Characteristics of Callus and Cell Suspension Cultures of Highbush Blueberry (Vaccinium corymbosum L.) Cultivated in the Presence of Different Concentrations of 2,4-D and BAP in a Nutrient Medium
Abstract
:1. Introduction
2. Results
2.1. Morphology and Biomass of V. corymbosum Calluses
2.2. Phenolic Compound Accumulation in V. corymbosum Calluses
2.3. Characteristics of V. corymbosum Cell Suspension Cultures
2.4. Phenolic Compound Accumulation in V. corymbosum Cell Suspension Cultures
2.5. Expression of Genes of Proteins Involved in Flavonoids Biosynthesis
2.6. Growth and Phenolic Compound Accumulation in V. corymbosum Suspension Cells During One Passage
3. Discussion
4. Materials and Methods
4.1. Plant Material, Initiation of Callus and Cell Suspension Cultures
4.2. Determination of Growth Parameters of Callus and Cell Suspension Cultures
4.3. Extraction and Analysis of Phenolic Compound Accumulation in Callus and Cell Suspension Cultures
4.4. RNA Isolation and cDNA Synthesis
4.5. Real-Time PCR
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tusevski, O.; Stanoeva, J.P.; Markoska, E.; Brndevska, N.; Stefova, M.; Gadzovska Simic, S. Callus Cultures of Hypericum perforatum L. a Novel and Efficient Source for Xanthone Production. Plant Cell Tissue Organ Cult. PCTOC 2016, 125, 309–319. [Google Scholar] [CrossRef]
- Irshad, M.; Debnath, B.; Mitra, S.; Arafat, Y.; Li, M.; Sun, Y.; Qiu, D. Accumulation of Anthocyanin in Callus Cultures of Red-Pod Okra [Abelmoschus esculentus (L.) Hongjiao] in Response to Light and Nitrogen Levels. Plant Cell Tissue Organ Cult. PCTOC 2018, 134, 29–39. [Google Scholar] [CrossRef]
- Berezina, E.V.; Brilkina, A.A.; Schurova, A.V.; Veselov, A.P. Accumulation of Biomass and Phenolic Compounds by Calluses Oxycoccus palustris Pers. and O. macrocarpus (Ait.) Pers. in the Presence of Different Cytokinins. Russ. J. Plant Physiol. 2019, 66, 67–76. [Google Scholar] [CrossRef]
- Khandy, M.T.; Kochkin, D.V.; Tomilova, S.V.; Klyushin, A.G.; Galishev, B.A.; Nosov, A.M. Growth and Biosynthetic Characteristics of Phlojodicarpus sibiricus Cell Suspension Cultures. Russ. J. Plant Physiol. 2021, 68, 569–578. [Google Scholar] [CrossRef]
- Kolarević, T.; Milinčić, D.D.; Vujović, T.; Gašić, U.M.; Prokić, L.; Kostić, A.Ž.; Cerović, R.; Stanojevic, S.P.; Tešić, Ž.L.; Pešić, M.B. Phenolic Compounds and Antioxidant Properties of Field-Grown and In Vitro Leaves, and Calluses in Blackberry and Blueberry. Horticulturae 2021, 7, 420. [Google Scholar] [CrossRef]
- Titova, M.V.; Kochkin, D.V.; Fomenkov, A.A.; Ivanov, I.M.; Kotenkova, E.A.; Kocharyan, G.L.; Dzhivishev, E.G.; Mekhtieva, N.P.; Popova, E.V.; Nosov, A.M. Obtaining and Characterization of Suspension Cell Culture of Alhagi persarum Boiss. et Buhse: A Producer of Isoflavonoids. Russ. J. Plant Physiol. 2021, 68, 652–660. [Google Scholar] [CrossRef]
- Adil, M.; Ren, X.; Kang, D.I.; Thi, L.T.; Jeong, B.R. Effect of Explant Type and Plant Growth Regulators on Callus Induction, Growth and Secondary Metabolites Production in Cnidium officinale Makino. Mol. Biol. Rep. 2018, 45, 1919–1927. [Google Scholar] [CrossRef]
- Ramata-Stunda, A.; Valkovska, V.; Borodušķis, M.; Livkiša, D.; Kaktiņa, E.; Silamiķele, B.; Borodušķe, A.; Pentjušs, A.; Rostoks, N. Development of Metabolic Engineering Approaches to Regulate the Content of Total Phenolics, Antiradical Activity and Organic Acids in Callus Cultures of the Highbush Blueberry (Vaccinium corymbosum L.). Agron. Res. 2020, 18, 1860–1872. [Google Scholar] [CrossRef]
- Bong, F.J.; Yeou Chear, N.J.; Ramanathan, S.; Mohana-Kumaran, N.; Subramaniam, S.; Chew, B.L. The Development of Callus and Cell Suspension Cultures of Sabah Snake Grass (Clinacanthus nutans) for the Production of Flavonoids and Phenolics. Biocatal. Agric. Biotechnol. 2021, 33, 101977. [Google Scholar] [CrossRef]
- Gamil, R.A.E.-D.; Khusnetdinova, L.Z.; Akulov, A.N.; Walla, M.A.A.; Timofeeva, O.A. Influence of Light on the Accumulation of Anthocyanins in Callus Culture of Vaccinium corymbosum L. Cv. Sunt Blue Giant. J. Photochem. Photobiol. 2021, 8, 100058. [Google Scholar] [CrossRef]
- Berezina, E.V.; Rybin, D.A.; Sukhova, A.A.; Syomin, A.A.; Mishukova, I.V.; Brilkina, A.A. Comparative Analysis of Phenolic Compounds Content in Vaccinium corymbosum L. Tissues and Cells in in vivo and in vitro Conditions. Khimia Rastit. Syr’ya 2024, 3, 129–137. [Google Scholar]
- Campanoni, P.; Nick, P. Auxin-Dependent Cell Division and Cell Elongation. 1-Naphthaleneacetic Acid and 2,4-Dichlorophenoxyacetic Acid Activate Different Pathways. Plant Physiol. 2005, 137, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Berejsza-Wysecki, W.; Hrazdin, G. Establishment of Callus and Cell Suspension Cultures of Raspberry (Rubus idaeus Cv. Royalty). Plant Cell Tissue Organ Cult. 1994, 37, 213–216. [Google Scholar] [CrossRef]
- Perrot-Rechenmann, C. Cellular Responses to Auxin: Division versus Expansion. Cold Spring Harb. Perspect. Biol. 2010, 2, a001446. [Google Scholar] [CrossRef]
- Song, Y. Insight into the Mode of Action of 2,4-dichlorophenoxyacetic Acid (2,4-D) as an Herbicide. J. Integr. Plant Biol. 2014, 56, 106–113. [Google Scholar] [CrossRef]
- Sauer, M.; Kleine-Vehn, J. AUXIN BINDING PROTEIN1: The Outsider. Plant Cell 2011, 23, 2033–2043. [Google Scholar] [CrossRef]
- Powers, S.K.; Strader, L.C. Up in the Air: Untethered Factors of Auxin Response. F1000Research 2016, 5, 133. [Google Scholar] [CrossRef]
- Scherer, G.F.E. AUXIN-BINDING-PROTEIN1, the Second Auxin Receptor: What Is the Significance of a Two-Receptor Concept in Plant Signal Transduction? J. Exp. Bot. 2011, 62, 3339–3357. [Google Scholar] [CrossRef]
- Lomin, S.N.; Krivosheev, D.M.; Steklov, M.Y.; Osolodkin, D.I.; Romanov, G.A. Receptor Properties and Features of Cytokinin Signaling. Acta Naturae 2012, 4, 31–45. [Google Scholar] [CrossRef]
- Schaller, G.E.; Street, I.H.; Kieber, J.J. Cytokinin and the Cell Cycle. Curr. Opin. Plant Biol. 2014, 21, 7–15. [Google Scholar] [CrossRef]
- Moubayidin, L.; Di Mambro, R.; Sabatini, S. Cytokinin–Auxin Crosstalk. Trends Plant Sci. 2009, 14, 557–562. [Google Scholar] [CrossRef] [PubMed]
- George, E.F.; Hall, M.A.; Klerk, G.-J.D. Plant Growth Regulators II: Cytokinins, Their Analogues and Antagonists. In Plant Propagation by Tissue Culture; George, E.F., Hall, M.A., Klerk, G.-J.D., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 205–226. ISBN 978-1-4020-5004-6. [Google Scholar]
- Blume, Y.B.; Krasylenko, Y.A.; Yemets, A.I. Effects of Phytohormones on the Cytoskeleton of the Plant Cell. Russ. J. Plant Physiol. 2012, 59, 515–529. [Google Scholar] [CrossRef]
- Suda, N.; Iwai, H.; Satoh, S.; Sakai, S. Benzyladenine Arrests Cell Cycle Progression in G1 Phase in Tobacco BY-2 Cells Preceding Induction of Cell Death. Plant Biotechnol. 2009, 26, 225–235. [Google Scholar] [CrossRef]
- Smirnova, O.G.; Stepanenko, I.L.; Shumny, V.K. Mechanism of Action and Activity Regulation of COP1, a Constitutive Repressor of Photomorphogenesis. Russ. J. Plant Physiol. 2012, 59, 155–166. [Google Scholar] [CrossRef]
- Lewis, D.R.; Ramirez, M.V.; Miller, N.D.; Vallabhaneni, P.; Ray, W.K.; Helm, R.F.; Winkel, B.S.J.; Muday, G.K. Auxin and Ethylene Induce Flavonol Accumulation through Distinct Transcriptional Networks. Plant Physiol. 2011, 156, 144–164. [Google Scholar] [CrossRef]
- Gu, K.-D.; Wang, C.-K.; Hu, D.-G.; Hao, Y.-J. How Do Anthocyanins Paint Our Horticultural Products? Sci. Hortic. 2019, 249, 257–262. [Google Scholar] [CrossRef]
- Song, R.; Xia, Y.; Zhao, Z.; Yang, X.; Zhang, N. Effects of Plant Growth Regulators on the Contents of Rutin, Hyperoside and Quercetin in Hypericum attenuatum Choisy. PLoS ONE 2023, 18, e0285134. [Google Scholar] [CrossRef]
- Zifkin, M.; Jin, A.; Ozga, J.A.; Zaharia, L.I.; Schernthaner, J.P.; Gesell, A.; Abrams, S.R.; Kennedy, J.A.; Constabel, C.P. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism. Plant Physiol. 2012, 158, 200–224. [Google Scholar] [CrossRef]
- Ji, X.-H.; Wang, Y.-T.; Zhang, R.; Wu, S.-J.; An, M.-M.; Li, M.; Wang, C.-Z.; Chen, X.-L.; Zhang, Y.-M.; Chen, X.-S. Effect of Auxin, Cytokinin and Nitrogen on Anthocyanin Biosynthesis in Callus Cultures of Red-Fleshed Apple (Malus sieversii f. niedzwetzkyana). Plant Cell Tissue Organ Cult. PCTOC 2015, 120, 325–337. [Google Scholar] [CrossRef]
- Song, M.; Olmstead, J.W.; Rouseff, R.L.; Tomasino, E. Investigation on the Profile of Phenolic Acids and Flavonoids with Antioxidant Capacity in Florida Highbush (Vaccinium corymbosum L.) and Rabbiteye (Vaccinium virgatum) Blueberries. J. Exp. Food Chem. 2016, 2, 2472-0542. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Barnackas, Š.; Kazernavičiūtė, R.; Maždžierienė, R.; Pukalskas, A.; Šipailienė, A.; Labokas, J.; Ložienė, K.; Abrutienė, G. Variations in Antioxidant Capacity and Phenolics in Leaf Extracts Isolated by Different Polarity Solvents from Seven Blueberry (Vaccinium L.) Genotypes at Three Phenological Stages. Acta Physiol. Plant 2016, 38, 33. [Google Scholar] [CrossRef]
- Sun, Y.; Nemec-Bakk, A.S.; Mallik, A.U.; Bagchi, A.K.; Singal, P.K.; Khaper, N. Blueberry Extract Attenuates Doxorubicin-Induced Damage in H9c2 Cardiac Cells. Can. J. Physiol. Pharmacol. 2019, 97, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, J.; Pang, D.; Li, T.; Liu, R.H. Mechanisms Underlying the Protective Effects of Blueberry Extract against Ultraviolet Radiation in a Skin Cell Co-Culture System. J. Funct. Foods 2019, 52, 603–610. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Li, Y.; Chen, H.; Wang, C.; Wong, V.K.W.; Jiang, Z.; Zhang, W. Phytotherapy Using Blueberry Leaf Polyphenols to Alleviate Non-Alcoholic Fatty Liver Disease through Improving Mitochondrial Function and Oxidative Defense. Phytomedicine 2020, 69, 153209. [Google Scholar] [CrossRef] [PubMed]
- Sivapragasam, N.; Neelakandan, N.; Rupasinghe, H.P.V. Potential Health Benefits of Fermented Blueberry: A Review of Current Scientific Evidence. Trends Food Sci. Technol. 2023, 132, 103–120. [Google Scholar] [CrossRef]
- Matkowski, A. Plant In Vitro Culture for the Production of Antioxidants—A Review. Biotechnol. Adv. 2008, 26, 548–560. [Google Scholar] [CrossRef]
- Hesami, M.; Daneshvar, M.H.; Yoosefzadeh-Najafabadi, M.; Alizadeh, M. Effect of Plant Growth Regulators on Indirect Shoot Organogenesis of Ficus Religiosa through Seedling Derived Petiole Segments. J. Genet. Eng. Biotechnol. 2018, 16, 175–180. [Google Scholar] [CrossRef]
- Jamil, S.Z.M.R.; Rohani, E.R.; Baharum, S.N.; Noor, N.M. Metabolite Profiles of Callus and Cell Suspension Cultures of Mangosteen. 3 Biotech 2018, 8, 322. [Google Scholar] [CrossRef]
- Agung, N.R.; Huddi, D.; Putri, A.N.; Resmisari, R.S. The Effect of 2,4-D (2,4-Dichlorophenoxyacetic Acid) and Kinetin (6-Furfuryl Amino Purine) Concentrations on The Induction of Embryogenic Callus In Porang (Amorphophallus Muelleri Blume) In Vitro. El–Hayah 2023, 9, 55–63. [Google Scholar] [CrossRef]
- Zavala-Ortiz, D.A.; Infanzón-Rodríguez, M.I.; Gomez-Rodriguez, J.; Palacios-Pérez, D.L.; Ledesma-Escobar, C.A.; Aguilar-Uscanga, M.G. Development of Catharanthus Callus Cell Lines for Indole-Derived Alkaloids Production. S. Afr. J. Bot. 2024, 167, 554–561. [Google Scholar] [CrossRef]
- Shibli, R.A.; Smith, M.A.L.; Kushad, M. Headspace Ethylene Accumulation Effects on Secondary Metabolite Production of Vaccinium pahalae Cell Culture. Plant Growth Regul. 1997, 23, 201–205. [Google Scholar] [CrossRef]
- Carimi, F.; Terzi, M.; De Michele, R.; Zottini, M.; Lo Schiavo, F. High Levels of the Cytokinin BAP Induce PCD by Accelerating Senescence. Plant Sci. 2004, 166, 963–969. [Google Scholar] [CrossRef]
- Beruto, M.; Curir, P.; Debergh, P. Callus Growth and Somatic Embryogenesis in Thalamus Tissue of Ranunculus asiaticus L. Cultivated in vitro: Cytokinin Effect and Phenol Metabolism. In Vitro Cell. Dev. Biol.—Plant 1996, 32, 154–160. [Google Scholar] [CrossRef]
- Galibina, N.A.; Ershova, M.A.; Ignatenko, R.V.; Nikerova, K.M.; Sofronova, I.N.; Borodina, M.N. Cytogenetic and Biochemical Characteristics of Callus Pinus sylvestris L. Russ. J. Plant Physiol. 2023, 70, 10. [Google Scholar] [CrossRef]
- Murata, M.; Nishimura, M.; Murai, N.; Haruta, M.; Homma, S.; Itoh, Y. A Transgenic Apple Callus Showing Reduced Polyphenol Oxidase Activity and Lower Browning Potential. Biosci. Biotechnol. Biochem. 2001, 65, 383–388. [Google Scholar] [CrossRef]
- Wu, K.; Liu, Y.; Xu, Y.; Yu, Z.; Cao, Q.; Gong, H.; Yang, Y.; Ye, J.; Jia, X. Unveiling the Molecular Mechanisms of Browning in Camellia hainanica Callus through Transcriptomic and Metabolomic Analysis. Int. J. Mol. Sci. 2024, 25, 11021. [Google Scholar] [CrossRef]
- Nawa, Y.; Asano, S.; Motoori, S.; Ohtani, T. Production of Anthocyanins, Carotenoids, and Proanthocyanidins by Cultured Cells of Rabbiteye Blueberry (Vaccinium ashei Reade). Biosci. Biotechnol. Biochem. 1993, 57, 770–774. [Google Scholar] [CrossRef]
- Simões-Gurgel, C.; Cordeiro, L.D.S.; De Castro, T.C.; Callado, C.H.; Albarello, N.; Mansur, E. Establishment of Anthocyanin-Producing Cell Suspension Cultures of Cleome rosea Vahl Ex DC. (Capparaceae). Plant Cell Tissue Organ Cult. PCTOC 2011, 106, 537–545. [Google Scholar] [CrossRef]
- Vazquez-Marquez, A.M.; Bernabé-Antonio, A.; Correa-Basurto, J.; Burrola-Aguilar, C.; Zepeda-Gómez, C.; Cruz-Sosa, F.; Nieto-Trujillo, A.; Estrada-Zúñiga, M.E. Changes in Growth and Heavy Metal and Phenolic Compound Accumulation in Buddleja cordata Cell Suspension Culture under Cu, Fe, Mn, and Zn Enrichment. Plants 2024, 13, 1147. [Google Scholar] [CrossRef]
- Motolinia-Alcántara, E.A.; Franco-Vásquez, A.M.; Nieto-Camacho, A.; Arreguín-Espinosa, R.; Rodríguez-Monroy, M.; Cruz-Sosa, F.; Román-Guerrero, A. Phenolic Compounds from Wild Plant and in vitro Cultures of Ageratina pichichensis and Evaluation of Their Antioxidant Activity. Plants 2023, 12, 1107. [Google Scholar] [CrossRef]
- Mamdouh, D.; Smetanska, I. Optimization of Callus and Cell Suspension Cultures of Lycium schweinfurthii for Improved Production of Phenolics, Flavonoids, and Antioxidant Activity. Horticulturae 2022, 8, 394. [Google Scholar] [CrossRef]
- Paul, P.; Kumaria, S. Precursor-Induced Bioaccumulation of Secondary Metabolites and Antioxidant Activity in Suspension Cultures of Dendrobium fimbriatum, an Orchid of Therapeutic Importance. S. Afr. J. Bot. 2020, 135, 137–143. [Google Scholar] [CrossRef]
- Mendoza, D.; Arias, J.P.; Cuaspud, O.; Arias, M. Phytochemical Screening of Callus and Cell Suspensions Cultures of Thevetia peruviana. Braz. Arch. Biol. Technol. 2020, 63, e20180735. [Google Scholar] [CrossRef]
- Tavan, M.; Hanachi, P.; Mirjalili, M.H. Biochemical Changes and Enhanced Accumulation of Phenolic Compounds in Cell Culture of Perilla frutescens (L.) by Nano-Chemical Elicitation. Plant Physiol. Biochem. 2023, 204, 108151. [Google Scholar] [CrossRef] [PubMed]
- Arias, J.P.; Zapata, K.; Rojano, B.; Arias, M. Effect of Light Wavelength on Cell Growth, Content of Phenolic Compounds and Antioxidant Activity in Cell Suspension Cultures of Thevetia peruviana. J. Photochem. Photobiol. B Biol. 2016, 163, 87–91. [Google Scholar] [CrossRef]
- Kandil, F.E.; Song, L.; Pezzuto, J.M.; Marley, K.; Seigler, D.S.; Smith, M.A.L. Isolation of Oligomeric Proanthocyanidins from Flavonoid-Producing Cell Cultures. In Vitro Cell. Dev. Biol.—Plant 2000, 36, 492–500. [Google Scholar] [CrossRef]
- Luo, M.; Wan, S.; Sun, X.; Ma, T.; Huang, W.; Zhan, J. Interactions between Auxin and Quercetin during Grape Berry Development. Sci. Hortic. 2016, 205, 45–51. [Google Scholar] [CrossRef]
- Wang, X.; Niu, Y.; Zheng, Y. Multiple Functions of MYB Transcription Factors in Abiotic Stress Responses. Int. J. Mol. Sci. IJMS 2021, 22, 6125. [Google Scholar] [CrossRef]
- Ravaglia, D.; Espley, R.V.; Henry-Kirk, R.A.; Andreotti, C.; Ziosi, V.; Hellens, R.P.; Costa, G.; Allan, A.C. Transcriptional Regulation of Flavonoid Biosynthesis in Nectarine (Prunus persica) by a Set of R2R3 MYB Transcription Factors. BMC Plant Biol. 2013, 13, 68. [Google Scholar] [CrossRef]
- Rowland, L.J.; Alkharouf, N.; Darwish, O.; Ogden, E.L.; Polashock, J.J.; Bassil, N.V.; Main, D. Generation and Analysis of Blueberry Transcriptome Sequences from Leaves, Developing Fruit, and Flower Buds from Cold Acclimation through Deacclimation. BMC Plant Biol. 2012, 12, 46. [Google Scholar] [CrossRef]
- Cocetta, G.; Rossoni, M.; Gardana, C.; Mignani, I.; Ferrante, A.; Spinardi, A. Methyl Jasmonate Affects Phenolic Metabolism and Gene Expression in Blueberry (Vaccinium corymbosum). Physiol. Plant. 2015, 153, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Abbasi, B.H.; Ahmad, N.; Ali, S.S.; Ali, S.; Ali, G.S. Sucrose-Enhanced Biosynthesis of Medicinally Important Antioxidant Secondary Metabolites in Cell Suspension Cultures of Artemisia absinthium L. Bioprocess Biosyst. Eng. 2016, 39, 1945–1954. [Google Scholar] [CrossRef] [PubMed]
- Solís-Ramos, L.Y.; Carballo, L.M.; Valdez-Melara, M. Establishment of cell suspension cultures of two Costa Rican Jatropha species (Euphorbiaceae). Rev. Biol. Trop. (Int. J. Trop. Biol.) 2013, 61, 1095–1107. [Google Scholar]
- Tomilova, S.V.; Kochkin, D.V.; Tyurina, T.M.; Glagoleva, E.S.; Labunskaya, E.A.; Galishev, B.A.; Nosov, A.M. Specificity of Growth and Synthesis of Secondary Metabolites in Cultures in vitro Digitalis lanata Ehrh. Russ. J. Plant Physiol. 2022, 69, 25. [Google Scholar] [CrossRef]
- Gai, Q.-Y.; Jiao, J.; Wang, X.; Fu, Y.-J.; Lu, Y.; Liu, J.; Wang, Z.-Y.; Xu, X.-J. Establishment of Cajanus cajan (Linn.) Millsp. Cell Suspension Cultures as an Effective in vitro Platform for the Production of Pharmacologically Active Phenolic Compounds. Ind. Crops Prod. 2020, 158, 112977. [Google Scholar] [CrossRef]
- Povydysh, M.N.; Titova, M.V.; Ivanov, I.M.; Klushin, A.G.; Kochkin, D.V.; Galishev, B.A.; Popova, E.V.; Ivkin, D.Y.; Luzhanin, V.G.; Krasnova, M.V.; et al. Effect of Phytopreparations Based on Bioreactor-Grown Cell Biomass of Dioscorea deltoidea, Tribulus terrestris and Panax japonicus on Carbohydrate and Lipid Metabolism in Type 2 Diabetes Mellitus. Nutrients 2021, 13, 3811. [Google Scholar] [CrossRef]
- Sánchez-Ramos, M.; Alvarez, L.; Romero-Estrada, A.; Bernabé-Antonio, A.; Marquina-Bahena, S.; Cruz-Sosa, F. Establishment of a Cell Suspension Culture of Ageratina pichinchensis (Kunth) for the Improved Production of Anti-Inflammatory Compounds. Plants 2020, 9, 1398. [Google Scholar] [CrossRef]
- Bernabé-Antonio, A.; Sánchez-Sánchez, A.; Romero-Estrada, A.; Meza-Contreras, J.C.; Silva-Guzmán, J.A.; Fuentes-Talavera, F.J.; Hurtado-Díaz, I.; Alvarez, L.; Cruz-Sosa, F. Establishment of a Cell Suspension Culture of Eysenhardtia platycarpa: Phytochemical Screening of Extracts and Evaluation of Antifungal Activity. Plants 2021, 10, 414. [Google Scholar] [CrossRef]
- Phillips, G.C.; Garda, M. Plant Tissue Culture Media and Practices: An Overview. Vitr. Cell. Dev. Biol. Plant 2019, 55, 242–257. [Google Scholar] [CrossRef]
- Gunes, G.; Liu, R.H.; Watkins, C.B. Controlled-Atmosphere Effects on Postharvest Quality and Antioxidant Activity of Cranberry Fruits. J. Agric. Food Chem. 2002, 50, 5932–5938. [Google Scholar] [CrossRef]
- Khishova, O.M.; Buzuk, G.N. Quantitative Determination of Procyanidins in Hawthorn Fruits. Pharm. Chem. J. 2006, 40, 79–81. [Google Scholar] [CrossRef]
- Zhan, W.; Liao, X.; Xie, R.-J.; Tian, T.; Yu, L.; Liu, X.; Liu, J.; Li, P.; Han, B.; Yang, T.; et al. The Effects of Blueberry Anthocyanins on Histone Acetylation in Rat Liver Fibrosis. Oncotarget 2017, 8, 96761–96773. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time PCR Data by the Comparative CT Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
2,4-D/BAP, µM | Morphological Characteristics | Callus Size, cm2 | Fresh Weight of 1 Callus, g | Dry Weight of 1 Callus, g | Photo of Calluses |
---|---|---|---|---|---|
0.34/0.45 | light, more friable, than compact | 0.5–1.4 | 0.17 ± 0.02 A | 0.018 ± 0.002 a | |
0.45/0.45 | light, less often orange, more friable, than compact | 0.5–1.5 | 0.19 ± 0.02 A | 0.023 ± 0.006 a | |
1.7/2.25 | light, both friable and compact | 0.5–1.3 | 0.15 ± 0.02 A | 0.016 ± 0.002 a | |
2.25/2.25 | light, rarely orange, compact | 0.4–1.0 | 0.14 ± 0.04 A | 0.016 ± 0.004 a | |
3.4/4.5 | light, dark in places, compact | 0.3–0.8 | 0.15 ± 0.04 A | 0.015 ± 0.003 a | |
4.5/4.5 | dark, some friable, some compact | 0.3–0.7 | 0.05 ± 0.01 B | 0.006 ± 0.001 b | |
5/6.75 | dark, compact | 0.2–0.7 | 0.06 ± 0.01 B | 0.007 ± 0.001 b | |
6.75/6.75 | brownish-red, compact | 0.2–0.5 | 0.04 ± 0.01 B | 0.005 ± 0.001 b |
Concentration of 2,4-D/BAP, µM | 0.34/0.45 | 0.45/0.45 | 1.7/2.25 | 2.25/2.25 | 3.4/4.5 | 4.5/4.5 |
Number of cells in 1 liter, million | 14.9 ± 5.5 A | 22.8 ± 1.4 A | 11.5 ± 1.5 A | 15.4 ± 4.2 A | 19.1 ± 8.8 A | 1.4 ± 0.4 B |
Viability, % | 58.8 ± 26 b | 84.2 ± 2.6 a | 51.0 ± 9.8 bc | 62.9 ± 3 ab | 63.4 ± 24 ab | 30.3 ± 9.5 c |
Filtered cells (4th passage) | ||||||
Concentration of 2,4-D/BAP, µM | 0.34/0.45 | 0.45/0.45 | 1.7/2.25 | 2.25/2.25 | 3.4/4.5 | 4.5/4.5 |
Number of cells in 1 liter, million | 44.8 ± 4.8 A | 29.5 ± 6.7 AB | 25.2 ± 9.6 B | 30.4 ± 4.1 AB | 19.2 ± 1.4 B | - |
Viability, % | 60.5 ± 8.4 b | 74.1 ± 9.1 ab | 63.4 ± 10.4 b | 77.1 ± 5.2 a | 56.6 ± 3.9 b | - |
Filtered cells (12th passage) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybin, D.A.; Sukhova, A.A.; Syomin, A.A.; Zdobnova, T.A.; Berezina, E.V.; Brilkina, A.A. Characteristics of Callus and Cell Suspension Cultures of Highbush Blueberry (Vaccinium corymbosum L.) Cultivated in the Presence of Different Concentrations of 2,4-D and BAP in a Nutrient Medium. Plants 2024, 13, 3279. https://doi.org/10.3390/plants13233279
Rybin DA, Sukhova AA, Syomin AA, Zdobnova TA, Berezina EV, Brilkina AA. Characteristics of Callus and Cell Suspension Cultures of Highbush Blueberry (Vaccinium corymbosum L.) Cultivated in the Presence of Different Concentrations of 2,4-D and BAP in a Nutrient Medium. Plants. 2024; 13(23):3279. https://doi.org/10.3390/plants13233279
Chicago/Turabian StyleRybin, Dmitry A., Alina A. Sukhova, Andrey A. Syomin, Tatiana A. Zdobnova, Ekaterina V. Berezina, and Anna A. Brilkina. 2024. "Characteristics of Callus and Cell Suspension Cultures of Highbush Blueberry (Vaccinium corymbosum L.) Cultivated in the Presence of Different Concentrations of 2,4-D and BAP in a Nutrient Medium" Plants 13, no. 23: 3279. https://doi.org/10.3390/plants13233279
APA StyleRybin, D. A., Sukhova, A. A., Syomin, A. A., Zdobnova, T. A., Berezina, E. V., & Brilkina, A. A. (2024). Characteristics of Callus and Cell Suspension Cultures of Highbush Blueberry (Vaccinium corymbosum L.) Cultivated in the Presence of Different Concentrations of 2,4-D and BAP in a Nutrient Medium. Plants, 13(23), 3279. https://doi.org/10.3390/plants13233279