Effects of pH, Temperature, and Light on the Inorganic Carbon Uptake Strategies in Early Life Stages of Macrocystis pyrifera (Ochrophyta, Laminariales)
Abstract
:1. Introduction
2. Results
2.1. Experiment 1: pH × Light
2.1.1. The Effects of Specific Inhibitors on the Ci Acquisition Mechanisms
2.1.2. Photosynthetic Pigment Analysis
2.1.3. Photophysiology: Chlorophyll a Fluorescence
2.2. Experiment 2: pH × Temperature
2.2.1. The Effects of Specific Inhibitors on the Ci Acquisition Mechanism
2.2.2. Photosynthetic Pigment Analysis
2.2.3. Photophysiology: Chlorophyll a Fluorescence
3. Discussion
4. Materials and Methods
4.1. Study Area and Sporophylls Collection
4.2. Experimental Design
4.2.1. Experiment 1: pH × Light
4.2.2. Experiment 2: pH × Temperature
4.3. Seawater pH Manipulations
4.4. Seawater pH Measurements
4.5. Physiological and Biochemical Parameters
4.5.1. Specific Inhibitors of Ci Acquisition Mechanism
4.5.2. Chlorophyll a Fluorescence
4.5.3. Photosynthetic Pigment Analysis
- (1)
- DMSO extract:
- (2)
- Acetone extract:
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; MassonDelmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; 40p. [Google Scholar]
- Kram, S.L.; Price, N.N.; Donham, E.M.; Johnson, M.D.; Kelly, E.L.A.; Hamilton, S.L.; Smith, J.E. Variable responses of temperate calcified and fleshy macroalgae to elevated pCO2 and warming. ICES J. Mar. Sci. 2016, 73, 693–703. [Google Scholar] [CrossRef]
- Hurd, C.L.; Lenton, A.; Tillbrook, B.; Boyd, P.W. Current understanding and challenges for oceans in a higher-CO2 world. Nat. Clim. Chang. 2018, 8, 686–694. [Google Scholar] [CrossRef]
- Zou, D.H.; Gao, K.S. Temperature response of the photosynthetic light and carbon-use characteristics in the red seaweed Gracilaria lemaneiformis (Gracilariales, Rhodophyta). J. Phycol. 2014, 50, 366–375. [Google Scholar] [CrossRef]
- Pritchard, D.W.; Hurd, C.L.; Beardall, J.; Hepburn, C.D. Survival in low light: Photosynthesis and growth of a red alga in relation to measured in situ irradiance. J. Phycol. 2013, 49, 867–879. [Google Scholar] [CrossRef]
- Desmond, M.; Pritchard, D.; Hepburn, C. Light limitation within southern New Zealand kelp forest communities. PLoS ONE 2015, 10, e0123676. [Google Scholar] [CrossRef]
- Aumack, C.F.; Dunton, K.H.; Burd, A.B.; Funk, D.W.; Maffione, R.A. Linking light attenuation and suspended sediment loading to benthic productivity within an Arctic kelp-bed community. J. Phycol. 2007, 43, 853–863. [Google Scholar] [CrossRef]
- Desmond, M.J.; Pritchard, D.W.; Hepburn, C.D. Light dose versus rate of delivery: Implications for macroalgal productivity. Photosynth. Res. 2017, 132, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.H.; Vásquez, J.A.; Buschmann, A.H. Global ecology of the giant kelp Macrocystis: From ecotypes to ecosystems. Oceanogr. Mar. Biol. An. Ann. Rev. 2007, 45, 39–88. [Google Scholar]
- Roleda, M.Y.; Morris, J.Z.; McGraw, C.M.; Hurd, C.L. Ocean acidification and seaweed reproduction: Increased CO2 ameliorates the negative effects of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Glob. Chang. Biol. 2011, 18, 854–864. [Google Scholar] [CrossRef]
- Hurd, C.L.; Beardall, J.; Comeau, D.; Cornwall, C.E.; Havenhand, J.N.; Munday, P.L.; Parker, L.M.; Raven, J.A.; McGraw, C.M. Ocean acidification as a multiple driver: How interactions between changing seawater carbonate parameters affect marine life. Mar. Fresh Res. 2020, 71, 263–274. [Google Scholar] [CrossRef]
- Cuba, D.; Guardia-Luzon, K.; Cevallos, B.; Ramos-Larico, S.; Neira, E.; Pons, A.; Avila-Peltroche, J. Ecosystem Services Provided by Kelp Forests of the Humboldt Current System: A Comprehensive Review. Coasts 2022, 2, 259–277. [Google Scholar] [CrossRef]
- Raven, J.A. Putting the C in phycology. Eur. J. Phycol. 1997, 32, 319–333. [Google Scholar] [CrossRef]
- Raven, J.A.; Beardall, J. CO2 Concentrating mechanisms and environmental change. Aquat. Bot. 2014, 118, 24–37. [Google Scholar] [CrossRef]
- Moulin, P.; Andria, J.R.; Axelsson, L.; Mercado, J.M. Different mechanisms of inorganic carbon acquisition in red macroalgae (Rhodophyta) revealed by the use of TRIS buffer. Aquat. Bot. 2011, 95, 31–38. [Google Scholar] [CrossRef]
- Giordano, M.; Beardall, J.; Raven, J.A. CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 2005, 56, 99–131. [Google Scholar] [CrossRef]
- Fernández, P.A.; Hurd, C.L.; Roleda, M.Y. Bicarbonate uptake via anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH. J. Phycol. 2014, 50, 998–1008. [Google Scholar] [CrossRef] [PubMed]
- van der Loos, L.M.; Schmid, M.; Leal, P.P.; McGraw, C.M.; Britton, D.; Revill, A.T.; Virtue, P.; Nichols, P.D.; Hurd, C.L. Responses of macroalgae to CO2 enrichment cannot be inferred solely from their inorganic carbon uptake strategy. Ecol. Evol. 2019, 9, 125–140. [Google Scholar] [CrossRef]
- Cornwall, C.R.; Revill, A.T.; Hurd, C.L. High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynth. Res. 2015, 124, 181–190. [Google Scholar] [CrossRef]
- Hurd, C.L.; Hepburn, C.D.; Currie, K.I.; Raven, J.A.; Hunter, K.A. Testing the Effects of Ocean Acidification on Algal Metabolism: Considerations for Experimental Designs. J. Phycol. 2009, 45, 1236–1251. [Google Scholar] [CrossRef]
- Madsen, T.V.; Maberly, S.C. High internal resistance to CO2 uptake by submerged macrophytes that use HCO3−: Measurements in air, nitrogen and helium. Photosynth. Res. 2003, 77, 183–190. [Google Scholar] [CrossRef]
- Paine, E.R.; Britton, D.; Schmid, M.; Brewer, E.; Díaz-Pulido, G.; Boyd, P.W.; Hurd, C.L. No effect of ocean acidification on growth, photosynthesis, or dissolved organic carbon release by three temperate seaweeds with different dissolved inorganic carbon uptake strategies. ICES J. Mar. Sci. 2023, 80, 272–281. [Google Scholar] [CrossRef]
- Schiel, D.; Foster, M. The Population Biology of Large Brown Seaweeds: Ecological Consequences of Multiphase Life Histories in Dynamic Coastal Environments. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 343–372. [Google Scholar] [CrossRef]
- Matson, P.G.; Edwards, M.S. Effects of ocean temperature on the southern range limits of two understory kelps, Pterygophora californica and Eisenia arborea, at multiple life-stages. Mar. Biol. 2007, 151, 1941–1949. [Google Scholar] [CrossRef]
- Augyte, S.; Yarish, C.; Neefus, C. Thermal and light impacts on the early growth stages of the kelp Saccharina angustissima (Laminariales, Phaeophyceae). Algae 2019, 34, 153–162. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Boyd, P.W.; Hurd, C.L. Before ocean acidification: Calcifier chemistry lessons. J. Phycol. 2012, 48, 840–843. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, H.; Tan, T. Photosynthetic inorganic carbon utilization of gametophytes and sporophytes of Undaria pinnatifida (Phaeophyceae). Phycologia 2006, 45, 642–647. [Google Scholar] [CrossRef]
- Hollarsmith, J.A.; Buschmann, A.H.; Camus, C.; Grosholz, E. Varying reproductive success under ocean warming and acidification across giant kelp (Macrocystis pyrifera) populations. J. Exp. Mar. Biol. Ecol. 2020, 522, 15247. [Google Scholar] [CrossRef]
- Wernberg, T.; de Bettignies, T.; Joy, B.A.; Finnegan, P.M. Physiological responses of habitat-forming seaweeds to increasing temperatures. Limnol. Oceanogr. 2016, 61, 2180–2190. [Google Scholar] [CrossRef]
- Shukla, P.; Edwards, M.S. Elevated pCO2 is less detrimental than increased temperature to early development of the giant kelp, Macrocystis pyrifera (Phaeophyceae, Laminariales). Phycologia 2017, 56, 638–648. [Google Scholar] [CrossRef]
- Hurd, C.L.; Harrison, P.J.; Bischof, K.; Lobban, C.S. Seaweed Ecology and Physiology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014; 562p. [Google Scholar]
- Leal, P.P.; Hurd, C.L.; Fernández, P.A. Ocean acidification and kelp development: Reduced pH has no negative effects on meiospore germination and gametophyte development of Macrocystis pyrifera and Undaria pinnatifida. J. Phycol. 2017, 53, 557–566. [Google Scholar] [CrossRef]
- Kevekordes, K.; Holland, D.; Häubner, N.; Jenkins, S.; Koss, R.; Roberts, S.; Raven, J.A.; Scrimgeour, C.M.; Shelly, K.; Stojkovic, S.; et al. Inorganic carbon acquisition by eight species of Caulerpa (Caulerpaceae, Chlorophyta). Phycologia 2006, 45, 442–449. [Google Scholar] [CrossRef]
- Hepburn, C.; Pritchard, D.; Cornwall, C.; Mcleod, R.; Beardall, J.; Raven, J.; Hurd, C.L. Diversity of carbon use strategies in a kelp forest community: Implications for a high CO2 ocean. Glob. Chang. Biol. 2011, 17, 2488–2497. [Google Scholar] [CrossRef]
- Cornwall, C.; Revill, A.; Hall-Spencer, J.; Milazzo, M.; Raven, J.; Hurd, C.L. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Nature 2017, 7, 46297. [Google Scholar] [CrossRef] [PubMed]
- Schiel, D.R.; Foster, M.S. The Biology and Ecology of Giant Kelp Forest, 1st ed.; University of California Press: Oakland, CA, USA, 2015; 416p. [Google Scholar]
- Mann, K.H. Seaweeds: Their productivity and strategy for growth. Science 1973, 182, 975–981. [Google Scholar] [CrossRef]
- Graham, M.H. Effects of Local Deforestation on the Diversity and Structure of Southern California Giant Kelp Forest Food Webs. Ecosystems 2004, 7, 341–357. [Google Scholar] [CrossRef]
- Buschmann, A.H.; Villegas, K.; Pereda, S.V.; Camus, C.; Kappes, J.L.; Altamirano, R.; Vallejos, L.; Hernández-González, M.C. Enhancing yield on Macrocystis pyrifera (Ochrophyta): The effect of gametophytic developmental strategy. Algal Res. 2020, 52, 102124. [Google Scholar] [CrossRef]
- Camus, C.; Solas, M.; Martinez, C.; Vargas, J.; Garces, C.; Gil-Kodaka, P.; Ladah, L.B.; Serrão, E.A.; Faugeron, S. Mates Matter: Gametophyte Kinship Recognition and Inbreeding in the Giant Kelp, Macrocystis pyrifera (Laminariales, Phaeophyceae). J. Phycol. 2021, 57, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.P.; Terrados, J.; Rosenfeld, S.; Mendez, F.; Ojeda, J.; Mansilla, A. Effects of temperature and salinity on the reproductive phases of Macrocystis pyrifera (L.) C. Agardh (Phaeophyceae) in the Magellan region. J. Appl. Phycol. 2019, 31, 915–928. [Google Scholar] [CrossRef]
- Fernández, P.A.; Roleda, M.Y.; Hurd, C.L. Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynth. Res. 2015, 124, 293–304. [Google Scholar] [CrossRef]
- Price, G.D.; Badger, M.R. Inhibition by Proton Buffers of Photosynthetic Utilization of Bicarbonate in Chara corallina. Funct. Plant Biol. 1985, 12, 257–267. [Google Scholar] [CrossRef]
- Raven, J.A.; Giordano, M. Acquisition and metabolism of carbon in the Ochrophyta other than diatoms. Phil. Trans. R. Soc. 2017, 372, B37220160400. [Google Scholar] [CrossRef]
- Beardall, J.; Giordano, M. Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Func. Plan. Biol. 2002, 29, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.H.; Li, J.L.; Zhou, Z.G. Full-length mRNA sequencing in Saccharina japonica and identification of carbonic anhydrase genes. Aquac. Fish. 2019, 4, 53–60. [Google Scholar] [CrossRef]
- Bi, Y.-H.; Liang, C.-L.; Li, J.-L.; Yin, H.; Tian, R.-T.; Zhou, Z.-G. Effects of inorganic carbon concentration and pH on carbonic anhydrase activity of gametophytes of Saccharina japonica. Aquac. Fish. 2021, 6, 51–55. [Google Scholar] [CrossRef]
- Bi, Y.-H.; Qiao, Y.M.; Wang, Z.; Zhou, Z.-G. Identification and Characterization of a Periplasmic alpha-Carbonic Anhydrase (CA) in the Gametophytes of Saccharina japonica (Phaeophyceae). J. Phycol. 2021, 57, 295–310. [Google Scholar] [CrossRef]
- Hao, H.-M.; Bi, Y.-H.; Wei, N.-N.; Lin, P.-C.; Mei, S.-H.; Zhou, Z.G. Expression of a periplasmic β-carbonic anhydrase (CA) gene is positively correlated with HCO3− utilization by the gametophytes of Saccharina japonica (Phaeophyceae, Ochrophyta). J. Appl. Phycol. 2023, 35, 3021–3040. [Google Scholar] [CrossRef]
- Wang, W.; Xu, K.; Wang, W.; Xu, Y.; Ji, D.; Chen, C.; Xie, C. Physiological differences in photosynthetic inorganic carbon utilization between gametophytes and sporophytes of the economically important red algae Pyropia haitanensis. Algal Res. 2019, 39, 101436. [Google Scholar] [CrossRef]
- Beer, S.; Björk, M.; Beardall, J. Photosynthesis in the Marine Environment; Wiley: Oxford, UK, 2014; pp. 61–64. [Google Scholar]
- Bergstrom, E.; Ordonez, A.; Ho, M.; Hurd, C.L.; Fry, B.; Diaz-Pulido, G. Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming. Mar. Environ. Res. 2020, 161, 105107. [Google Scholar] [CrossRef]
- Falkowski, P.G.; LaRoche, J. Acclimation to spectral irradiance in algae. J. Phycol. 1991, 27, 8–14. [Google Scholar] [CrossRef]
- Coehlo, S.M.; Rijstenbil, J.W.; Brown, M.T. Impacts of anthropogenic stresses on the early development stages of seaweeds. J. Aquat. Ecosyst. Stress. Recovery 2000, 7, 317–333. [Google Scholar]
- Veenhof, R.J.; Champion, C.; Dworjanyn, S.A.; Wernberg, T.; Minne, A.J.P.; Layton, C.; Bolton, J.J.; Reed, D.C.; Coleman, M.A. Kelp Gametophytes in Changing Oceans. Oceanogr. Mar. Biol. An. Ann. Rev. 2022, 60, 335–371. [Google Scholar] [CrossRef]
- Smith, B.M.; Melis, A. Photosystem Stoichiometry and Excitation Distribution in Chloroplasts from Surface and Minus 20 Meter Blades of Macrocystis pyrifera, the Giant Kelp. Plant Physiol. 1987, 84, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Drobnitch, S.T.; Nickols, K.; Edwards, M. Abiotic influences on bicarbonate use in the giant kelp, Macrocystis pyrifera, in the Monterey Bay. J. Phycol. 2017, 53, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Machalek, K.M.; Davison, I.R.; Falkowski, P.G. Thermal acclimation and photoacclimation of photosynthesis in the brown alga Laminaria saccharina. Plant Cell Environ. 1996, 19, 1005–1016. [Google Scholar] [CrossRef]
- Colombo-Pallotta, M.; García Mendoza, E.; Ladah, L. Photosynthetic performance, light absorption, and pigment composition of Macrocystis pyrifera (Laminariales, Phaeophyceae) blades from different depths. J. Phycol. 2006, 2, 1225–1234. [Google Scholar] [CrossRef]
- Delebecq, G.; Davoult, D.; Janquin, M.A.; Oppliger, L.V.; Menu, D.; Dauvin, C.J.; Gevaert, F. Photosynthetic response to light and temperature in Laminaria digitata gametophytes from two French populations. Eur. J. Phycol. 2016, 51, 71–82. [Google Scholar] [CrossRef]
- Gerard, V.A. Ecotypic differentiation in the kelp Laminaria saccharina: Phase-specific adaptation in a complex life cycle. Mar. Biol. 1990, 107, 519–528. [Google Scholar] [CrossRef]
- Wheeler, W.N. Pigment content and photosynthetic of the frond of Macrocystis pyrifera. Mar. Biol. 1980, 56, 97–102. [Google Scholar] [CrossRef]
- Gao, K.; Umezaki, I. Comparative photosynthetic capacities of the leaves of upper and lower parts of Sargassum plants. Bot. Mar. 1988, 31, 231–236. [Google Scholar] [CrossRef]
- Ramus, J.; Lemons, F.; Zimmerman, C. Adaptation of light-harvesting pigments to downwelling light and the consequent photosynthetic performance of the eulittoral rockweeds Ascophyllum nodosum and Fucus vesiculosus. Mar. Biol. 1977, 42, 293–303. [Google Scholar] [CrossRef]
- Briggs, A.A.; Carpenter, R.C. Contrasting responses of photosynthesis and photochemical efficiency to ocean acidification under different light environments in a calcifying alga. Sci. Rep. 2019, 9, 3986. [Google Scholar] [CrossRef] [PubMed]
- Leal, P. Effects of Ocean Acidification, Temperature and Copper on the Development of Early Life Stages of the Native Kelp Macrocystis pyrifera and the Invasive Undaria pinnatifida from Southern New Zealand. Ph.D. Dissertation, University of Otago, Dunedin, New Zealand, 2016. [Google Scholar]
- McLachlan, J. Growth media. In Handbook of Phycological Methods, Culture Methods and Growth Measurements; Stein, J.R., Ed.; Cambridge University Press: Cambridge, UK, 1973; pp. 25–52. [Google Scholar]
- Gattuso, J.; Gao, K.; Lee, K.; Rost, B.; Schulz, K. Seawater carbonate chemistry. In Guide to Best Practices for Ocean Acidification Research and Data Reporting; Riebesell, U., Fabry, V.J., Hansson, L., Gatusso, J.P., Eds.; Publications Office of the European Union: Luxembourg, 2010; pp. 41–52. [Google Scholar]
- Dickson, A.; Sabine, C.; Christian, J. Guide to Best Practices for Ocean CO2 Measurements; Publication, PICES Special; North Pacific Marine Science Organization: Sidney, BC, Canada, 2007; p. 3.
- Hunter, K.A. SWCO2; University of Otago: Otago, New Zealand, 2007. [Google Scholar]
- Moroney, J.V.; Husic, H.D.; Tolbert, N.E. Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardii. Plant Physiol. 1985, 79, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Geib, K.; Golldak, D.; Gimmler, H. Is there a requirement for an external carbonic anhydrase in the extremely acid resistance in the green algae Dunaliella acidophyla. Eur. J. Phycol. 1996, 31, 272–284. [Google Scholar] [CrossRef]
- Axelsson, L.; Ryberg, H.; Beer, S. Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca. Plant Cell Environ. 1995, 18, 439–445. [Google Scholar] [CrossRef]
- Hanelt, D. Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar. Biol. 1998, 131, 361–369. [Google Scholar] [CrossRef]
- Al-Janabi, B.; Krause, I.; Graff, A.; Karsten, U.; Wahl, M. Genotypic variation influences tolerance to warming and acidification on early life-stages Fucus vesiculosus L. (Phaeophyceae) in seasonally fluctuating environment. Mar. Biol. 2016, 163, 14. [Google Scholar] [CrossRef]
- Seeley, G.; Duncan, J.; Vidaverd, W. Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Mar. Biol. 1972, 12, 184–188. [Google Scholar] [CrossRef]
- Wehde, W.; Jenkins-Smith, H.; Ripberger, J.; Copeland, G.; Noulin, M.; Hughes, T.; Fister, A.; Davis, J. Quantitative Research Methods for Political Science. Public Policy and Public Administration for Undergraduates: With Applications in R, 1st ed.; East Tennessee State University: Johnson City, TN, USA, 2020; 173p. [Google Scholar]
Variable | Source of Variation | Df | Sum of Squares | Mean Square | F | p | |
---|---|---|---|---|---|---|---|
CA specific inhibitors | pHT | 1 | 136 | 136 | 0.819 | 0.37067 | |
Light | 1 | 64 | 64 | 0.388 | 0.53696 | ||
Inhibitor | 2 | 23,318 | 11,659 | 70.289 | 5.64 × 10−14 | ||
pHT × Light | 1 | 1472 | 1472 | 8.876 | 0.00484 | ||
pHT × Inhibitor | 2 | 924 | 462 | 2.784 | 0.07348 | ||
Light × Inhibitor | 2 | 181 | 91 | 0.546 | 0.58328 | ||
pHT × Light × Inhibitor | 2 | 10 | 5 | 0.030 | 0.97023 | ||
Residual | 41 | 6801 | 166 | ||||
Total | 52 | ||||||
Direct HCO3− uptake specific inhibitor | pHT | 1 | 2626 | 2625.8 | 5.670 | 0.0246 | |
Light | 1 | 10 | 10.3 | 0.022 | 0.8827 | ||
Inhibitor | 1 | 1590 | 1590.5 | 3.434 | 0.0748 | ||
pHT × Light | 1 | 1824 | 1824.2 | 3.939 | 0.0574 | ||
pHT × Inhibitor | 1 | 157 | 156.7 | 0.338 | 0.5656 | ||
Light × Inhibitor | 1 | 124 | 123.5 | 0.267 | 0.6097 | ||
pHT × Light × inhibitor | 1 | 915 | 915.2 | 1.976 | 0.1712 | ||
Residual | 27 | 12,504 | 463.1 | ||||
Total | 34 | ||||||
Chl a | pHT | 1 | 0.00079 | 0.0007688 | 0.577 | 0.4583 | |
Light | 1 | 0.0193442 | 0.0193442 | 14.5336 | 0.001532 | ||
pHT × Light | 1 | 0.0039200 | 0.0039200 | 2.9452 | 0.105430 | ||
Residual | 16 | 0.0212960 | 0.00133 | ||||
Total | 19 | ||||||
Chl c | pHT | 1 | 0.046272 | 0.046272 | 76.6286 | 1.692 × 10−07 | |
Light | 1 | 0.002599 | 0.002599 | 4.3044 | 0.0545066 | ||
pHT × Light | 1 | 0.009946 | 0.009946 | 16.4706 | 0.0009129 | ||
Residual | 16 | 0.00962 | 0.000604 | ||||
Total | 19 | ||||||
Fucoxanthin | pHT | 1 | 0.0112813 | 0.012813 | 70.3539 | 2.985 × 10−07 | |
Light | 1 | 0.0001012 | 0.0001012 | 0.6314 | 0.438459 | ||
pHT × Light | 1 | 0.0025765 | 0.0025765 | 16.0677 | 0.001014 | ||
Residual | 16 | 0.0025656 | 0.0001603 | ||||
Total | 19 | ||||||
Chl c/Chl a ratio | pHT | 1 | 2.1125 | 2.1125 | 3.1467 | 0.0951083 | |
Light | 1 | 13.5681 | 13.5681 | 20.2111 | 0.0003668 | ||
pHT × Light | 1 | 0.0988 | 0.0988 | 0.1472 | 0.7062785 | ||
Residual | 16 | 10.7411 | 0.6713 | ||||
Total | 19 | ||||||
Fucox/Chl a ratio | pHT | 1 | 0.9622 | 0.9622 | 9.4816 | 0.007186 | |
Light | 1 | 1.62530 | 1.62530 | 16.0155 | 0.001028 | ||
pHT × Light | 1 | 0.06644 | 0.06644 | 0.6547 | 0.430320 | ||
Residual | 16 | 1.62372 | 0.10148 | ||||
Total | 19 | ||||||
Alfa (α) | pHT | 1 | 0.126995 | 0.126995 | 15.3919 | 0.001213 | |
Light | 1 | 0.002045 | 0.002045 | 0.2479 | 0.625320 | ||
pHT × Light | 1 | 0.000759 | 0.000759 | 0.0920 | 0.765564 | ||
Residual | 16 | 0.132012 | 0.008252 | ||||
Total | 19 | ||||||
ETRmax | pHT | 1 | 851.4 | 851.4 | 1.0459 | 0.3216728 | |
Light | 1 | 21,425.2 | 21,425.2 | 26.3208 | 0.0001007 | ||
pHT × Light | 1 | 7714.7 | 7714.7 | 9.4774 | 0.0071960 | ||
Residual | 16 | 13,024.1 | 814.0 | ||||
Total | 19 | ||||||
Ek | pHT | 1 | 410,680 | 410,680 | 6.3033 | 0.023173 | |
Light | 1 | 589,571 | 589,571 | 9.0490 | 0.008336 | ||
pHT × Light | 1 | 442,039 | 442,039 | 6.7846 | 0.019156 | ||
Residual | 16 | 1,042,450 | 65,153 | ||||
Total | 19 | ||||||
Fv/Fm | pHT | 1 | 0.083632 | 0.070899 | 72.1332 | 4.09 × 10−07 | |
Light | 1 | 0.004149 | 0.004149 | 1.2811 | 0.275 | ||
pHT × Light | 1 | 0.002299 | 0.002299 | 1.9732 | 0.181 | ||
Residual | 16 | 0.017394 | 0.001164 | ||||
Total | 19 |
Experiment 1 | pH | Light (µmol m−2s−1) | Pigment Concentration | ||||
Chl a (mg g−1 WW) | Chl c (mg g−1 WW) | Fucox (mg g−1 WW) | Chl c/Chl a Ratio | Fucox/Chl a Ratio | |||
7.8 | 20 | 0.11 ± 0.03 | 0.15 ± 0.03 | 0.08 ± 0.01 | 1.45 ± 0.52 | 0.83 ± 0.32 | |
50 | 0.07 ± 0.03 | 0.22 ± 0.03 | 0.10 ± 0.01 | 3.24 ± 1.17 | 1.52 ± 0.52 | ||
8.2 | 20 | 0.12 ± 0.07 | 0.10 ± 0.02 | 0.06 ± 0.02 | 0.94 ± 0.52 | 0.51 ± 0.11 | |
50 | 0.03 ± 0.01 | 0.08 ± 0.01 | 0.03 ± 0.01 | 2.45 ± 0.87 | 0.96 ± 0.15 | ||
Experiment 2 | pH | Temperature (°C) | |||||
7.8 | 12 | 0.13 ± 0.03 | 0.12 ± 0.06 | 0.09 ± 0.01 | 0.88 ± 0.26 | 0.73 ± 0.16 | |
16 | 0.13 ± 0.03 | 0.09 ± 0.02 | 0.11 ± 0.01 | 0.69 ± 0.08 | 0.84 ± 0.12 | ||
8.2 | 12 | 0.18 ± 0.05 | 0.10 ± 0.06 | 0.11 ± 0.02 | 0.55 ± 0.18 | 0.62 ± 0.11 | |
16 | 0.09 ± 0.01 | 0.06 ± 0.01 | 0.08 ± 0.01 | 0.69 ± 0.04 | 0.88 ± 0.07 |
Experiment 1 | pH | Light (µmol m−2s−1) | Photosynthetic Parameter | |||
α (µmol m−2s−1) | ETRmax (µmol e−1m−2s−1) | Ek (µmol m−2s−1) | Fv/Fm | |||
7.8 | 20 | 0.32 ± 0.07 | 73.32 ± 29.62 | 240.14 ± 102.61 | 0.53 ± 0.03 | |
50 | 0.31 ± 0.14 | 47.14 ± 19.16 | 194.09 ± 150.14 | 0.53 ± 0.04 | ||
8.2 | 20 | 0.17 ± 0.05 | 125.65 ± 44.12 | 824.07 ± 468.84 | 0.44 ± 0.05 | |
50 | 0.14 ± 0.08 | 20.91 ± 8.05 | 183.35 ± 87.90 | 0.38 ± 0.04 | ||
Experiment 2 | pH | Temperature (°C) | ||||
7.8 | 12 | 0.13 ± 0.02 | 52.04 ± 8.62 | 399.98 ± 113.28 | 0.41 ± 0.01 | |
16 | 0.15 ± 0.03 | 67.64 ± 42.96 | 512.49 ± 463.86 | 0.33 ± 0.06 | ||
8.2 | 12 | 0.29 ± 0.03 | 154.52 ± 89.34 | 558.14 ± 379.55 | 0.49 ± 0.01 | |
16 | 0.13 ± 0,02 | 76.95 ± 22.69 | 610.89 ± 219.26 | 0.29 ± 0.07 |
Variable | Source of Variation | Df | Sum of Squares | Mean Squares | F | p |
---|---|---|---|---|---|---|
CA specific inhibitors | pHT | 1 | 4813 | 4813 | 10.265 | 0.00244 |
Temperature | 1 | 208 | 208 | 0.444 | 0.50865 | |
Inhibitor | 2 | 23,047 | 11,523 | 24.578 | 4.95 × 10−08 | |
pHT × Temperature | 1 | 328 | 328 | 0.701 | 0.40684 | |
pHT × Inhibitor | 2 | 1234 | 617 | 1.316 | 0.27801 | |
Temperature × Inhibitor | 2 | 48 | 24 | 0.051 | 0.95046 | |
pHT × Temperature × Inhibitor | 2 | 898 | 449 | 0.957 | 0.39124 | |
Residual | 47 | 22,036 | 469 | |||
Total | 58 | |||||
Chl a | pHT | 1 | 0.0001250 | 0.0001250 | 0.1144 | 0.739635 |
Temperature | 1 | 0.0090738 | 0.0090738 | 8.3012 | 0.010857 | |
pHT × Temperature | 1 | 0.0120050 | 0.0120050 | 10.9828 | 0.004388 | |
Residual | 16 | 0.0174892 | 0.0010931 | |||
Total | 19 | |||||
Chl c | pHT | 1 | 0.0021013 | 0.0021013 | 1.0902 | 0.319 |
Temperature | 1 | 0.0056112 | 0.0056112 | 2.9114 | 0.1073 | |
pHT × Temperature | 1 | 0.000441 | 0.000441 | 0.2148 | 0.6492 | |
Residual | 16 | 0.0308372 | 0.0019273 | |||
Total | 19 | |||||
Fucoxanthin | pHT | 1 | 0.0002048 | 0.0002048 | 1.1790 | 0.2936401 |
Temperature | 1 | 0.0001250 | 0.0001250 | 0.7196 | 0.4087771 | |
pHT × Temperature | 1 | 0.0030752 | 0.0030752 | 17.7041 | 0.0006678 | |
Residual | 16 | 0.0027792 | 0.0001737 | |||
Total | 19 | |||||
Direct HCO3− uptake specific inhibitor | pHT | 1 | 0.0093 | 0.0093 | 0.0216 | 0.884258 |
Temperature | 1 | 2.3219 | 2.3219 | 5.3748 | 0.027682 | |
Inhibitor | 1 | 3.8610 | 3.8610 | 8.9378 | 0.005643 | |
pHT × Temperature | 1 | 0.8857 | 0.8857 | 2.0502 | 0.162876 | |
pHT × Inhibitor | 1 | 0.6803 | 0.6803 | 1.5747 | 0.219540 | |
Temperature × Inhibitor | 1 | 0.5781 | 0.5781 | 1.3383 | 0.256780 | |
pHT × Temperature × Inhibitor | 1 | 0.0379 | 0.0379 | 0.0878 | 0.769070 | |
Residual | 29 | 12.5277 | 0.4320 | |||
Total | 36 | |||||
Chl c/Chl a ratio | pHT | 1 | 0.13558 | 0.135584 | 4.9763 | 0.04036 |
Temperature | 1 | 0.00250 | 0.002503 | 0.0919 | 0.76573 | |
pHT × Temperature | 1 | 0.12890 | 0.128903 | 4.7311 | 0.04496 | |
Residual | 16 | 0.43594 | 0.027246 | |||
Total | 19 | |||||
Fucox/Chl a ratio | pHT | 1 | 0.007987 | 0.007987 | 0.5588 | 0.465584 |
Temperature | 1 | 0.170134 | 0.170134 | 11.9038 | 0.003292 | |
pHT × Temperature | 1 | 0.029260 | 0.029260 | 2.0473 | 0.171721 | |
Residual | 16 | 0.228680 | 0.014292 | |||
Total | 19 | |||||
Alfa (α) | pHT | 1 | 0.021258 | 0.021258 | 30.397 | 4.721 × 10−05 |
Temperature | 1 | 0.023899 | 0.023899 | 34.173 | 2.483 × 10−05 | |
pHT × Temperature | 1 | 0.038660 | 0.038660 | 55.280 | 1.415 × 10−06 | |
Residual | 16 | 0.011189 | 0.000699 | |||
Total | 19 | |||||
ETRmax | pHT | 1 | 15,619 | 1561.2 | 5.9981 | 0.02622 |
Temperature | 1 | 4801 | 4801.2 | 1.8438 | 0.01934 | |
pHT × Temperature | 1 | 10,853 | 10,853.5 | 4.1680 | 0.05804 | |
Residual | 16 | 41,664 | 2604.0 | |||
Total | 19 | |||||
Ek | pHT | 1 | 0.009677 | 0.0096772 | 1.6753 | 0.2139 |
Temperature | 1 | 0.000307 | 0.0003066 | 0.0531 | 0.8207 | |
pHT × Temperature | 1 | 0.002017 | 0.0020166 | 0.3491 | 0.5629 | |
Residual | 16 | 0.092422 | 0.0057764 | |||
Total | 19 | |||||
Fv/Fm | pHT | 1 | 0.00337 | 0.00337 | 5.466 | 0.03475 |
Temperature | 1 | 0.11913 | 0.11913 | 193.074 | 1.39 × 10−09 | |
pHT × Temperature | 1 | 0.01393 | 0.01393 | 22.578 | 0.00031 | |
Residual | 14 | 0.00864 | 0.00062 | |||
Total | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labbé, B.S.; Fernández, P.A.; Florez, J.Z.; Buschmann, A.H. Effects of pH, Temperature, and Light on the Inorganic Carbon Uptake Strategies in Early Life Stages of Macrocystis pyrifera (Ochrophyta, Laminariales). Plants 2024, 13, 3267. https://doi.org/10.3390/plants13233267
Labbé BS, Fernández PA, Florez JZ, Buschmann AH. Effects of pH, Temperature, and Light on the Inorganic Carbon Uptake Strategies in Early Life Stages of Macrocystis pyrifera (Ochrophyta, Laminariales). Plants. 2024; 13(23):3267. https://doi.org/10.3390/plants13233267
Chicago/Turabian StyleLabbé, Bárbara S., Pamela A. Fernández, July Z. Florez, and Alejandro H. Buschmann. 2024. "Effects of pH, Temperature, and Light on the Inorganic Carbon Uptake Strategies in Early Life Stages of Macrocystis pyrifera (Ochrophyta, Laminariales)" Plants 13, no. 23: 3267. https://doi.org/10.3390/plants13233267
APA StyleLabbé, B. S., Fernández, P. A., Florez, J. Z., & Buschmann, A. H. (2024). Effects of pH, Temperature, and Light on the Inorganic Carbon Uptake Strategies in Early Life Stages of Macrocystis pyrifera (Ochrophyta, Laminariales). Plants, 13(23), 3267. https://doi.org/10.3390/plants13233267