Genome-Wide Dissection of Selection on microRNA Target Genes Involved in Rice Flower Development
Abstract
:1. Introduction
2. Results
2.1. Prediction of miRNA Targets Involved in Rice Flower Development
2.2. Naturally Occurring Variation Within miRNA Binding Sites
2.3. Reduced Polymorphisms in and Purifying Selection on Conserved miRNA Binding Sites
2.4. Elevated Variation and the Signature of Natural Selection and/or Artificial Selection in the Two Rice-Specific miRNA Binding Sites
2.5. Variants Located Within Rice-Specific miRNA Binding Sites May Affect miRNA–Target Interactions
3. Discussion
4. Materials and Methods
4.1. Sample Collection and DNA Isolation
4.2. Prediction of miRNA Target Genes Involved in Flower Development
4.3. PCR Amplification and DNA Resequencing
4.4. Data Analyses and Neutrality Tests
4.5. Sequence Resampling
4.6. Computation of Hybridization Energy of miRNA/Target Duplex
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones-Rhoades, M.W.; Bartel, D.P.; Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 2006, 57, 19–53. [Google Scholar] [CrossRef] [PubMed]
- Rhoades, M.W.; Reinhart, B.J.; Lim, L.P.; Burge, C.B.; Bartel, B.; Bartel, D.P. Prediction of plant microRNA targets. Cell 2002, 110, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Lindow, M.; Gorodkin, J. Principles and limitations of computational microRNA gene and target finding. DNA Cell Biol. 2007, 26, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server. Nucleic Acids Res. 2011, 39, W155–W159. [Google Scholar] [CrossRef]
- Jones-Rhoades, M.W.; Bartel, D.P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell 2004, 14, 787–799. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- Lu, C.; Jeong, D.-H.; Kulkarni, K.; Pillay, M.; Nobuta, K.; German, R.; Thatcher, S.R.; Maher, C.; Zhang, L.; Ware, D.; et al. Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc. Natl. Acad. Sci. USA 2008, 105, 4951–4956. [Google Scholar] [CrossRef]
- Zhu, Q.-H.; Spriggs, A.; Matthew, L.; Fan, L.; Kennedy, G.; Gubler, F.; Helliwell, C. A Diverse Set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res. 2008, 18, 1456–1465. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, Y.; Xue, D.; Wang, J.; Yan, M.; Liu, G.; Dong, G.; Zeng, D.; Lu, Z.; Zhu, X.; et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 2010, 42, 541–544. [Google Scholar] [CrossRef]
- Miura, K.; Ikeda, M.; Matsubara, A.; Song, X.-J.; Ito, M.; Asano, K.; Matsuoka, M.; Kitano, H.; Ashikari, M. OsSPL14 Promotes panicle branching and higher grain productivity in rice. Nat. Genet. 2010, 42, 545–549. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Zou, Y.; Chen, L.; Cai, Z.; Zhang, S.; Zhao, F.; Tian, Y.; Jiang, Q.; Ferguson, B.J.; et al. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. Plant Cell 2015, 26, 4782–4801. [Google Scholar] [CrossRef] [PubMed]
- Kidner, C.A.; Martienssen, R.A. The developmental role of microRNA in plants. Curr. Opin. Plant Biol. 2005, 8, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Chuck, G.; Candela, H.; Hake, S. Big Impacts by small RNAs in plant development. Curr. Opin. Plant Biol. 2009, 12, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Aukerman, M.J.; Sakai, H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 2003, 15, 2730–2741. [Google Scholar] [CrossRef]
- Chuck, G.; Meeley, R.; Irish, E.; Sakai, H.; Hake, S. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/Indeterminate Spikelet1. Nat. Genet. 2007, 39, 1517–1521. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, D.; Bo, S.; Chen, H.; Zheng, J.; Zhu, Q.-H.; Cai, D.; Helliwell, C.; Fan, L. Sequence variation and selection of small RNAs in domesticated rice. BMC Ecol. Evol. 2010, 10, 119. [Google Scholar] [CrossRef]
- Zik, M.; Irish, V.F. Flower development: Initiation, differentiation, and diversification. Annu. Rev. Cell Dev. Biol. 2003, 19, 119–140. [Google Scholar] [CrossRef]
- Krizek, B.A.; Fletcher, J.C. Molecular mechanisms of flower development: An armchair guide. Nat. Rev. Genet. 2005, 6, 688–698. [Google Scholar] [CrossRef]
- Felippes, F.F.D.; Schneeberger, K.; Dezulian, T.; Huson, D.H.; Weigel, D. Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA 2008, 14, 2455–2459. [Google Scholar] [CrossRef]
- Wray, G.A. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 2007, 8, 206–216. [Google Scholar] [CrossRef]
- Keightley, P.D.; Gaffney, D.J. Functional constraints and frequency of deleterious mutations in noncoding DNA of rodents. Proc. Natl. Acad. Sci. USA 2003, 100, 13402–13406. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Rajewsky, N. Natural selection on human microRNA binding sites inferred from SNP data. Nat. Genet. 2006, 38, 1452–1456. [Google Scholar] [CrossRef] [PubMed]
- Drake, J.A.; Bird, C.; Nemesh, J.; Thomas, D.J.; Newton-Cheh, C.; Reymond, A.; Excoffier, L.; Attar, H.; Antonarakis, S.E.; Dermitzakis, E.T.; et al. Conserved noncoding sequences are selectively constrained and not mutation cold spots. Nat. Genet. 2006, 38, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Ehrenreich, I.M.; Purugganan, M.D. Sequence variation of microRNAs and their binding sites in Arabidopsis. Plant Physiol. 2008, 146, 1974–1982. [Google Scholar] [CrossRef]
- Guo, X.; Gui, Y.; Wang, Y.; Zhu, Q.-H.; Helliwell, C.; Fan, L. Selection and mutation on microRNA target sequences during rice evolution. BMC Genom. 2008, 9, 454. [Google Scholar] [CrossRef]
- Liu, T.; Fang, C.; Ma, Y.; Shen, Y.; Li, C.; Li, Q.; Wang, M.; Liu, S.; Zhang, J.; Zhou, Z.; et al. Global investigation of the co-evolution of miRNA genes and microRNA targets during Soybean domestication. Plant J. 2016, 85, 396–409. [Google Scholar] [CrossRef]
- De Meaux, J.; Hu, J.-Y.; Tartler, U.; Goebel, U. Structurally different alleles of the ath-Mir824 microRNA precursor are maintained at high frequency in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2008, 105, 8994–8999. [Google Scholar] [CrossRef]
- Oka, H.I. Origin of Cultivated Rice; Developments in Crop Science; Japan Scientific Societies Press: Tokyo, Japan, 1988; ISBN 978-4-7622-1544-5. [Google Scholar]
- Kovach, M.J.; Sweeney, M.T.; McCouch, S.R. New insights into the history of rice domestication. Trends Genet. 2007, 23, 578–587. [Google Scholar] [CrossRef]
- Gao, L.; Innan, H. Nonindependent domestication of the two rice subspecies, Oryza sativa ssp. Indica and ssp. Japonica, demonstrated by multilocus microsatellites. Genetics 2008, 179, 965–976. [Google Scholar] [CrossRef]
- Yu, J.; Hu, S.; Wang, J.; Wong, G.K.-S.; Li, S.; Liu, B.; Deng, Y.; Dai, L.; Zhou, Y.; Zhang, X.; et al. A draft sequence of the rice genome (Oryza sativa L. ssp. Indica). Science 2002, 296, 79–92. [Google Scholar] [CrossRef]
- International Rice Genome Sequencing Project; Sasaki, T. The map-based sequence of the rice genome. Nature 2005, 436, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.-C.; Zhou, H.; Li, Y.; Chen, J.-Y.; Yang, J.-H.; Chen, Y.-Q.; Qu, L.-H. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett. 2006, 580, 5111–5116. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.-H.; Upadhyaya, N.M.; Gubler, F.; Helliwell, C.A. Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol. 2009, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.; Kasprzewska, A.; Tennessen, K.; Fernandes, J.; Nan, G.-L.; Walbot, V.; Sundaresan, V.; Vance, V.; Bowman, L.H. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res. 2009, 19, 1429–1440. [Google Scholar] [CrossRef]
- Xue, L.-J.; Zhang, J.-J.; Xue, H.-W. Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res. 2009, 37, 916–930. [Google Scholar] [CrossRef]
- Sunkar, R.; Girke, T.; Jain, P.K.; Zhu, J.-K. Cloning and characterization of microRNAs from rice. Plant Cell 2005, 17, 1397–1411. [Google Scholar] [CrossRef]
- Tsuji, H.; Aya, K.; Ueguchi-Tanaka, M.; Shimada, Y.; Nakazono, M.; Watanabe, R.; Nishizawa, N.K.; Gomi, K.; Shimada, A.; Kitano, H.; et al. GAMYB Controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J. 2006, 47, 427–444. [Google Scholar] [CrossRef]
- Xie, K.; Wu, C.; Xiong, L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 2006, 142, 280–293. [Google Scholar] [CrossRef]
- Yang, J.H. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res. 2006, 34, 1892–1899. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.-C.; Wang, C.-Y.; Luo, Y.-C.; Huang, Q.-J.; Chen, S.-Y.; Zhou, H.; Qu, L.-H.; Chen, Y.-Q. Expression analysis of phytohormone-regulated microRNAs in rice, Implying Their Regulation Roles in Plant Hormone Signaling. FEBS Lett. 2009, 583, 723–728. [Google Scholar] [CrossRef]
- Li, Y.-F.; Zheng, Y.; Addo-Quaye, C.; Zhang, L.; Saini, A.; Jagadeeswaran, G.; Axtell, M.J.; Zhang, W.; Sunkar, R. Transcriptome-wide identification of microRNA targets in rice: Rice microRNA Targets. Plant J. 2010, 62, 742–759. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Gu, L.; Li, P.; Song, X.; Wei, L.; Chen, Z.; Cao, X. Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. Indica). Front. Biol. 2010, 5, 67–90. [Google Scholar] [CrossRef]
- Zhang, J.-P.; Yu, Y.; Feng, Y.-Z.; Zhou, Y.-F.; Zhang, F.; Yang, Y.-W.; Lei, M.-Q.; Zhang, Y.-C.; Chen, Y.-Q. miRNA MiR408 regulates grain yield and photosynthesis via a phytocyanin protein. Plant Physiol. 2017, 175, 1175–1185. [Google Scholar] [CrossRef]
- Peng, T.; Lv, Q.; Zhang, J.; Li, J.; Du, Y.; Zhao, Q. Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa). J. Exp. Bot. 2011, 62, 4943–4954. [Google Scholar] [CrossRef]
- Wei, L.Q.; Yan, L.F.; Wang, T. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol. 2011, 12, R53. [Google Scholar] [CrossRef]
- Caicedo, A.L.; Williamson, S.H.; Hernandez, R.D.; Boyko, A.; Fledel-Alon, A.; York, T.L.; Polato, N.R.; Olsen, K.M.; Nielsen, R.; McCouch, S.R.; et al. Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLOS Genet. 2007, 3, 56. [Google Scholar] [CrossRef]
- Waser, N.M. A Primer of Population Genetics (3rd Edn). In Heredity; ProQuest: Cardiff, Wales, 2000; Volume 85, pp. 509–510. [Google Scholar]
- Zeng, K.; Fu, Y.-X.; Shi, S.; Wu, C.-I. Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 2006, 174, 1431–1439. [Google Scholar] [CrossRef]
- Fay, J.C.; Wu, C.-I. Hitchhiking under positive darwinian selection. Genetics 2000, 155, 1405–1413. [Google Scholar] [CrossRef]
- Hudson, R.R.; Kreitman, M.; Aguadé, M. A test of neutral molecular evolution based on nucleotide data. Genetics 1987, 116, 153–159. [Google Scholar] [CrossRef]
- Zhu, Q.; Zheng, X.; Luo, J.; Gaut, B.S.; Ge, S. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: Severe bottleneck during domestication of rice. Mol. Biol. Evol. 2007, 24, 875–888. [Google Scholar] [CrossRef]
- Kater, M.M.; Dreni, L.; Colombo, L. Functional conservation of MADS-Box factors controlling floral organ identity in rice and Arabidopsis. J. Exp. Bot. 2006, 57, 3433–3444. [Google Scholar] [CrossRef] [PubMed]
- Ito, T. Coordination of flower development by homeotic master regulators. Curr. Opin. Plant Biol. 2011, 14, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Chuck, G.; Cigan, A.M.; Saeteurn, K.; Hake, S. The heterochronic maize mutant corngrass1 results from overexpression of a tandem microRNA. Nat. Genet. 2007, 39, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-W.; Czech, B.; Weigel, D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis Thaliana. Cell 2009, 138, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Park, M.Y.; Conway, S.R.; Wang, J.-W.; Weigel, D.; Poethig, R.S. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 2009, 138, 750–759. [Google Scholar] [CrossRef]
- Zhang, Q.; Lu, M.; Cui, Q. SNP analysis reveals an evolutionary acceleration of the human-specific microRNAs. Nat. Preced. 2008. [Google Scholar] [CrossRef]
- Georges, M.; Coppieters, W.; Charlier, C. Polymorphic miRNA-mediated gene regulation: Contribution to phenotypic variation and disease. Curr. Opin. Genet. Dev. 2007, 17, 166–176. [Google Scholar] [CrossRef]
- Zhu, T.; Xu, P.-Z.; Liu, J.-P.; Peng, S.; Mo, X.-C.; Gao, L.-Z. Phylogenetic relationships and genome divergence among the AA-genome species of the genus Oryza as revealed by 53 nuclear genes and 16 intergenic regions. Mol. Phylogenetics Evol. 2014, 70, 348–361. [Google Scholar] [CrossRef]
- Zhang, Q.-J.; Zhu, T.; Xia, E.-H.; Shi, C.; Liu, Y.-L.; Zhang, Y.; Liu, Y.; Jiang, W.-K.; Zhao, Y.-J.; Mao, S.-Y.; et al. Rapid diversification of five Oryza AA genomes associated with rice adaptation. Proc. Natl. Acad. Sci. USA 2014, 111, E4954–E4962. [Google Scholar] [CrossRef]
- Gao, L.-Z.; Liu, Y.-L.; Zhang, D.; Li, W.; Gao, J.; Liu, Y.; Li, K.; Shi, C.; Zhao, Y.; Zhao, Y.-J.; et al. Evolution of Oryza chloroplast genomes promoted adaptation to diverse ecological habitats. Commun. Biol. 2019, 2, 278. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid dna isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Schwab, R.; Palatnik, J.F.; Riester, M.; Schommer, C.; Schmid, M.; Weigel, D. Specific effects of microRNAs on the plant transcriptome. Dev. Cell 2005, 8, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. In Nucleic Acids Symposium Series; Oxford University Press: Oxford, UK, 1999; Volume 41, pp. 95–98. [Google Scholar]
- Thompson, J. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [PubMed]
- Stephens, M.; Donnelly, P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 2003, 73, 1162–1169. [Google Scholar] [CrossRef]
- Rozas, J. DNA sequence polymorphism analysis using DnaSP. In Bioinformatics for DNA Sequence Analysis; Posada, D., Ed.; Humana Press: Totowa, NJ, USA, 2009; Volume 537, pp. 337–350. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Bernhart, S.H.; Tafer, H.; Mückstein, U.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol. Biol. 2006, 1, 3. [Google Scholar] [CrossRef]
- Rehmsmeier, M.; Steffen, P.; Höchsmann, M.; Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10, 1507–1517. [Google Scholar] [CrossRef]
- Kozomara, A.; Griffiths-Jones, S. miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39, D152–D157. [Google Scholar] [CrossRef]
Statistics | Populations | Background Diversity b | Conserved | Nonconserved | ||
---|---|---|---|---|---|---|
Target Sites | Average Size (bp) | Target Sites | Average Size (bp) | |||
π a (per kb) | Cultivated rice | 3.20 | 2.76 | 572 | 9.83 | 635 |
Wild rice | 5.19 | 4.82 | 570 | 11.43 | 646 |
NO | Target Gene | Allele a | IND b | TEM b | TRO b | JAP b | ON b | OR b |
---|---|---|---|---|---|---|---|---|
1 | LOC_Os01g18850 | C | 0 | 0 | 0 | 0 | 0 | 0.05 |
2 | G | 0 | 0 | 0 | 0 | 0 | 0.11 | |
3 | T | 0.06 | 0.17 | 0.35 | 0.26 | 0 | 0.79 | |
4 | G | 0.82 | 0.94 | 0.88 | 0.91 | 0.60 | 0.37 | |
5 | LOC_Os09g23620 | T | 1 | 1 | 0.94 | 0.97 | 0.20 | 0.53 |
6 | G | 0 | 0 | 0.06 | 0.03 | 0 | 0.05 | |
7 | T | 0 | 0 | 0.06 | 0.03 | 0 | 0.05 | |
8 | T | 0 | 0 | 0.06 | 0.03 | 0.80 | 0.58 | |
9 | T | 0 | 0 | 0 | 0 | 0.20 | 0.05 |
Taxon | LOC_Os01g18850 | LOC_Os09g23620 | ||||
---|---|---|---|---|---|---|
H a | MLHKA b | Average Size (bp) | H a | MLHKA b | Average Size (bp) | |
indica | 0.005 ** | 0.760 | 473 | 0.735 | 0.820 | 730 |
japonica | 0.281 | 0.032 * | 474 | 0.006 * | 0.022 * | 730 |
Temperate japonica | 0.016 * | 0.034 * | 474 | 0.166 | 0.030 * | 730 |
Tropical japonica | 0.437 | 0.032 * | 474 | 0.014 * | 0.020 * | 729 |
O. nivara | 0.134 | 0.850 | 474 | 0.691 | 0.991 | 723 |
O. rufipogon | 0.182 | 0.940 | 473 | 0.753 | 0.991 | 729 |
Target Gene | Haplotypes | MFE | Normalized MFE |
---|---|---|---|
LOC_Os01g18850 | (1) CCGUCCCAUAAUAUAAGGGAUU | −36.85 | −13.76 |
(2) CUGUCCCAUAAUAUAAGGGAUU | −34.68 | −12.92 | |
(3) CCGUCCCAUAAUAUAAGG-AUU | −31.04 | −11.56 | |
(4) CCAUCCCAUAAUAUAAGGGAUU | −31.18 | −11.61 | |
(5) CCGUCUCAUAAUAUAAGGAAUU | −27.97 | −10.42 | |
LOC_Os09g23620 | (1) CCGUCCCAUAAUAUAAGAGAUU | −29.96 | −11.16 |
(2) CGGUCUCAUAAUAUAAGAGAUU | −22.99 | −8.56 | |
(3) CGGUCUCAUAAUAUAAGAGAUC | −22.42 | −8.35 | |
(4) UGGUCUCAUAAUACAAGAGAUU | −18.95 | −7.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Ling, L.-Z.; Gao, L.-Z. Genome-Wide Dissection of Selection on microRNA Target Genes Involved in Rice Flower Development. Plants 2024, 13, 3281. https://doi.org/10.3390/plants13233281
Zhang F, Ling L-Z, Gao L-Z. Genome-Wide Dissection of Selection on microRNA Target Genes Involved in Rice Flower Development. Plants. 2024; 13(23):3281. https://doi.org/10.3390/plants13233281
Chicago/Turabian StyleZhang, Fen, Li-Zhen Ling, and Li-Zhi Gao. 2024. "Genome-Wide Dissection of Selection on microRNA Target Genes Involved in Rice Flower Development" Plants 13, no. 23: 3281. https://doi.org/10.3390/plants13233281
APA StyleZhang, F., Ling, L. -Z., & Gao, L. -Z. (2024). Genome-Wide Dissection of Selection on microRNA Target Genes Involved in Rice Flower Development. Plants, 13(23), 3281. https://doi.org/10.3390/plants13233281