Spider–Plant Interaction: The Role of Extrafloral Nectaries in Spider Attraction and Their Influence on Plant Herbivory and Reproduction
Abstract
:1. Introduction
2. Results
Reproductive Phenophases | Abundance | |||||||
---|---|---|---|---|---|---|---|---|
Floral Buttons EFNsactive | Floral Buttons EFNsinactive | Flowers EFNsactive | Flowers EFNsinactive | Samarids EFNsactive | Samarids EFNsinactive | Spiders EFNsactive | Spiders EFNsinactive | |
Abundance total | 15,368 | 14,734 | 7183 | 13,140 | 24,105 | 24,620 | 97 | 60 |
Length of mean vector (r) | 0.49 | 0.44 | 0.51 | 0.85 | 0.77 | 0.84 | 0.43 | 0.37 |
Mean vector (µ) | 32.15 | 34.1 | 59.4 | 71.3 | 97.8 | 102.2 | 42.7 | 41.65 |
Month | February | February | February | March | April | April | February | February |
Rayleigh test (Z) | 0.94 | 0.91 | 0.943 | 0.932 | 0.957 | 0.952 | 0.436 | 0.366 |
Rayleigh test (p) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.01 | 0.03 |
Family | Number of Individuals on Plants with EFNsactive | Number of Individuals on Plants with EFNsinactive | X2 | p |
---|---|---|---|---|
Thomisidae | 47 | 27 | 7.33 | 0.026 |
Araneidae | 22 | 7 | 9.88 | 0.014 |
Salticidae | 13 | 7 | 8.87 | 0.042 |
Theridiidae | 9 | 6 | 2.21 | 0.652 |
Cheiracanthiidae | 4 | 12 | 8.21 | 0.041 |
Oxyopidae | 2 | 1 | 0.24 | 0.423 |
Total | 97 | 60 |
EFNsactive | EFNsinactive | X2 | p | |
---|---|---|---|---|
Samarids/Buds (Gamma) | 1.7 ± 0.13 | 2 ± 0.13 | 0.957 | 0.328 |
Samarids/Flowers (Gamma) | 0.384 ± 0.132 | 0.563 ± 0.132 | 2.36 | 0.12 |
Seed Weight (Gaussian) | 23.08 ± 2.28 | 26.16 ± 2.28 | 0.0672 | 0.795 |
3. Discussion
4. Materials and Methods
4.1. The Study Site and Species of Plant
4.2. Experimental Design
4.3. Data Analysis
4.3.1. Phenology of Heteropoterys pteropetala
4.3.2. Hypothesis I
4.3.3. Hypothesis II
4.3.4. Hypothesis III
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Order | Number of Individuals on Plants with EFNactive | Number of Individuals on Plants with EFNsinactive |
---|---|---|
Hemiptera | 16 | 64 |
Diptera | 35 | 18 |
Lepdoptera (larval stage) | 134 | 167 |
Coleoptera | 10 | 10 |
Hymenoptera | 4 | 4 |
Orthoptera | 3 | 5 |
Total | 202 | 268 |
References
- Nahas, L.; Gonzaga, M.O.; Del-Claro, K. Emergent Impacts of Ant and Spider Interactions: Herbivory Reduction in a Tropical Savanna Tree. Trop. Biol. Conserv. 2012, 44, 498–505. [Google Scholar] [CrossRef]
- Stefani, V.; Pires, T.L.; Torezan-Silingardi, H.M.; Del-Claro, K. Beneficial Effects of Ants and Spiders on the Reproductive Value of Eriotheca gracilipes (Malvaceae) in a Tropical Savanna. Public Libr. Sci. 2015, 10, e0131843. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.O.; Santos, M.P.; Sousa, A.C.; Silva, R.L.; Moura, I.A.; Silva, R.S.; Costa, K.D. Soil Quality: Biological Indicators for Sustainable Management. Braz. J. Dev. 2021, 7, 6853–6875. [Google Scholar] [CrossRef]
- Bronstein, J.L. The Gift That Keeps on Giving: Why Does Biological Diversity Accumulate Around Mutualisms? In Plant-Animal Interactions; Springer International Publishing: New York, NY, USA, 2021; pp. 283–306. [Google Scholar]
- Smith, R.B.; Mommsen, T.P. Pollen Feeding in an Orb-Weaving Spider. Science 1984, 226, 1330–1332. [Google Scholar] [CrossRef] [PubMed]
- Diniz, S.; Tizo-Pedroso, E.; Lange, D.; Andrade Vilela, A.; Justino, D.G.; Alves Martins, F.; Germanos, E.; Arruda, R.; Stefani, V. Might Heterostyly Underlie Spider Occurrence on Inflorescences? A Case Study of Palicourea rigida (Rubiaceae), a Common Shrub from Brazilian Cerrado. Psyche 2012, 2012, 791395. [Google Scholar]
- Nyffeler, M.; Olson, E.J.; Symondson, W.O. Plant-eating by spiders. J. Arachnol. 2016, 44, 15–27. [Google Scholar] [CrossRef]
- Del-Claro, K.; Stefani, V.; Nahas, L.; Torezan-Silingardi, H.M. Spiders as Plant Partners: Complementing Ant Services to Plants with Extrafloral Nectaries. In Behaviour and Ecology of Spiders; Springer International Publishing: New York, NY, USA, 2017; pp. 215–226. [Google Scholar]
- Cross, F.R.; Jackson, R.R. Odour-mediated response to plants by evarcha culicivora, a blood-feeding jumping spider from East Africa. N. Z. J. Zool. 2009, 36, 75–80. [Google Scholar] [CrossRef]
- Wise, D.H. Spiders in Ecological Webs; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Romero, G.Q.; Souza, J.C.; Vasconcellos-Neto, J. Anti-herbivore protection by mutualistic spiders and the role of plant glandular trichomes. Ecology 2008, 89, 3105–3115. [Google Scholar] [CrossRef]
- Gavini, S.S.; Quintero, C.; Tadey, M. Ecological role of a flower-dwelling predator in a tri-trophic interaction in northwestern Patagonia. Acta Oecologica 2019, 95, 100–107. [Google Scholar] [CrossRef]
- Moura, R.F.; Colberg, E.; Alves-Silva, E.; Mendes-Silva, I.; Fagundes, R.; Stefani, V.; Del-Claro, K. Biotic Defenses Against Herbivory. In Plant-Animal Interactions; Springer International Publishing: New York, NY, USA, 2021; pp. 93–118. [Google Scholar]
- Nahas, L.; Gonzaga, M.O.; Del-Claro, K. Wandering and web spiders feeding on the nectar from extrafloral nectaries in neotropical savanna. J. Zool. 2017, 301, 125–132. [Google Scholar] [CrossRef]
- Whitney, K.D. Experimental Evidence That Both Parties Benefit in a Facultative Plant–Spider Mutualism. Ecology 2004, 85, 1642–1650. [Google Scholar] [CrossRef]
- Lange, D.; Calixto, E.S.; Del-Claro, K.; Stefani, V. Spatiotemporal niche-based mechanisms support a stable coexistence of ants and spiders in an extrafloral nectary-bearing plant community. J. Anim. Ecol. 2021, 90, 1570–1582. [Google Scholar] [CrossRef] [PubMed]
- Heiling, A.M.; Herberstein, M.E. Predator-prey coevolution: Australian native bees avoid their spider predators. Proc. R. Soc. London Ser. B Biol. Sci. 2004, 271, S196–S198. [Google Scholar] [CrossRef] [PubMed]
- Ings, T.C.; Chittka, L. Predator crypsis enhances behaviourally mediated indirect effects on plants by altering bumblebee foraging preferences. Proc. R. Soc. London Ser. B Biol. Sci. 2009, 276, 2031–2036. [Google Scholar] [CrossRef] [PubMed]
- Machado, S.R.; Morellato, L.P.; Sajo, M.G.; Oliveira, P.S. Morphological patterns of extrafloral nectaries in woody plant species of the Brazilian cerrado. Plant Biol. 2008, 10, 660–673. [Google Scholar] [CrossRef] [PubMed]
- Marazzi, B.; Bronstein, J.L.; Koptur, S. The diversity, ecology and evolution of extrafloral nectaries: Current perspectives and future challenges. Ann. Bot. 2013, 111, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Heil, M.; Koch, T.; Hilpert, A.; Fiala, B.; Boland, W.; Linsenmair, K.E. Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc. Natl. Acad. Sci. USA 2001, 98, 1083–1088. [Google Scholar] [CrossRef]
- Del-Claro, K.; Rico-Gray, V.; Torezan-Silingardi, H.M.; Alves-Silva, E.; Fagundes, R.; Lange, D.; Dáttilo, W.; Vilela, A.A.; Aguirre, A.; Rodriguez-Morales, D. Loss and gains in ant–plant interactions mediated by extrafloral nectar: Fidelity, cheats, and lies. Insectes Sociaux 2016, 63, 207–221. [Google Scholar] [CrossRef]
- Oliveira, P.S.; Leitao-Filho, H.F. Extrafloral Nectaries: Their Taxonomic Distribution and Abundance in the Woody Flora of Cerrado Vegetation in Southeast Brazil. Trop. Biol. Conserv. 1987, 19, 140. [Google Scholar] [CrossRef]
- Rico-Gray, V.; Oliveira, P.S. The Ecology and Evolution of Ant-Plant Interactions; University of Chicago Press: Chicago, IL, USA, 2007. [Google Scholar]
- Taylor, R.M.; Bradley, R.A. Plant nectar increases survival, molting, and foraging in two foliage wandering spiders. J. Arachnol. 2009, 37, 232–237. [Google Scholar] [CrossRef]
- Sanders, D. Herbivory in Spiders. In Spider Ecophysiology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 385–391. [Google Scholar]
- Jackson, R.R.; Pollard, S.D.; Nelson, X.J.; Edwards, G.B.; Barrion, A.T. Jumping spiders (Araneae: Salticidae) that feed on nectar. J. Zool. 2001, 255, 25–29. [Google Scholar] [CrossRef]
- Halaj, J.; Ross, D.W.; Moldenke, A.R. Importance of habitat structure to the arthropod food-web in Douglas-fir canopies. Oikos J. 2000, 90, 139–152. [Google Scholar] [CrossRef]
- Souza, A.L.; Martins, R.P. Foliage Density of Branches and Distribution of Plant-Dwelling Spiders. Trop. Biol. Conserv. 2005, 37, 416–420. [Google Scholar]
- Bucher, R.; Menzel, F.; Entling, M.H. Risk of spider predation alters food web structure and reduces local herbivory in the field. Oecologia 2015, 178, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Stefani, V.; Alves, V.N.; Lange, D. Induced indirect defence in a spider–plant system mediated by pericarpial nectaries. Austral Ecol. 2019, 44, 1005–1012. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A.; Lobo, J.M. Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: Climate and altitude vs. habitat structure. Ecol. Entomol. 2007, 32, 113–122. [Google Scholar] [CrossRef]
- Bhaskara, R.M.; Brijesh, C.M.; Ahmed, S.; Borges, R.M. Perception of ultraviolet light by crab spiders and its role in selection of hunting sites. J. Comp. Physiol. A 2009, 195, 409–417. [Google Scholar] [CrossRef]
- Romero, G.Q.; Vasconcellos-Neto, J. Natural history of Misumenops argenteus (Thomisidae): Seasonality and diet on Trichogoniopsis adenantha (Asteraceae). J. Arachnol. 2003, 31, 297–304. [Google Scholar] [CrossRef]
- Suttle, K.B. Pollinators as mediators of top-down effects on plants. Ecol. Lett. 2003, 6, 688–694. [Google Scholar] [CrossRef]
- Taylor, R.M.; Pfannenstiel, R.S. How Dietary Plant Nectar Affects the Survival, Growth, and Fecundity of a Cursorial Spider Cheiracanthium inclusum (Araneae: Miturgidae). Environmetal Entomol. 2009, 38, 1379–1386. [Google Scholar] [CrossRef]
- Foelix, R.F. Biology of Spiders, 3rd ed.; Oxford University Press: New York, NY, USA, 2011; pp. 1–432. [Google Scholar]
- Bacci, L.F.; Versiane, A.F.; Oliveira, A.L.; Romero, R. Melastomataceae na RPPN do Clube Caça e Pesca Itororó, Uberlândia, MG, Brasil. Hoehnea 2016, 43, 541–556. [Google Scholar] [CrossRef]
- Silva, C.P.; Rocha, G.F.; Silva, F.A. Trabalhadores Rurais e Acesso à Renda: Estudo Sobre a Agricultura Familiar Orgânica em Pernambuco (Brasil). Meio Ambiente (Brasil). 2020. Available online: https://meioambientebrasil.com.br/index.php/MABRA/article/view/25 (accessed on 20 November 2021).
- Reu, W.F., Jr.; Del-Claro, K. Natural history and biology of Chlamisus minax Lacordaire (Chrysomelidae: Chlamisinae). Neotrop. Entomol. 2005, 34, 357–362. [Google Scholar]
- Assunção, M.A.; Torezan-Silingardi, H.M.; Del-Claro, K. Do ant visitors to extrafloral nectaries of plants repel pollinators and cause an indirect cost of mutualism? Flora Morphol. Distrib. Funct. Ecol. Plants 2014, 209, 244–249. [Google Scholar] [CrossRef]
- Schmidt, I.B.; Sampaio, A.B.; Borghetti, F. Efeitos da época de queima sobre a reprodução sexuada e estrutura populacional de Heteropterys pteropetala (Adr. Juss.), Malpighiaceae, em áreas de Cerrado sensu stricto submetidas a queimas bienais. Acta Bot. Bras. 2005, 19, 927–934. [Google Scholar] [CrossRef]
- Calixto, E.S.; Lange, D.; Del-Claro, K. Foliar anti-herbivore defenses in Qualea multiflora Mart. (Vochysiaceae): Changing strategy according to leaf development. Flora Morphol. Distrib. Funct. Ecol. Plants 2015, 212, 19–23. [Google Scholar] [CrossRef]
- Morellato, L.P.; Alberti, L.F.; Hudson, I.L. Applications of Circular Statistics in Plant Phenology: A Case Studies Approach. In Phenological Research; Springer: Dordrecht, The Netherlands, 2010; pp. 339–359. [Google Scholar]
- Vilela, A.A.; Del Claro, V.T.; Torezan-Silingardi, H.M.; Del-Claro, K. Climate changes affecting biotic interactions, phenology, and reproductive success in a savanna community over a 10-year period. Arthropod Plant Interact 2018, 12, 215–227. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; Van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Machler, M.; Bolker, B.M. GlmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4 (Version 1.1-27) [R Package]. Available online: https://cran.r-project.org/package=lme4 (accessed on 11 December 2023).
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (Version 0.4.1) [R Package]. Available online: https://cran.r-project.org/package=DHARMa (accessed on 11 December 2023).
- Fox, J. Applied Regression Analysis and Generalized Linear Models, 3rd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2015; pp. 1–816. [Google Scholar]
Overview | Prediction | Approach | Resource |
---|---|---|---|
H1: EFNs attract spiders. | EFNsactive plants exhibit a higher abundance of spiders compared to EFNsinactive plants. | Evaluation of spider abundance between EFNsactive and EFNsinactive plants. | Figure 1 and Figure 2 Table 2 |
H2: Spiders act as protectors against leaf damage. | EFNsactive plants have lower herbivory rates than EFNsinactive plants. | Analysis of herbivory rates throughout the year between EFNsactive and EFNsinactive plants. | Figure 3 Table 3 |
H3: Positive impact of spiders on plant reproductive success. | EFNsactive plants show a higher reproductive rate than EFNsinactive plants. | Evaluation of the ratio between samarids/buds and samarids/flowers as well as the total seed weight and fruiting rate between EFNsactive and EFNsinactive plants. | Table 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira Dias, K.P.; Stefani, V. Spider–Plant Interaction: The Role of Extrafloral Nectaries in Spider Attraction and Their Influence on Plant Herbivory and Reproduction. Plants 2024, 13, 368. https://doi.org/10.3390/plants13030368
de Oliveira Dias KP, Stefani V. Spider–Plant Interaction: The Role of Extrafloral Nectaries in Spider Attraction and Their Influence on Plant Herbivory and Reproduction. Plants. 2024; 13(3):368. https://doi.org/10.3390/plants13030368
Chicago/Turabian Stylede Oliveira Dias, Karoline Pádua, and Vanessa Stefani. 2024. "Spider–Plant Interaction: The Role of Extrafloral Nectaries in Spider Attraction and Their Influence on Plant Herbivory and Reproduction" Plants 13, no. 3: 368. https://doi.org/10.3390/plants13030368
APA Stylede Oliveira Dias, K. P., & Stefani, V. (2024). Spider–Plant Interaction: The Role of Extrafloral Nectaries in Spider Attraction and Their Influence on Plant Herbivory and Reproduction. Plants, 13(3), 368. https://doi.org/10.3390/plants13030368