β-Neriursate | 10.53 | 0.2 | 220.9341 |
Camellia sinensis Kuntze | Butyl ester of glycyrrhetinic acid | 11.18 | 0.3 | 425.3459, 288.9212, 220.9335, 189.1656, 175.1472, 149.0973 |
Aegle marmelos L. | β-Neriursate[Na] | 9.94 | 0.41 | 509.2737, 288.9202, 259.1144, 215.0896, 171.0639, 155.0685 |
Adhatoda Vasica L. | Silymin[Na] | 9.95 | 0.08 | 421.2227, 390.2389, 243.1232, 155.0704 |
Papaver somniferum L. | Silymin A[Na] | 9.97 | 0.06 | 155.0693 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zareena, B.; Jeelani, S.U.Y.; Khadim, A.; Ali, A.; Uddin, J.; Sarker, S.D.; Rainer, M.; Khalifa, S.A.M.; El-Seedi, H.R.; Ramzan, M.; et al. Development of a Tandem Mass Spectral Library for the Detection of Triterpenoids in Plant Metabolome Based on Reference Standards. Plants 2024, 13, 3278. https://doi.org/10.3390/plants13233278
Zareena B, Jeelani SUY, Khadim A, Ali A, Uddin J, Sarker SD, Rainer M, Khalifa SAM, El-Seedi HR, Ramzan M, et al. Development of a Tandem Mass Spectral Library for the Detection of Triterpenoids in Plant Metabolome Based on Reference Standards. Plants. 2024; 13(23):3278. https://doi.org/10.3390/plants13233278
Chicago/Turabian StyleZareena, Bibi, Syed Usama Y. Jeelani, Adeeba Khadim, Arslan Ali, Jalal Uddin, Satyajit D. Sarker, Matthias Rainer, Shaden A. M. Khalifa, Hesham R. El-Seedi, Muhammad Ramzan, and et al. 2024. "Development of a Tandem Mass Spectral Library for the Detection of Triterpenoids in Plant Metabolome Based on Reference Standards" Plants 13, no. 23: 3278. https://doi.org/10.3390/plants13233278
APA StyleZareena, B., Jeelani, S. U. Y., Khadim, A., Ali, A., Uddin, J., Sarker, S. D., Rainer, M., Khalifa, S. A. M., El-Seedi, H. R., Ramzan, M., & Musharraf, S. G. (2024). Development of a Tandem Mass Spectral Library for the Detection of Triterpenoids in Plant Metabolome Based on Reference Standards. Plants, 13(23), 3278. https://doi.org/10.3390/plants13233278