Heat Wave Adaptations: Unraveling the Competitive Dynamics Between Invasive Wedelia trilobata and Native Wedelia chinensis
Abstract
:1. Introduction
2. Result and Discussion
2.1. Divergent Physiological Adaptations to HW in Wedelia trilobata and Wedelia chinensis
2.2. Heat Wave Effects on Photosynthesis Traits in Wedelia Species
2.3. Calculation-Driven Insights: HW as a Catalyst for W. trilobata’s Invasive Advantage
3. Conclusions
4. Materials and Methods
4.1. Experimental Design
4.2. Determination of Local HW Temperature
4.3. Data Collection
4.4. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, J.; Mack, R.N.; Lu, P.; Ren, M.; Huang, H. China’s Booming Economy Is Sparking and Accelerating Biological Invasions. Bioscience 2008, 58, 317–324. [Google Scholar] [CrossRef]
- Dai, Z.; Wan, L.; Qi, S.; Rutherford, S.; Ren, G.; Wan, J.S.H.; Du, D. Synergy among Hypotheses in the Invasion Process of Alien Plants: A Road Map within a Timeline. Perspect. Plant Ecol. Evol. Syst. 2020, 47, 125575. [Google Scholar] [CrossRef]
- Dai, Z.; Zhu, B.; Wan, J.S.H.; Rutherford, S. Editorial: Global Changes and Plant Invasions. Front. Ecol. Evol. 2022, 10, 845816. [Google Scholar] [CrossRef]
- VilÀ, M.; Dunn, A.M.; Essl, F.; Gómez-DÍaz, E.; Hulme, P.E.; Jeschke, J.M.; NÚÑez, M.A.; Ostfeld, R.S.; Pauchard, A.; Ricciardi, A.; et al. Viewing Emerging Human Infectious Epidemics through the Lens of Invasion Biology. BioScience 2021, 71, 722–740. [Google Scholar] [CrossRef]
- Diagne, C.; Leroy, B.; Vaissière, A.-C.; Gozlan, R.E.; Roiz, D.; Jarić, I.; Salles, J.-M.; Bradshaw, C.J.A.; Courchamp, F. High and Rising Economic Costs of Biological Invasions Worldwide. Nature 2021, 592, 571–576. [Google Scholar] [CrossRef]
- Bellard, C.; Bernery, C.; Leclerc, C. Looming Extinctions Due to Invasive Species: Irreversible Loss of Ecological Strategy and Evolutionary History. Glob. Chang. Biol. 2021, 27, 4967–4979. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, J.; Siemann, E.; Keller, S.R. Biocontrol of Invasive Weeds under Climate Change: Progress, Challenges and Management Implications. Curr. Opin. Insect Sci. 2020, 38, 72–78. [Google Scholar] [CrossRef]
- Breshears, D.D.; Fontaine, J.B.; Ruthrof, K.X.; Field, J.P.; Feng, X.; Burger, J.R.; Law, D.J.; Kala, J.; Hardy, G.E.S.J. Underappreciated Plant Vulnerabilities to Heat Waves. New Phytol. 2021, 231, 32–39. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A.; Nakhjiri, N.; Farahmand, A. Global Integrated Drought Monitoring and Prediction System. Sci. Data 2014, 1, 140001. [Google Scholar] [CrossRef]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate Extremes: Observations, Modeling, and Impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Dusenge, M.E.; Duarte, A.G.; Way, D.A. Plant Carbon Metabolism and Climate Change: Elevated CO2 and Temperature Impacts on Photosynthesis, Photorespiration and Respiration. New Phytol. 2019, 221, 32–49. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Lawas, L.M.F.; Raju, B.R.; Jagadish, S.V.K. Acquired Thermo-Tolerance and Trans-Generational Heat Stress Response at Flowering in Rice. J. Agron. Crop Sci. 2016, 202, 309–319. [Google Scholar] [CrossRef]
- Chi, W.; Fung, R.W.M.; Liu, H.; Hsu, C.; Charng, Y. Temperature-Induced Lipocalin Is Required for Basal and Acquired Thermotolerance in Arabidopsis. Plant Cell Environ. 2009, 32, 917–927. [Google Scholar] [CrossRef]
- Yang, B.; Cui, M.; Dai, Z.; Li, J.; Yu, H.; Fan, X.; Rutherford, S.; Du, D. Non-Additive Effects of Environmental Factors on Growth and Physiology of Invasive Solidago Canadensis and a Co-Occurring Native Species (Artemisia Argyi). Plants 2023, 12, 128. [Google Scholar] [CrossRef]
- Zhou, X.; He, W. Climate Warming Facilitates Seed Germination in Native but Not Invasive Solidago Canadensis Populations. Front. Ecol. Evol. 2020, 8, 595214. [Google Scholar] [CrossRef]
- Duarte, B.; Marques, J.C.; Caçador, I. Ecophysiological Response of Native and Invasive Spartina Species to Extreme Temperature Events in Mediterranean Marshes. Biol. Invasions 2016, 18, 2189–2205. [Google Scholar] [CrossRef]
- Wu, H.; Ismail, M.; Ding, J. Global Warming Increases the Interspecific Competitiveness of the Invasive Plant Alligator Weed, Alternanthera Philoxeroides. Sci. Total Environ. 2017, 575, 1415–1422. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, H.; Sun, X.; Ding, J. Effects of Elevated Temperature on Chemistry of an Invasive Plant, Its Native Congener and Their Herbivores. J. Plant Ecol. 2022, 15, 450–460. [Google Scholar] [CrossRef]
- Königshofer, H.; Tromballa, H.; Löppert, H. Early Events in Signalling High-Temperature Stress in Tobacco BY2 Cells Involve Alterations in Membrane Fluidity and Enhanced Hydrogen Peroxide Production. Plant Cell Environ. 2008, 31, 1771–1780. [Google Scholar] [CrossRef]
- Haider, S.; Iqbal, J.; Naseer, S.; Yaseen, T.; Shaukat, M.; Bibi, H.; Ahmad, Y.; Daud, H.; Abbasi, N.L.; Mahmood, T. Molecular Mechanisms of Plant Tolerance to Heat Stress: Current Landscape and Future Perspectives. Plant Cell Rep. 2021, 40, 2247–2271. [Google Scholar] [CrossRef] [PubMed]
- Simberloff, D.; Rejmanek, M. (Eds.) 100 of the World’s Worst Invasive Alien Species: A Selection From The Global Invasive Species Database. In Encyclopedia of Biological Invasions; University of California Press: Berkeley, CA, USA, 2019; pp. 715–716. ISBN 978-0-520-94843-3. [Google Scholar]
- Dai, Z.; Kong, F.; Li, Y.; Ullah, R.; Ali, E.A.; Gul, F.; Du, D.; Zhang, Y.; Jia, H.; Qi, S.; et al. Strong Invasive Mechanism of Wedelia trilobata via Growth and Physiological Traits under Nitrogen Stress Condition. Plants 2024, 13, 355. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Ding, W.; Zhai, J.; Zheng, X.; Yu, Z.; Zhang, Q.; Lin, X.; Chow, W.S.; Peng, C. Photosynthetic Compensation of Non-Leaf Organ Stems of the Invasive Species Sphagneticola Trilobata (L.) Pruski at Low Temperature. Photosynth. Res. 2021, 149, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Khan, I.U.; Wang, J.; Shi, X.; Jiang, X.; Qi, S.; Dai, Z.; Mao, H.; Du, D. Invasive Wedelia Trilobata Performs Better Than Its Native Congener in Various Forms of Phosphorous in Different Growth Stages. Plants 2023, 12, 3051. [Google Scholar] [CrossRef]
- Dai, Z.; Qi, S.; Miao, S.; Liu, Y.; Tian, Y.; Zhai, D.; Huang, P.; Du, D. Isolation of NBS-LRR RGAs from Invasive Wedelia Trilobata and the Calculation of Evolutionary Rates to Understand Bioinvasion from a Molecular Evolution Perspective. Biochem. Syst. Ecol. 2015, 61, 19–27. [Google Scholar] [CrossRef]
- Song, L.; Chow, W.S.; Sun, L.; Li, C.; Peng, C. Acclimation of Photosystem II to High Temperature in Two Wedelia Species from Different Geographical Origins: Implications for Biological Invasions upon Global Warming. J. Exp. Bot. 2010, 61, 4087–4096. [Google Scholar] [CrossRef]
- Koul, S.; Pandurangan, A.; Khosa, R. Wedelia Chinenis (Asteraceae)—An Overview. Asian Pac. J. Trop. Biomed. 2012, 2, S1169–S1175. [Google Scholar] [CrossRef]
- Talukdar, D.; Talukdar, T. Response of Antioxidative Enzymes to Arsenic-Induced Phytotoxicity in Leaves of a Medicinal Daisy, Wedelia Chinensis Merrill. J. Nat. Sci. Biol. Med. 2013, 4, 383. [Google Scholar] [CrossRef]
- Manjamalai, A.; Jiflin, G.J.; Grace, V.B. Study on the Effect of Essential Oil of Wedelia Chinensis (Osbeck) against Microbes and Inflammation. Asian J. Pharm. Clin. Res. 2012, 5, 155–163. [Google Scholar]
- Tsai, C.; Tzeng, S.; Hsieh, S.; Lin, C.; Tsai, C.; Chen, Y.; Yang, Y.; Chou, Y.; Lee, M.; Hsiao, P. Development of a Standardized and Effect-Optimized Herbal Extract of Wedelia Chinensis for Prostate Cancer. Phytomedicine 2015, 22, 406–414. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, G.; Huang, J.; Peng, C. Comparison of the Ability to Control Water Loss in the Detached Leaves of Wedelia Trilobata, Wedelia Chinensis, and Their Hybrid. Plants 2020, 9, 1227. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Shen, F.; Abbas, A.; Wang, H.; Du, Y.; Du, D.; Hussain, S.; Javed, T.; Alamri, S. Effects of Different Nitrogen Forms and Competitive Treatments on the Growth and Antioxidant System of Wedelia Trilobata and Wedelia Chinensis Under High Nitrogen Concentrations. Front. Plant Sci. 2022, 13, 851099. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Huang, J.; Ke, W.; Cai, M.; Chen, G.; Peng, C. Responses of Sphagneticola Trilobata, Sphagneticola Calendulacea and Their Hybrid to Drought Stress. Int. J. Mol. Sci. 2021, 22, 11288. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Zhang, Q.; Zhang, J.; Ding, W.; Huang, H.; Peng, C. Comparative Physiological and Transcriptomic Analyses of Photosynthesis in Sphagneticola Calendulacea (L.) Pruski and Sphagneticola Trilobata (L.) Pruski. Sci. Rep. 2020, 10, 17810. [Google Scholar] [CrossRef]
- Dai, Z.; Fu, W.; Qi, S.; Zhai, D.; Chen, S.; Chen, L.; Huang, P.; DU, D. Different Responses of an Invasive Clonal Plant Wedelia Trilobata and Its Native Congener to Gibberellin: Implications for Biological Invasion. J. Chem. Ecol. 2016, 42, 85–94. [Google Scholar] [CrossRef]
- Gioria, M.; Osborne, B.A. Resource Competition in Plant Invasions: Emerging Patterns and Research Needs. Front. Plant Sci. 2014, 5, 501. [Google Scholar] [CrossRef]
- Fusco, G.; Minelli, A. Phenotypic Plasticity in Development and Evolution: Facts and Concepts. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 547–556. [Google Scholar] [CrossRef]
- Yi, X.; Dean, A.M. Phenotypic Plasticity as an Adaptation to a Functional Trade-Off. eLife 2016, 5, e19307. [Google Scholar] [CrossRef]
- Burns, J.H.; Halpern, S.L.; Winn, A.A. A Test for a Cost of Opportunism in Invasive Species in the Commelinaceae. Biol. Invasions 2007, 9, 213–225. [Google Scholar] [CrossRef]
- Azeem, A.; Javed, Q.; Sun, J.F.; Ullah, I.; Kama, R.; Du, D.L. Adaptation of Singapore Daisy (Wedelia Trilobata) under Different Environmental Conditions; Water Stress, Soil Type and Temperature. Appl. Ecol. Environ. Res. 2020, 18, 5247–5261. [Google Scholar] [CrossRef]
- Berry, J.; Bjorkman, O. Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annu. Rev. Plant Physiol. 2003, 31, 491–543. [Google Scholar] [CrossRef]
- Salvucci, M.E.; Crafts-Brandner, S.J. Relationship between the Heat Tolerance of Photosynthesis and the Thermal Stability of Rubisco Activase in Plants from Contrasting Thermal Environments. Plant Physiol. 2004, 134, 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, L.; Chen, J.; Zeng, X.; Sun, B.; Peng, C. The Antioxidative Role of Anthocyanins in Arabidopsis under High-Irradiance. Biol. Plant 2012, 56, 97–104. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, R.; Ni, G.; Shen, H.; Ge, X. Is a New Invasive Herb Emerging? Molecular Confirmation and Preliminary Evaluation of Natural Hybridization between the Invasive Sphagneticola Trilobata (Asteraceae) and Its Native Congener S. Calendulacea in South China. Biol. Invasions 2013, 15, 75–88. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, D.; Zhang, Y.; Naz, M.; Dai, Z.; Qi, S.; Du, D. Impacts of Arbuscular Mycorrhizal Fungi on Metabolites of an Invasive Weed Wedelia Trilobata. Microorganisms 2024, 12, 701. [Google Scholar] [CrossRef]
- Hossen, K.; Das, K.R.; Okada, S.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Allelopathic Potential and Active Substances from Wedelia Chinensis (Osbeck). Foods 2020, 9, 1591. [Google Scholar] [CrossRef]
- Qi, S.; Dai, Z.; Miao, S.; Zhai, D.; Si, C.; Huang, P.; Wang, R.; Du, D. Light Limitation and Litter of an Invasive Clonal Plant, Wedelia Trilobata, Inhibit Its Seedling Recruitment. Ann. Bot. 2014, 114, 425–433. [Google Scholar] [CrossRef]
- Huang, P.; Xu, Z.; He, W.; Yang, H.; Li, B.; Ding, W.; Lei, Y.; Abbas, A.; Hameed, R.; Wang, C.; et al. The Cooperation Regulation of Antioxidative System and Hormone Contents on Physiological Responses of Wedelia Trilobata and Wedelia Chinensis under Simulated Drought Environment. Plants 2024, 13, 472. [Google Scholar] [CrossRef]
- Anderson, G.B.; Bell, M.L. Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities. Environ. Health Perspect. 2011, 119, 210–218. [Google Scholar] [CrossRef]
- Peng, R.D.; Bobb, J.F.; Tebaldi, C.; McDaniel, L.; Bell, M.L.; Dominici, F. Toward a Quantitative Estimate of Future Heat Wave Mortality under Global Climate Change. Environ. Health Perspect. 2011, 119, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Lau, N.-C. Heat Waves in Southern China: Synoptic Behavior, Long-Term Change, and Urbanization Effects. J. Clim. 2017, 30, 703–720. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P. Revisiting Summertime Hot Extremes in China during 1961–2015: Overlooked Compound Extremes and Significant Changes. Geophys. Res. Lett. 2017, 44, 5096–5103. [Google Scholar] [CrossRef]
- Yang, X.; Ruby Leung, L.; Zhao, N.; Zhao, C.; Qian, Y.; Hu, K.; Liu, X.; Chen, B. Contribution of Urbanization to the Increase of Extreme Heat Events in an Urban Agglomeration in East China. Geophys. Res. Lett. 2017, 44, 6940–6950. [Google Scholar] [CrossRef]
- Steadman, R.G. The Assessment of Sultriness. Part II: Effects of Wind, Extra Radiation and Barometric Pressure on Apparent Temperature. J. Appl. Meteorol. 1979, 18, 874–885. [Google Scholar] [CrossRef]
- Fischer, E.M.; Schär, C. Consistent Geographical Patterns of Changes in High-Impact European Heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Li, D.; Luo, M.; Wang, D.; Wang, S.; Baldwin, J.; Lin, L.; Li, X.; Feng, K.; et al. Stronger Contributions of Urbanization to Heat Wave Trends in Wet Climates. Geophys. Res. Lett. 2018, 45, 11,310–11,317. [Google Scholar] [CrossRef]
- Lin, L.; Ge, E.; Liu, X.; Liao, W.; Luo, M. Urbanization Effects on Heat Waves in Fujian Province, Southeast China. Atmos. Res. 2018, 210, 123–132. [Google Scholar] [CrossRef]
- Shi, Z.; Jia, G.; Zhou, Y.; Xu, X.; Jiang, Y. Amplified Intensity and Duration of Heatwaves by Concurrent Droughts in China. Atmos. Res. 2021, 261, 105743. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Song, G.; Kalkstein, L.S.; Kalkstein, A.J.; Tang, X. Heat Wave Impacts on Mortality in Shanghai, 1998 and 2003. Int. J. Biometeorol. 2007, 51, 193–200. [Google Scholar] [CrossRef]
- WMO. Heatwaves and Health: Guidance on Warning-System Development; WMO: Geneva, Switzerland, 2015. [Google Scholar]
- Schoetter, R.; Cattiaux, J.; Douville, H. Changes of Western European Heat Wave Characteristics Projected by the CMIP5 Ensemble. Clim. Dyn. 2015, 45, 1601–1616. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing Frequency, Intensity and Duration of Observed Global Heatwaves and Warm Spells. Geophys. Res. Lett. 2012, 39, 2012GL053361. [Google Scholar] [CrossRef]
- Elkin, L.A.; Kay, M.; Higgins, J.J.; Wobbrock, J.O. An Aligned Rank Transform Procedure for Multifactor Contrast Tests. In Proceedings of the the 34th Annual ACM Symposium on User Interface Software and Technology, Virtual Event, USA, 10–14 October 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 754–768. [Google Scholar]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Li, C.; Li, Y.; Du, D. The Invasive Plant Amaranthus Spinosus L. Exhibits a Stronger Resistance to Drought than the Native Plant A. Tricolor L. under Co-Cultivation Conditions When Treated with Light Drought. Plants 2024, 13, 2251. [Google Scholar] [CrossRef]
- Armas, C.; Ordiales, R.; Pugnaire, F.I. Measuring plant interactions: A new comparative index. Ecology 2004, 85, 2682–2686. [Google Scholar] [CrossRef]
- Myers, J.H.; Bazely, D. Ecology and Control of Introduced Plants; Ecology, Biodiversity, and Conservation; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2003; ISBN 978-0-521-35516-2. [Google Scholar]
W. trilobata | W. chinensis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Source | Total Biomass | Leaf Mass | Leaf Surface Area | Plant Height | Root Length | Total Biomass | Leaf Mass | Leaf Surface Area | Plant Height | Root Length |
T | 1.17 | 55.13 *** | 0.02 | 0.04 | 4.53 * | 1.73 | 14.13 ** | 5.53 * | 1.03 | 0.08 |
C | 0.04 | 0.14 | 10.3 ** | 7.12 * | 3.11 | 2.19 | 42.12 *** | 17.07 *** | 48.78 *** | 7.17 * |
T × C | 5.95 * | 14.98 ** | 0.49 | 1.95 | 0.50 | 1.33 | 0.87 | 1.44 | 0.04 | 0.14 |
W. trilobata | |||||||||
---|---|---|---|---|---|---|---|---|---|
Source | Chlorophyll Content | Leaf Nitrogen | Flavonol | Anthocyanin | Fv/Fm | Pn | Tr | CO2 | WUE |
T | 0.03 * | 6.51 * | 1.77 | 0.40 | 48.50 *** | 22.48 *** | 150.66 *** | 50.00 *** | 36.14 *** |
C | 0.18 | 0.24 | 14.87 ** | 0.86 | 2.48 | 9.50 ** | 16.38 *** | 3.03 | 10.56 ** |
T × C | 20.09 *** | 22.51 *** | 2.79 | 5.53 * | 3.72 | 0.45 | 16.38 *** | 1.17 | 0.61 |
W. chinensis | |||||||||
Source | Chlorophyll Content | Leaf Nitrogen | Flavonol | Anthocyanin | Fv/Fm | Pn | Tr | CO2 | WUE |
T | 14.02 ** | 12.88 ** | 11.89 ** | 10.24 ** | 41.76 *** | 28.24 *** | 1.29 | 49.322 *** | 28.14 *** |
C | 8.55 ** | 7.16 * | 14.74 ** | 7.86 * | 3.84 | 1.00 | 1.29 | 49.08 *** | 3.36 |
T × C | 7.86 * | 7.82 * | 0.28 | 0.24 * | 3.85 | 0.02 * | 1.29 | 49.08 *** | 22.40 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Han, C.; Ren, G.; Wu, X.; Qi, S.; Yang, B.; Cui, M.; Fan, X.; Zhu, Z.; Dai, Z.; et al. Heat Wave Adaptations: Unraveling the Competitive Dynamics Between Invasive Wedelia trilobata and Native Wedelia chinensis. Plants 2024, 13, 3480. https://doi.org/10.3390/plants13243480
Yu H, Han C, Ren G, Wu X, Qi S, Yang B, Cui M, Fan X, Zhu Z, Dai Z, et al. Heat Wave Adaptations: Unraveling the Competitive Dynamics Between Invasive Wedelia trilobata and Native Wedelia chinensis. Plants. 2024; 13(24):3480. https://doi.org/10.3390/plants13243480
Chicago/Turabian StyleYu, Haochen, Cheng Han, Guangqian Ren, Xuanwen Wu, Shanshan Qi, Bin Yang, Miaomiao Cui, Xue Fan, Zhaoqi Zhu, Zhicong Dai, and et al. 2024. "Heat Wave Adaptations: Unraveling the Competitive Dynamics Between Invasive Wedelia trilobata and Native Wedelia chinensis" Plants 13, no. 24: 3480. https://doi.org/10.3390/plants13243480
APA StyleYu, H., Han, C., Ren, G., Wu, X., Qi, S., Yang, B., Cui, M., Fan, X., Zhu, Z., Dai, Z., & Du, D. (2024). Heat Wave Adaptations: Unraveling the Competitive Dynamics Between Invasive Wedelia trilobata and Native Wedelia chinensis. Plants, 13(24), 3480. https://doi.org/10.3390/plants13243480