Network of Soil Fungi and the Microfauna Community under Diverse Anthropic Disturbances under Chrysopogon zizanioides Planting in the Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area and Sample Setting
2.2. Sample Collection and Physicochemical Determination
2.3. DNA Extraction and High-Throughput Sequencing
2.4. Statistical Analysis
3. Results
3.1. Soil Chemical Characteristics
3.2. Quality Evaluation and Species Composition of Eukaryotic Microbial Sequencing
3.3. Distribution and Diversity of Eukaryotic Microbial Communities
3.4. The Influence of Chemical Factors on the Structure of Eukaryotic Microbial Communities
3.5. Co-Occurrence Network of Eukaryotic Microorganisms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dumanski, J.; Peiretti, R. Modern Concepts of Soil Conservation. Int. Soil Water Conserv. Res. 2013, 1, 19–23. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Principles of Soil Conservation and Management; Springer: Berlin, Germany, 2010; ISBN 9789048185290. [Google Scholar]
- Fundamentals of Soil Ecology; Elsevier Science: Amsterdam, The Netherlands, 2018.
- Zhao, L.; Gao, F.; Gao, S.; Liang, Y.; Long, H.; Lv, Z.; Su, Y.; Ye, N.; Zhang, L.; Zhao, C.; et al. Biodiversity-based development and evolution: The emerging research systems in model and non-model organisms. Sci. China Life Sci. 2021, 64, 1236–1280. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Fenchel, T.; Delong, E.F. The Microbial Engines That Drive Earth’s Biogeochemical Cycles. Science 2008, 320, 1034–1039. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Y.; Dang, P.; Jiang, X.; Zheng, W.; Lei, J.; Yan, W. Decay of Fallen Wood and Elevation Affects Soil Fungal Community Assembly and Indirectly Controls Community Diversity. Appl. Soil Ecol. 2023, 182, 104683. [Google Scholar] [CrossRef]
- Jing, Z.; Cheng, J.; Jin, J.; Su, J.; Bai, Y. Revegetation as an Efficient Means of Improving the Diversity and Abundance of Soil Eukaryotes in the Loess Plateau of China. Ecol. Eng. 2014, 70, 169–174. [Google Scholar] [CrossRef]
- Meisner, A.; Jacquiod, S.; Snoek, B.L.; ten Hooven, F.C.; van der Putten, W.H. Drought Legacy Effects on the Composition of Soil Fungal and Prokaryote Communities. Front. Microbiol. 2018, 9, 294. [Google Scholar] [CrossRef]
- Fu, S.; Liu, M.; Zhang, W.; Shao, Y. A Review of Recent Advances in the Study of Geographical Distribution and Ecological Functions of Soil Fauna Diversity. Biodivers. Sci. 2022, 30, 22435. [Google Scholar] [CrossRef]
- Chandarana, K.A.; Amaresan, N. Soil Protists: An Untapped Microbial Resource of Agriculture and Environmental Importance. Pedosphere 2022, 32, 184–197. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y.; Xiang, X.; Sun, R.; Yang, T.; He, D.; Zhang, K.; Ni, Y.; Zhu, Y.-G.; Adams, J.M.; et al. Spatial Scale Affects the Relative Role of Stochasticity versus Determinism in Soil Bacterial Communities in Wheat Fields across the North China Plain. Microbiome 2018, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Dayamba, S.D.; Djoudi, H.; Zida, M.; Sawadogo, L.; Verchot, L. Biodiversity and Carbon Stocks in Different Land Use Types in the Sudanian Zone of Burkina Faso, West Africa. Agric. Ecosyst. Environ. 2016, 216, 61–72. [Google Scholar] [CrossRef]
- Banerjee, S.; Schlaeppi, K.; van der Heijden, M.G.A. Keystone Taxa as Drivers of Microbiome Structure and Functioning. Nat. Rev. Microbiol. 2018, 16, 567–576. [Google Scholar] [CrossRef]
- Ji, L.; Xin, Y.; Guo, D. Soil Fungal Community Structure and Its Effect on CO2 Emissions in the Yellow River Delta. Int. J. Environ. Res. Public Health 2023, 20, 4190. [Google Scholar] [CrossRef]
- Morrison, E.W.; Frey, S.D.; Sadowsky, J.J.; van Diepen, L.T.A.; Thomas, W.K.; Pringle, A. Chronic Nitrogen Additions Fundamentally Restructure the Soil Fungal Community in a Temperate Forest. Fungal Ecol. 2016, 23, 48–57. [Google Scholar] [CrossRef]
- Ren, Y.L.; Fan, F.X.; Peng, S.X.; Lu, M. Relationship Between Soil Fungal Community Structure and Physical and Chemical Properties of Different Seasons Swamp Meadow in Napahai Wetland. Chin. Agric. Sci. Bull. 2018, 34, 69–75. [Google Scholar] [CrossRef]
- Peralta, A.L.; Matthews, J.W.; Flanagan, D.N.; Kent, A.D. Environmental Factors at Dissimilar Spatial Scales Influence Plant and Microbial Communities in Restored Wetlands. Wetlands 2012, 32, 1125–1134. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, M.; Xu, J.; Yang, Z.; Li, Q.; Cai, C. Soil Meso- and Micro-Fauna Community in Response to Bamboo-Fungus Agroforestry Management. Sci. Rep. 2022, 12, 16392. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, Q.L.; Li, G.G.; Chen, T.; Liu, J.W.; Gao, M.X. Research Progress of Soil Fauna in Cropland Ecosystems in China. Nat. Sci. J. Harbin Norm. Univ. Ersity 2021, 37, 68–75. [Google Scholar]
- Luo, M.J.; Li, S.S.; Qiang, D.H.; Liu, C.H. Relationship between Soil Animal Community Composition and Soil Physical and Chemical Properties in Nanniwan Wetland. Ecol. Environ. Sci. 2018, 27, 1432–1439. [Google Scholar]
- Zhou, J.; Deng, Y.; Luo, F.; He, Z.; Tu, Q.; Zhi, X. Functional Molecular Ecological Networks. mBio 2010, 1, e00169-10. [Google Scholar] [CrossRef]
- Vacher, C.; Tamaddoni-Nezhad, A.; Kamenova, S.; Peyrard, N.; Moalic, Y.; Sabbadin, R.; Schwaller, L.; Chiquet, J.; Smith, M.A.; Vallance, J.; et al. Learning Ecological Networks from Next-Generation Sequencing Data. Adv. Ecol. Res. 2016, 54, 1–39. [Google Scholar]
- Thakur, M.P.; Geisen, S. Trophic Regulations of the Soil Microbiome. Trends Microbiol. 2019, 27, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, J.; Dumack, K.; Liu, W.; Zhang, Q.; He, Y.; Di, H.; Bonkowski, M.; Xu, J.; Li, Y. Protists Modulate Fungal Community Assembly in Paddy Soils across Climatic Zones at the Continental Scale. Soil Biol. Biochem. 2021, 160, 108358. [Google Scholar] [CrossRef]
- Suleiman, A.K.A.; Harkes, P.; van den Elsen, S.; Holterman, M.; Korthals, G.W.; Helder, J.; Kuramae, E.E. Organic Amendment Strengthens Interkingdom Associations in the Soil and Rhizosphere of Barley (Hordeum Vulgare). Sci. Total Environ. 2019, 695, 133885. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, H.; Yang, J.R.; Liu, M.; Huang, B.; Yang, J. Distinct Patterns and Processes of Abundant and Rare Eukaryotic Plankton Communities Following a Reservoir Cyanobacterial Bloom. ISME J. 2018, 12, 2263–2277. [Google Scholar] [CrossRef]
- Barberán, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Erratum: Using Network Analysis to Explore Co-Occurrence Patterns in Soil Microbial Communities. ISME J. 2014, 8, 952. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Chen, P.; Wang, F.-H.; Han, W.-X.; Qiao, M.; Dong, W.-X.; Hu, C.-S.; Zhu, D.; Chu, H.-Y.; Zhu, Y.-G. The Ecological Clusters of Soil Organisms Drive the Ecosystem Multifunctionality under Long-Term Fertilization. Environ. Int. 2022, 161, 107133. [Google Scholar] [CrossRef] [PubMed]
- Xiong, M.; Li, R.; Zhang, T.; Liao, C.; Yu, G.; Yuan, J.; Liu, J.; Ye, S. Zooplankton Compositions in the Danjiangkou Reservoir, a Water Source for the South-to-North Water Diversion Project of China. Water 2022, 14, 3253. [Google Scholar] [CrossRef]
- Yan, S.; Wang, X.; Cai, Y.; Li, C.; Yan, R.; Cui, G.; Yang, Z. An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China. Sustainability 2018, 10, 4625. [Google Scholar] [CrossRef]
- New, T.; Xie, Z. Impacts of Large Dams on Riparian Vegetation: Applying Global Experience to the Case of China’s Three Gorges Dam. Biodivers. Conserv. 2008, 17, 3149–3163. [Google Scholar] [CrossRef]
- Su, J.; Qiu, Y.; Yang, X.; Li, S.; Hu, Z. Dose–Effect Relationship of Water Salinity Levels on Osmotic Regulators, Nutrient Uptake, and Growth of Transplanting Vetiver [Vetiveria zizanioides (L.) Nash]. Plants 2021, 10, 562. [Google Scholar] [CrossRef]
- Xia, H.; Wang, M.; Xu, L. Is Vetiver Grass Planted in China an Invasive Alien Species and Becoming a Weed ? Chin. J. Ecol. 2015, 34, 2327–2332. [Google Scholar]
- Jiang, F.; Zhang, F.; Qiao, F.S.; Han, L.; Xing, Y.H.; Yang, Z.M. The Analysis of Stony Desertification Monitoring Situation in Karst Region of Henan. J. Henan For. Sci. Technol. 2016, 36, 30–32. [Google Scholar]
- Li, X.G.; Duan, X.F.; Fu, J.B.; Li, S.Y.; Deng, M.Y.; Zhang, Z.Z. Analysis of Land Use and Land Cover Dynamic Change Characteristics of Danjiangkou Reservoir Based on GIS. J. North China Univ. Water Resour. Electr. Power (Nat. Sci. Ed.) 2022, 43, 90–98. [Google Scholar]
- Bao, S.D. Soil Agricultural Chemical Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000; pp. 265–267. [Google Scholar]
- Kasel, S.; Bennett, L.T.; Tibbits, J. Land Use Influences Soil Fungal Community Composition across Central Victoria, South-Eastern Australia. Soil Biol. Biochem. 2008, 40, 1724–1732. [Google Scholar] [CrossRef]
- Adams, R.I.; Miletto, M.; Taylor, J.W.; Bruns, T.D. Dispersal in Microbes: Fungi in Indoor Air Are Dominated by Outdoor Air and Show Dispersal Limitation at Short Distances. ISME J. 2013, 7, 1262–1273. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M. Vegan: Community Ecology Package. R Package Version 2.5-6. 2019. Available online: https://CRAN.R-project.org/package=vegan (accessed on 20 November 2023).
- Hadley, W. Ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 20 November 2023).
- William, R. Psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University. R Package Version 1.9.12. 2019. Available online: https://CRAN.R-project.org/package=psych (accessed on 20 November 2023).
- van Leeuwen, J.P.; Djukic, I.; Bloem, J.; Lehtinen, T.; Hemerik, L.; de Ruiter, P.C.; Lair, G.J. Effects of Land Use on Soil Microbial Biomass, Activity and Community Structure at Different Soil Depths in the Danube Floodplain. Eur. J. Soil Biol. 2017, 79, 14–20. [Google Scholar] [CrossRef]
- Fellbaum, C.R.; Mensah, J.A.; Pfeffer, P.E.; Kiers, E.T.; Bücking, H. The Role of Carbon in Fungal Nutrient Uptake and Transport. Plant Signal. Behav. 2012, 7, 1509–1512. [Google Scholar] [CrossRef]
- Frąc, M.; Hannula, S.E.; Bełka, M.; Jędryczka, M. Fungal Biodiversity and Their Role in Soil Health. Front. Microbiol. 2018, 9, 707. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Zhao, X.; Allan Degen, A.; Lian, J.; Liu, X.; Li, Y.; Duan, Y. Fertilizers Have a Greater Impact on the Soil Bacterial Community than on the Fungal Community in a Sandy Farmland Ecosystem, Inner Mongolia. Ecol. Indic. 2022, 140, 108972. [Google Scholar] [CrossRef]
- Wang, H.; Guo, S.; Huang, M.; Thorsten, L.H.; Wei, J. Ascomycota Has a Faster Evolutionary Rate and Higher Species Diversity than Basidiomycota. Sci. China Life Sci. 2010, 53, 1163–1169. [Google Scholar] [CrossRef]
- Treseder, K.K.; Maltz, M.R.; Hawkins, B.A.; Fierer, N.; Stajich, J.E.; McGuire, K.L. Evolutionary Histories of Soil Fungi Are Reflected in Their Large-scale Biogeography. Ecol. Lett. 2014, 17, 1086–1093. [Google Scholar] [CrossRef]
- Li, J.; Li, M.G.; Yang, J.; Ai, Y.; Xu, R.L. Community Characteristics of Soil Ciliates at Baiyun Mountain, Guangzhou, China. Zool. Stud. 2010, 49, 713–723. [Google Scholar]
- Newman, M.E.J. Modularity and Community Structure in Networks. Proc. Natl. Acad. Sci. 2006, 103, 8577–8582. [Google Scholar] [CrossRef]
- Zhou, H.; Gao, Y.; Jia, X.; Wang, M.; Ding, J.; Cheng, L.; Bao, F.; Wu, B. Network Analysis Reveals the Strengthening of Microbial Interaction in Biological Soil Crust Development in the Mu Us Sandy Land, Northwestern China. Soil Biol. Biochem. 2020, 144, 107782. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, Q.; Zhu, H.; Reich, P.B.; Banerjee, S.; van der Heijden, M.G.A.; Sadowsky, M.J.; Ishii, S.; Jia, X.; Shao, M.; et al. Erosion Reduces Soil Microbial Diversity, Network Complexity and Multifunctionality. ISME J. 2021, 15, 2474–2489. [Google Scholar] [CrossRef]
- Liu, R.H.; Qin, H.W.; Zhou, D.Y. Diversity of Soil Microorganisms in the Water-Level Zone of the Three Gorges Reservoir Area under the Influence of Periodic Water Storage. Jiangsu Agric. Sci. 2013, 41, 318–321. [Google Scholar]
- Zhao, Z.; Ma, Y.; Feng, T.; Kong, X.; Wang, Z.; Zheng, W.; Zhai, B. Assembly Processes of Abundant and Rare Microbial Communities in Orchard Soil under a Cover Crop at Different Periods. Geoderma 2022, 406, 115543. [Google Scholar] [CrossRef]
- Faust, K.; Raes, J. Microbial Interactions: From Networks to Models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef]
- Zhou, Z.; Meng, H.; Liu, Y.; Gu, J.-D.; Li, M. Stratified Bacterial and Archaeal Community in Mangrove and Intertidal Wetland Mudflats Revealed by High Throughput 16S RRNA Gene Sequencing. Front. Microbiol. 2017, 8, 2148. [Google Scholar] [CrossRef] [PubMed]
- Gill, A.S.; Purnell, K.; Palmer, M.I.; Stein, J.; McGuire, K.L. Microbial Composition and Functional Diversity Differ Across Urban Green Infrastructure Types. Front. Microbiol. 2020, 11, 912. [Google Scholar] [CrossRef] [PubMed]
- Dang, P.; Vu, N.H.; Shen, Z.; Liu, J.; Zhao, F.; Zhu, H.; Yu, X.; Zhao, Z. Changes in Soil Fungal Communities and Vegetation Following Afforestation with Pinus tabulaeformis on the Loess Plateau. Ecosphere 2018, 9, e02401. [Google Scholar] [CrossRef]
- Liu, M.; Liu, J.; Chen, X.; Jiang, C.; Wu, M.; Li, Z. Shifts in Bacterial and Fungal Diversity in a Paddy Soil Faced with Phosphorus Surplus. Biol. Fertil. Soils 2018, 54, 259–267. [Google Scholar] [CrossRef]
- Zhang, X.P.; Li, C.Y.; Yin, X.Q. Relation between Soil Animals and Nutrients in the Differently Used Forest Lands. Chin. J. Appl. Environ. Biol. 1999, 5, 26–31. [Google Scholar]
- Naumova, N.; Barsukov, P.; Baturina, O.; Rusalimova, O.; Kabilov, M. Soil Alveolata diversity in the undisturbed steppe and wheat agrocenoses under different tillage. Vavilov J. Genet. Breed. 2023, 27, 703–711. [Google Scholar] [CrossRef]
- Geisen, S.; Tveit, A.; Clark, I.; Richter, A.; Svenning, M.; Bonkowski, M.; Urich, T. Metatranscriptomic census of active protists in soils. ISME J. 2015, 27, 2178–2190. [Google Scholar] [CrossRef]
- Brown, S.P.; Jumpponen, A. Contrasting Primary Successional Trajectories of Fungi and Bacteria in Retreating Glacier Soils. Mol. Ecol. 2014, 23, 481–497. [Google Scholar] [CrossRef] [PubMed]
Chemical Factor | OH | HB | RS |
---|---|---|---|
pH | 8.20 ± 0.08 b | 8.61 ± 0.08 a | 8.23 ± 0.02 a |
SOM/g·kg−1 | 132.77 ± 9.14 a | 59.50 ± 8.34 b | 36.26 ± 4.39 b |
TN/g·kg−1 | 2.03 ± 0.16 a | 1.01 ± 0.00 b | 0.83 ± 0.04 b |
AN/mg·kg−1 | 139.77 ± 2.03 a | 86.57 ± 4.87 b | 56.47 ± 2.07 c |
TP/g·kg−1 | 0.97 ± 0.03 c | 1.28 ± 0.08 b | 2.56 ± 0.03 a |
AP/mg·kg−1 | 75.10 ± 4.91 a | 41.64 ± 1.03 a | 28.93 ± 0.87 b |
TK/g·kg−1 | 7.03 ± 0.30 | 14.00 ± 3.50 | 16.50 ± 5.73 |
AK/mg·kg−1 | 57.41 ± 2.41 b | 96.62 ± 1.84 a | 97.67 ± 2.53 a |
SWC/% | 8.07 ± 0.62 b | 15.78 ± 0.22 a | 7.30 ± 0.27 b |
Eukaryotes | Diversity Index | OH | HB | RS |
---|---|---|---|---|
Fungus | Sobs | 44.67 ± 8.37 a | 39.33 ± 5.24 ab | 19.33 ± 2.40 b |
Chao1 | 45.00 ± 8.66 a | 40.50 ± 4.44 ab | 20.00 ± 2.08 b | |
Shannon–Wiener | 2.88 ± 0.09 a | 2.37 ± 0.16 ab | 1.88 ± 0.08 b | |
Soil microfauna | Sobs | 9.33 ± 3.28 | 8.33 ± 2.40 | 1.33 ± 0.67 |
Chao1 | 9.67 ± 3.38 | 10.00 ± 4.04 | 1.33 ± 0.67 | |
Shannon–Wiener | 1.20 ± 0.29 ab | 1.42 ± 0.18 a | 0.39 ± 0.20 b |
Habitat Type | Node | Edge | Modularization Index | Network Density | Average Degree | Average Clustering Coefficient | Positive Correlation Connection | Negative Correlation Connection |
---|---|---|---|---|---|---|---|---|
Total habitat | 113 | 692 | 0.619 | 0.109 | 12.248 | 0.775 | 682 (98.41%) | 10 (1.59%) |
Original habitat | 84 | 773 | 0.944 | 0.222 | 18.405 | 0.984 | 611 (79.04%) | 162 (20.96%) |
Hydro-fluctuation belt | 70 | 672 | 1.703 | 0.278 | 19.200 | 0.986 | 437 (65.03%) | 235 (34.97%) |
Road slope protection | 37 | 144 | 0.772 | 0.216 | 7.784 | 0.953 | 122 (84.72%) | 22 (15.28%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Han, X.; Yang, J.; Liu, F.; Li, Y.; Chen, Z. Network of Soil Fungi and the Microfauna Community under Diverse Anthropic Disturbances under Chrysopogon zizanioides Planting in the Reservoir. Plants 2024, 13, 393. https://doi.org/10.3390/plants13030393
Lin X, Han X, Yang J, Liu F, Li Y, Chen Z. Network of Soil Fungi and the Microfauna Community under Diverse Anthropic Disturbances under Chrysopogon zizanioides Planting in the Reservoir. Plants. 2024; 13(3):393. https://doi.org/10.3390/plants13030393
Chicago/Turabian StyleLin, Xiaoyue, Xuemei Han, Jiading Yang, Fengyu Liu, Yuying Li, and Zhaojin Chen. 2024. "Network of Soil Fungi and the Microfauna Community under Diverse Anthropic Disturbances under Chrysopogon zizanioides Planting in the Reservoir" Plants 13, no. 3: 393. https://doi.org/10.3390/plants13030393
APA StyleLin, X., Han, X., Yang, J., Liu, F., Li, Y., & Chen, Z. (2024). Network of Soil Fungi and the Microfauna Community under Diverse Anthropic Disturbances under Chrysopogon zizanioides Planting in the Reservoir. Plants, 13(3), 393. https://doi.org/10.3390/plants13030393