Psammophytes Alyssum desertorum Stapf and Secale sylvestre Host Are Sensitive to Soil Flooding
Abstract
:1. Introduction
2. Results
2.1. Ultrastructure of the Photosynthetic Apparatus
2.1.1. Alyssum Desertorum
2.1.2. Secale Sylvestre
2.2. Chlorophyll Content
2.3. Chlorophyll Fluorescence Induction
2.4. Protein Spectrum, HSP70, and Alcohol Dehydrogenase Synthesis in Leaves
2.5. Ethylene Assay
3. Discussion
3.1. Chloroplast Ultrastructure and the Content of Photosynthetic Pigments in Leaves
3.2. Chlorophyll a Fluorescence Induction and JIP-Test
3.3. Role of HSP70 and ADH in Response to Flooding
3.4. Ethylene Production in Response to Flooding
4. Conclusions
5. Material and Methods
5.1. Plant Material
5.2. Transmission Electron Microscopy
5.3. Quantification of Leaf Blade and Chloroplast Structure
5.4. Statistical Analysis
5.5. Pigment Analysis
5.6. Chlorophyll a Fluorescence Induction and JIP-Test
- φPo = FV/FM is the maximum quantum yield of the primary photochemical reaction (at t0 = 0), which characterizes the probability of energy capture of the absorbed photons (or excitons migrating by the antenna) by the reaction centers of PS 2. In the case of a stress state, φPo is usually decreased.
- φEo—quantum yield of electron transfer from PS 2 to plastoquinone.
- φRo—quantum yield of reduction in electron terminal acceptors in the acceptor site of PS 1.
- PIABS,total—total performance index on an absorption basis, which characterizes the total function of the linear electron transport.
5.7. Alcohol Dehydrogenase Analysis
5.8. Protein Extraction and Western Blot Analysis
5.9. Ethylene Assay
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armstrong, W. Aeration in Higher Plants. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 1980; Volume 7, pp. 225–332. ISBN 978-0-12-005907-2. [Google Scholar]
- Kozlowski, T.T. Plant Responses to Flooding of Soil. BioScience 1984, 34, 162–167. [Google Scholar] [CrossRef]
- Bailey-Serres, J.; Voesenek, L.A.C.J. Flooding Stress: Acclimations and Genetic Diversity. Annu. Rev. Plant Biol. 2008, 59, 313–339. [Google Scholar] [CrossRef]
- Pan, J.; Sharif, R.; Xu, X.; Chen, X. Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects. Front. Plant Sci. 2021, 11, 627331. [Google Scholar] [CrossRef]
- Armstrong, W.; Brändle, R.; Jackson, M.B. Mechanisms of Flood Tolerance in Plants. Acta Bot. Neerl. 1994, 43, 307–358. [Google Scholar] [CrossRef]
- Vartapetian, B.B.; Jackson, M.B. Plant Adaptations to Anaerobic Stress. Ann. Bot. 1997, 79, 3–20. [Google Scholar] [CrossRef]
- Visser, E.J.W. Flooding and Plant Growth. Ann. Bot. 2003, 91, 107–109. [Google Scholar] [CrossRef]
- Jackson, M.B.; Colmer, T.D. Response and Adaptation by Plants to Flooding Stress. Ann. Bot. 2005, 96, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Seago, J.L.; Marsh, L.C.; Stevens, K.J.; Soukup, A.; Votrubová, O.; Enstone, D.E. A Re-Examination of the Root Cortex in Wetland Flowering Plants with Respect to Aerenchyma. Ann. Bot. 2005, 96, 565–579. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global Flood Risk under Climate Change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Voesenek, L.A.C.J.; Bailey-Serres, J. Flood Adaptive Traits and Processes: An Overview. New Phytol. 2015, 206, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Nasrullah; Ali, S.; Umar, M.; Sun, L.; Naeem, M.; Yasmin, H.; Khan, N. Flooding Tolerance in Plants: From Physiological and Molecular Perspectives. Braz. J. Bot 2022, 45, 1161–1176. [Google Scholar] [CrossRef]
- Bailey-Serres, J.; Lee, S.C.; Brinton, E. Waterproofing Crops: Effective Flooding Survival Strategies. Plant Physiol. 2012, 160, 1698–1709. [Google Scholar] [CrossRef]
- Morris, J.; Brewin, P. The Impact of Seasonal Flooding on Agriculture: The Spring 2012 Floods in Somerset, England. J. Flood Risk Manag. 2014, 7, 128–140. [Google Scholar] [CrossRef]
- Patel, P.K.; Singh, A.K.; Tripathi, N.; Yadav, D.; Hemantaranjan, A. Flooding: Abiotic Constraint Limiting Vegetable Productivity. APAR 2014, 1, 96–103. [Google Scholar] [CrossRef]
- Wright, A.J.; De Kroon, H.; Visser, E.J.W.; Buchmann, T.; Ebeling, A.; Eisenhauer, N.; Fischer, C.; Hildebrandt, A.; Ravenek, J.; Roscher, C.; et al. Plants Are Less Negatively Affected by Flooding When Growing in Species-rich Plant Communities. New Phytol. 2017, 213, 645–656. [Google Scholar] [CrossRef]
- Anee, T.I.; Nahar, K.; Rahman, A.; Mahmud, J.A.; Bhuiyan, T.F.; Alam, M.U.; Fujita, M.; Hasanuzzaman, M. Oxidative Damage and Antioxidant Defense in Sesamum Indicum after Different Waterlogging Durations. Plants 2019, 8, 196. [Google Scholar] [CrossRef]
- Barber, A.; Müller, C. Drought and Subsequent Soil Flooding Affect the Growth and Metabolism of Savoy Cabbage. Int. J. Mol. Sci. 2021, 22, 13307. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lv, G.; He, X.; Zhang, X.; Yang, X. The Complete Chloroplast Genome of the Spring Ephemeral Plant Alyssum Desertorum and Its Implications for the Phylogenetic Position of the Tribe Alysseae within the Brassicaceae. Nord. J. Bot. 2017, 35, 644–652. [Google Scholar] [CrossRef]
- Ilyinska, A.P. Species of a Genus Alyssum L. (Section Alyssum) in Ukrainian Flora. Ukr. Bot. J. 2005, 62, 223–234. [Google Scholar]
- Reva, M.L.; Reva, N.N. Wild Edible Plants of Ukraine; Naukova Dumka: Kyiv, Ukraine, 1976. [Google Scholar]
- Zhang, R.D.; Zhou, Y.F.; Yue, Z.X.; Chen, X.F.; Cao, X.; Xu, X.X.; Xing, Y.F.; Jiang, B.; Ai, X.Y.; Huang, R.D. Changes in Photosynthesis, Chloroplast Ultrastructure, and Antioxidant Metabolism in Leaves of Sorghum under Waterlogging Stress. Photosynthetica 2019, 57, 1076–1083. [Google Scholar] [CrossRef]
- Todorova, D.; Katerova, Z.; Shopova, E.; Brankova, L.; Sergiev, I.; Jankauskienė, J.; Jurkonienė, S. The Physiological Responses of Wheat and Maize Seedlings Grown under Water Deficit Are Modulated by Pre-Application of Auxin-Type Plant Growth Regulators. Plants 2022, 11, 3251. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Bhatt, U.; Sharma, J.; Kalaji, H.M.; Mojski, J.; Soni, V. Ultrastructure, Adaptability, and Alleviation Mechanisms of Photosynthetic Apparatus in Plants under Waterlogging: A Review. Photosynthetica 2022, 60, 430–444. [Google Scholar] [CrossRef]
- Sachs, M.; Vartapetian, B. Plant Anaerobic Stress I. Metabolic Adaptation to Oxygen Deficiency. Plant Stress 2007, 1, 123–135. [Google Scholar]
- Ferreira, C.S.; Fernandez, M.T.; Cesar, P.A.; Gonçalves, F.F. Adaptive strategies to tolerate prolonged flooding in seedlings of floodplain and populations of Himatanthus sucuuba, a Central Amazon tree. Aquat. Bot. 2009, 90, 46–252. [Google Scholar] [CrossRef]
- Chen, D.; Zhu, Y.; Wu, G.; Li, Y. Characterization Analysis of Response of Alcohol Dehydrogenase Gene (ADH 1) in Coix Lacroyma Jobi L. to Waterlogging Stress. Adv. J. Food Sci. Technol. 2013, 4, 417–425. [Google Scholar]
- Chung, H.-J.; Ferl, R.J. Arabidopsis Alcohol Dehydrogenase Expression in Both Shoots and Roots Is Conditioned by Root Growth Environment. Plant Physiol. 1999, 121, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Dat, J.F.; Capelli, N.; Folzer, H.; Bourgeade, P.; Badot, P.-M. Sensing and Signalling during Plant Flooding. Plant Physiol. Biochem. 2004, 42, 273–282. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, X.; Yang, G.; Li, Z.; Lu, H.; Kong, X.; Eneji, A.E.; Dong, H. Physiological and Molecular Adjustment of Cotton to Waterlogging at Peak-Flowering in Relation to Growth and Yield. Field Crops Res. 2015, 179, 164–172. [Google Scholar] [CrossRef]
- Casarotto, G.; Kaspary, T.E.; Cutti, L.; Thomas, A.L.; Barbosa Neto, J.F. Expression of Genes Related to Soil Flooding Tolerance in Soybeans. Acta Sci. Agron. 2019, 41, e42709. [Google Scholar] [CrossRef]
- Sørensen, J.G.; Kristensen, T.N.; Loeschcke, V. The Evolutionary and Ecological Role of Heat Shock Proteins. Ecol. Lett. 2003, 6, 1025–1037. [Google Scholar] [CrossRef]
- Liberek, K.; Lewandowska, A.; Ziętkiewicz, S. Chaperones in Control of Protein Disaggregation. EMBO J. 2008, 27, 328–335. [Google Scholar] [CrossRef]
- Banti, V.; Loreti, E.; Novi, G.; Santaniello, A.; Alpi, A.; Perata, P. Heat Acclimation and Cross-tolerance against Anoxia in Arabidopsis. Plant Cell Environ. 2008, 31, 1029–1037. [Google Scholar] [CrossRef]
- Colmer, T.D.; Voesenek, L.A.C.J. Flooding Tolerance: Suites of Plant Traits in Variable Environments. Funct. Plant Biol. 2009, 36, 665. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Wang, H.; Bao, Y.; Zhang, W. Examination of the Leaf Proteome during Flooding Stress and the Induction of Programmed Cell Death in Maize. Proteome Sci. 2014, 12, 33. [Google Scholar] [CrossRef]
- Kozeko, L.Y.; Ovcharenko, Y.V. Dynamics of Structural and Functional Sium latifolium (Apiaceae) Adaptation to Root Flooding. Ukr. Bot. J. 2015, 72, 172–179. [Google Scholar] [CrossRef]
- Gill, M.B.; Zeng, F.; Shabala, L.; Zhang, G.; Yu, M.; Demidchik, V.; Shabala, S.; Zhou, M. Identification of QTL Related to ROS Formation under Hypoxia and Their Association with Waterlogging and Salt Tolerance in Barley. Int. J. Mol. Sci. 2019, 20, 699. [Google Scholar] [CrossRef] [PubMed]
- Akyol, Y.; Kocabaş, O.; Bozdağ, B.; Minareci, E.; Özdemir, C. Vascular anatomy of Alyssum alyssoides and A. desertorum (Brassicaceae) from Eastern Anatolia, Turkey. Phytol. Canica 2017, 23, 3–6. [Google Scholar]
- Wu, Y.-S.; Yang, C.-Y. Physiological Responses and Expression Profile of NADPH Oxidase in Rice (Oryza sativa) Seedlings under Different Levels of Submergence. Rice 2016, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.T.; Lin, C.H. Effect of Flooding Stress on Photosynthetic Activities of Momordica Charantia. Plant Physiol. Biochem. 1994, 32, 479–485. [Google Scholar]
- Yordanova, R.Y.; Popova, L.P. Photosynthetic Response of Barley Plants to Soil Flooding. Photosynthetica 2001, 39, 515–520. [Google Scholar] [CrossRef]
- De Castro, J.; Hill, R.D.; Stasolla, C.; Badea, A. Waterlogging Stress Physiology in Barley. Agronomy 2022, 12, 780. [Google Scholar] [CrossRef]
- Malik, A.I.; Colmer, T.D.; Lambers, H.; Setter, T.L.; Schortemeyer, M. Short–term waterlogging has long–term effects on the growth and physiology of wheat. New Phytol. 2002, 153, 225–236. [Google Scholar] [CrossRef]
- Olgun, M.; Metin Kumlay, A.; Cemal Adiguzel, M.; Caglar, A. The effect of waterlogging in wheat (T. aestivum L.). Acta Agric. Scand. Sect. B-Soil Plant Sci. 2008, 58, 193–198. [Google Scholar] [CrossRef]
- Pociecha, E.; Kościelniak, J.; Filek, W. Effects of Root Flooding and Stage of Development on the Growth and Photosynthesis of Field Bean (Vicia faba L. Minor). Acta Physiol. Plant 2008, 30, 529. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, J.; Dong, S.; Liu, P.; Zhao, B. Effects of Waterlogging on Leaf Mesophyll Cell Ultrastructure and Photosynthetic Characteristics of Summer Maize. PLoS ONE 2016, 11, e0161424. [Google Scholar] [CrossRef] [PubMed]
- Salah, A.; Zhan, M.; Cao, C.; Han, Y.; Ling, L.; Liu, Z.; Li, P.; Ye, M.; Jiang, Y. γ-Aminobutyric Acid Promotes Chloroplast Ultrastructure, Antioxidant Capacity, and Growth of Waterlogged Maize Seedlings. Sci. Rep. 2019, 9, 484. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wan, S.W.; Li, G.; Qin, P. Ultrastructure Changes of Seedlings of Kosteletzkya Virginica under Waterlogging Conditions. Biol. Plant. 2011, 55, 493–498. [Google Scholar] [CrossRef]
- Shi, F.; Pan, Z.; Dai, P.; Shen, Y.; Lu, Y.; Han, B. Effect of Waterlogging Stress on Leaf Anatomical Structure and Ultrastructure of Phoebe Sheareri Seedlings. Forests 2023, 14, 1294. [Google Scholar] [CrossRef]
- Liu, S.; Sun, B.; Cao, B.; Lv, Y.; Chen, Z.; Xu, K. Effects of Soil Waterlogging and High-Temperature Stress on Photosynthesis and Photosystem II of Ginger (Zingiber officinale). Protoplasma 2023, 260, 405–418. [Google Scholar] [CrossRef]
- Yoshioka-Nishimura, M. Close Relationships Between the PSII Repair Cycle and Thylakoid Membrane Dynamics. Plant Cell Physiol. 2016, 57, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Kreuzwieser, J.; Rennenberg, H. Molecular and Physiological Responses of Trees to Waterlogging Stress. Plant Cell Environ. 2014, 37, 2245–2259. [Google Scholar] [CrossRef]
- Takahashi, S.; Badger, M.R. Photoprotection in Plants: A New Light on Photosystem II Damage. Trends Plant Sci. 2011, 16, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Grodzinski, B.; Han, J.; Marie, T.; Zhang, Y.; Song, Y.C.; Sun, Y. Granal Thylakoid Structure and Function: Explaining an Enduring Mystery of Higher Plants. New Phytol. 2022, 236, 319–329. [Google Scholar] [CrossRef]
- Wample, R.L.; Davis, R.W. Effect of Flooding on Starch Accumulation in Chloroplasts of Sunflower (Helianthus annuus L.). Plant Physiol. 1983, 73, 195–198. [Google Scholar] [CrossRef]
- Vu, J.C.V.; Yelenosky, G. Photosnythetic Responses of Rough Lemon and Sour Orange to Soil Flooding, Chilling, and Short-Term Temperature Fluctuations during Growth. Environ. Exp. Bot. 1992, 32, 471–477. [Google Scholar] [CrossRef]
- Gravatt, D.A.; Kirby, C.J. Patterns of Photosynthesis and Starch Allocation in Seedlings of Four Bottomland Hardwood Tree Species Subjected to Flooding. Tree Physiol. 1998, 18, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Merchant, A.; Peuke, A.D.; Keitel, C.; Macfarlane, C.; Warren, C.R.; Adams, M.A. Phloem Sap and Leaf δ13C, Carbohydrates, and Amino Acid Concentrations in Eucalyptus Globulus Change Systematically According to Flooding and Water Deficit Treatment. J. Exp. Bot. 2010, 61, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cheng, R.; Xiao, W.; Guo, Q.; Wang, N. Effect of Off-Season Flooding on Growth, Photosynthesis, Carbohydrate Partitioning, and Nutrient Uptake in Distylium Chinense. PLoS ONE 2014, 9, e107636. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Zeeman, S.C.; Smith, S.M. STARCH DEGRADATION. Annu. Rev. Plant Biol. 2005, 56, 73–98. [Google Scholar] [CrossRef] [PubMed]
- Grennan, A.K. Regulation of Starch Metabolism in Arabidopsis Leaves. Plant Physiol. 2006, 142, 1343–1345. [Google Scholar] [CrossRef]
- Topa, M.A.; Cheeseman, J.M. Carbon and Phosphorus Partitioning in Pinus Serotina Seedlings Growing under Hypoxic and Low-Phosphorus Conditions. Tree Physiol. 1992, 10, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Striker, G.G. Flooding Stress on Plants: Anatomical, Morphological and Physiological Responses. In Botany; InTech: Rijeka, Croatia, 2012; pp. 3–28. ISBN 978-953-51-0355-4. [Google Scholar]
- Hurng, W.P.; Kao, C.H. Loss of Starch and Increase of α-Amylase Activity in Leaves of Flooded Tobacco Plants. Plant Cell Physiol. 1993, 34, 531–534. [Google Scholar] [CrossRef]
- Thalmann, M.; Santelia, D. Starch as a Determinant of Plant Fitness under Abiotic Stress. New Phytol. 2017, 214, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Van Wijk, K.J.; Kessler, F. Plastoglobuli: Plastid Microcompartments with Integrated Functions in Metabolism, Plastid Developmental Transitions, and Environmental Adaptation. Annu. Rev. Plant Biol. 2017, 68, 253–289. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, H. Chloroplast Ultrastructure in Plants. New Phytol. 2019, 223, 565–574. [Google Scholar] [CrossRef]
- Mielke, M.S.; De Almeida, A.-A.F.; Gomes, F.P.; Aguilar, M.A.G.; Mangabeira, P.A.O. Leaf Gas Exchange, Chlorophyll Fluorescence and Growth Responses of Genipa Americana Seedlings to Soil Flooding. Environ. Exp. Bot. 2003, 50, 221–231. [Google Scholar] [CrossRef]
- Wientjes, E.; Van Amerongen, H.; Croce, R. Quantum Yield of Charge Separation in Photosystem II: Functional Effect of Changes in the Antenna Size upon Light Acclimation. J. Phys. Chem. B 2013, 117, 11200–11208. [Google Scholar] [CrossRef] [PubMed]
- Feder, M.E.; Hofmann, G.E. Heat-Shock Proteins, Molecular Chaperones, and the Stress Response: Evolutionary and Ecological Physiology. Annu. Rev. Physiol. 1999, 61, 243–282. [Google Scholar] [CrossRef]
- Kozeko, L. Different Roles of Inducible and Constitutive HSP70 and HSP90 in Tolerance of Arabidopsis Thaliana to High Temperature and Water Deficit. Acta Physiol. Plant 2021, 43, 58. [Google Scholar] [CrossRef]
- Kozeko, L.Y.; Rakhmetov, D.B. Variation in dynamics of the heat shock proteins HSP70 synthesis in Malva sylvestris and M. pulchella (Malvaceae) in connection with tolerance to high temperature, flooding and drought. Ukr. Bot. J. 2016, 73, 194–203. (In Ukrainian) [Google Scholar] [CrossRef]
- Ismond, K.P.; Dolferus, R.; De Pauw, M.; Dennis, E.S.; Good, A.G. Enhanced Low Oxygen Survival in Arabidopsis through Increased Metabolic Flux in the Fermentative Pathway. Plant Physiol. 2003, 132, 1292–1302. [Google Scholar] [CrossRef]
- Sun, L.; Li, X.; Wang, X.; Xiang, L.; Yang, J.; Min, Q.; Chen, G.; Chen, F.; Huang, C.; Wang, G. Growth and Respiratory Metabolic Adaptation Strategies of Riparian Plant Distylium Chinense to Submergence by the Field Study and Controlled Experiments. Plant Physiol. Biochem. 2020, 157, 1–12. [Google Scholar] [CrossRef]
- Xuan, L.; Hua, J.; Zhang, F.; Wang, Z.; Pei, X.; Yang, Y.; Yin, Y.; Creech, D.L. Identification and Functional Analysis of ThADH1 and ThADH4 Genes Involved in Tolerance to Waterlogging Stress in Taxodium Hybrid ‘Zhongshanshan 406’. Genes 2021, 12, 225. [Google Scholar] [CrossRef]
- Millar, A.A.; Olive, M.R.; Dennis, E.S. The Expression and Anaerobic Induction of Alcohol Dehydrogenase in Cotton. Biochem. Genet. 1994, 32, 279–300. [Google Scholar] [CrossRef]
- Andrews, D.L.; Cobb, B.G.; Johnson, J.R.; Drew, M.C. Hypoxic and Anoxic Induction of Alcohol Dehydrogenase in Roots and Shoots of Seedlings of Zea mays (Adh Transcripts and Enzyme Activity). Plant Physiol. 1993, 101, 407–414. [Google Scholar] [CrossRef]
- Qi, X.-H.; Xu, X.-W.; Lin, X.-J.; Zhang, W.-J.; Chen, X.-H. Identification of Differentially Expressed Genes in Cucumber (Cucumis sativus L.) Root under Waterlogging Stress by Digital Gene Expression Profile. Genomics 2012, 99, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Tougou, M.; Hashiguchi, A.; Yukawa, K.; Nanjo, Y.; Hiraga, S.; Nakamura, T.; Nishizawa, K.; Komatsu, S. Responses to Flooding Stress in Soybean Seedlings with the Alcohol Dehydrogenase Transgene. Plant Biotechnol. 2012, 29, 301–305. [Google Scholar] [CrossRef]
- Komatsu, S.; Thibaut, D.; Hiraga, S.; Kato, M.; Chiba, M.; Hashiguchi, A.; Tougou, M.; Shimamura, S.; Yasue, H. Characterization of a Novel Flooding Stress-Responsive Alcohol Dehydrogenase Expressed in Soybean Roots. Plant Mol. Biol. 2011, 77, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Käsbauer, C.L.; Pathuri, I.P.; Hensel, G.; Kumlehn, J.; Hückelhoven, R.; Proels, R.K. Barley ADH-1 Modulates Susceptibility to Bgh and Is Involved in Chitin-Induced Systemic Resistance. Plant Physiol. Biochem. 2018, 123, 281–287. [Google Scholar] [CrossRef]
- Gonçalves, B.; Oliveira, I.; Bacelar, E.; Morais, M.C.; Aires, A.; Cosme, F.; Ventura-Cardoso, J.; Anjos, R.; Pinto, T. Aromas and Flavours of Fruits. In Generation of Aromas and Flavours; Vilela, A., Ed.; InTech: Cambridge, MA, USA, 2018; ISBN 978-1-78984-452-8. [Google Scholar]
- Cervantes, K.N.G.; Mesias, E.; Bravo, E.; Montaño, A.; Osorio, J.R. Effect of waterlogging on the alcohol dehydrogenase activity in yellow passion fruit roots Passiflora edulis var. Flavicarpa. Rev. Colomb. Biotecnol. 2015, 17, 114–122. [Google Scholar] [CrossRef]
- Small, J.G.C.; Burger, A.L.; Botha, F.C. Alcohol dehydrogenase in the desert species Acacia erioloba: Ontogeny during germination and induction in seedling roots. S. Afr. J. Bot. 1990, 56, 403–408. [Google Scholar] [CrossRef]
- Kozeko, L. Ye Heat shock protein HSP70 and alcohol dehydrogenase synthesis in leaves of Arabidopsis thaliana i Sium sisaroideum in response to soil flooding. Bull. Kharkiv Natl. Agrar. University. Ser. Biol. 2017, 3, 46–51. (In Ukrainian) [Google Scholar]
- Kordyum, E.; Kozeko, L.; Ovcharenko, Y.; Brykov, V. Assessment of Alcohol Dehydrogenase Synthesis and Aerenchyma Formation in the Tolerance of Sium L. Species (Apiaceae) to Water-Logging. Aquat. Bot. 2017, 142, 71–77. [Google Scholar] [CrossRef]
- Jackson, M.B.; Ricard, B. Physiology, biochemistry and molecular biology of plant root systems subjected to flooding of the soil. In Root Ecology; Springer: Berlin/Heidelberg, Germany, 2003; pp. 193–213. [Google Scholar]
- Vidoz, M.L.; Loreti, E.; Mensuali, A.; Alpi, A.; Perata, P. Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J. 2010, 63, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Steffens, B. The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front. Plant Sci. 2014, 5, 685. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.R.; Ecker, J.R. The ethylene gas signal transduction pathway: A molecular perspective. Annu. Rev. Genet. 1998, 32, 227–254. [Google Scholar] [CrossRef]
- Jurkoniene, S.; Jankauskiene, J.; Mockevičiūtė, R.; Gaveliene, V.; Jankovska-Bortkevič, E.; Sergiev, I.; Todorova, D.; Anisimoviene, N. Elevated temperature induced adaptive responses of two lupine species at early seedling phase. Plants 2021, 10, 1091. [Google Scholar] [CrossRef] [PubMed]
- Mar Delgado, M.; Roslin, T.; Tikhonov, G.; Ovaskainen, O. Differences in spatial versus temporal reaction norms for spring and autumn phenological events. Proc. Natl. Acad. Sci. USA 2020, 117, 31249–31258. [Google Scholar] [CrossRef]
- Crowther, C.; Bonser, S.P.; Schwanz, L.E. Plasticity and the adaptive evolution of switchlike reaction norms under environmental change. Evol. Lett. 2023, 21, qrad035. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Tait, M.A.; Hik, D.S. Is Dimethylsulfoxide a Reliable Solvent for Extracting Chlorophyll under Field Conditions? Photosynth. Res. 2003, 78, 87–91. [Google Scholar] [CrossRef]
- Stirbet, A.; Lazár, D.; Kromdijk, J.; Govindjee, G. Chlorophyll a Fluorescence Induction: Can Just a One-Second Measurement Be Used to Quantify Abiotic Stress Responses? Photosynthetica 2018, 56, 86–104. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Kozeko, L.; Ovcharenko, Y.; Jurkonienė, S.; Kordyum, E. Understanding unique tolerance limits in Hydrocotyle verticillata: From submergence to water deficiency. Aquat. Bot. 2023, 190, 103725. [Google Scholar] [CrossRef]
- Child, R.D.; Chauvaux, N.; John, K.; Van Onckelen, H.; Ulvskov, P. Ethylene biosynthesis in oilseed rape pods in relation to pod shatter. J. Exp. Bot. 1998, 49, 829–838. [Google Scholar] [CrossRef]
Parameter/Variant | 5 Days | 10 Days | ||
---|---|---|---|---|
Control | Flooding | Control | Flooding | |
chloroplasts: length, µm width, µm | 7.14 ± 0.55 c 2.85 ± 0.19 b | 10.42 ± 0.8 a 2.88 ± 0.19 b | 8.26 ± 0.63 b 2.03 ± 0.13 c | 6.59 ± 0.56 c 3.39 ± 0.23 a |
starch grains surface, µm2 | 0.64 ± 0.03 c | 1.12 ± 0.08 a | 0.44 ± 0.04 d | 0.73 ± 0.06 b |
plastoglobule diameter, nm | 57.06 ± 4.41 c | 59.73 ± 7.35 c | 101.2 ± 12.46 b | 205.32 ± 26.19 a |
thylakoids per granum, n | 4.7 ± 0.53 c | 4.3 ± 0.46 c | 8.2 ± 0.9 b | 11.65 ± 1.76 a |
mitochondria diameter, µm | 0.95 ± 0.06 a | 0.89 ± 0.02 a | 0.83 ± 0.04 d | 0.71 ± 0.04 c |
peroxisome diameter, µm | 2.29 ± 0.14 b | 2.61 ± 0.17 a | 1.95 ± 0.07 c | 2.19 ± 0.12 b |
Control, Flooding/Days | Granal Thylakoids | Stroma | Stromal Thylakoids | Starch Grains | Plastoglobuli | |
---|---|---|---|---|---|---|
5 days | control | 22.8 ± 2.7 a | 47.4 ± 5.8 a | 18.1 ± 2.1 a | 8.8 ± 0.7 b | 2.7 ± 0.2 b |
flooding | 21.2 ± 2.5 a | 45.5 ± 5.6 a | 16.9 ± 1.8 a | 13.4 ± 1.6 a | 2.9 ± 0.3 b | |
10 days | control | 19.2 ± 2.2 a | 51.5 ± 6.7 a | 17.2 ± 1.8 a | 9.0 ± 0.8 b | 2.8 ± 0.2 b |
flooding | 18.9 ± 2.3 a | 48.2 ± 6.2 a | 15.9 ± 1.6 a | 12.7 ± 1.4 a | 4.1 ± 0.5 a |
Parameter/Variant | 5 Days | 10 Days | ||
---|---|---|---|---|
Control | Flooding | Control | Flooding | |
chloroplasts: length, µm width, µm | 5.87 ± 0.42 a 2.74 ± 0.17 a | 5.02 ± 0.36 a 2.53 ± 0.16 a | 4.99 ± 0.38 a 2.18 ± 0.19 b | 4.14 ± 0.32 b 2.27 ± 0.22 b |
starch grain surface, µm2 | 0.19 ± 0.02 b | 0.13 ± 0.08 b | 0.46 ± 0.04 a | 0.14 ± 0,03 b |
plastoglobule diameter, nm. | 42.5 ± 4.46 b | 53.7 ± 5.19 a | 50.3 ± 4.18 a | 61.4 ± 6.85 a |
thylakoids per granum, n | 11.1 ± 0.85 a | 11.6 ± 1.28 a | 10.8 ± 0.92 a | 11.5 ± 1.25 a |
mitochondria diameter, µm | 0.63 ± 0.04 a | 0.7 ± 0,02 a | 0.72 ± 0.04 a | 0.71 ± 0.04 a |
peroxisome diameter, µm | 1.15 ± 0.09 a | 0.94 ± 0.06 b | 1.13 ± 0.07 a | 0.92 ± 0.07 b |
Control, Flooding/Days | Granal Thylakoids | Stroma | Stromal Thylakoids | Starch Grains | Plastoglobuli | |
---|---|---|---|---|---|---|
5 days | control | 15.6 ± 1.8 b | 69.1 ± 8.5 a | 12.4 ± 1.5 b | 1.6 ± 0.2 b | 1.3 ± 0.2 a |
flooding | 20.9 ± 2.5 a | 59.7 ± 7.3 a | 16.6 ± 1.9 a | 1.4 ± 0.2 b | 1.4 ± 0.2 a | |
10 days | control | 21.4 ± 2.7 a | 53.6 ± 6.5 a | 19.1 ± 2.2 a | 4.6 ± 0.8 a | 1.3 ± 0.2 a |
flooding | 20.5 ± 2.5 a | 59.1 ± 7.2 a | 17.2 ± 2.1 a | 1.8 ± 0.3 b | 1.4 ± 0.2 a |
Parameter | 5 Days | 10 Days | ||
---|---|---|---|---|
Control | Flooded | Control | Flooded | |
S. sylvestre | ||||
Chlorophyll a * | 13.09 ± 0.25 b | 6.03 ± 0.20 d | 13.98 ± 0.20 a | 6.79 ± 0.12 c |
Chlorophyll b | 4.45 ± 0.14 a | 1.85 ± 0.12 c | 4.24 ± 0.07 a | 2.37 ± 0.11 b |
Carotenoids | 2.60 ± 0.09 a | 1.44 ± 0.17 b | 2.71 ± 0.08 a | 1.36 ± 0.07 b |
Chlorophyll a/b ratio | 2.94 | 3.26 | 3.30 | 2.86 |
A. desertorum | ||||
Chlorophyll a | 7.22 ± 0.11 a | 5.67 ± 0.10 c | 7.00 ± 0.10 a | 6.68 ± 0.06 b |
Chlorophyll b | 2.14 ± 0.06 c | 1.60 ± 0.06 d | 2.81 ± 0.04 a | 2.40 ± 0.05 b |
Carotenoids | 1.52 ± 0.02 a | 1.23 ± 0.07 b | 1.47 ± 0.02 a | 1.37 ± 0.03 b |
Chlorophyll a/b ratio | 3.38 | 3.54 | 2.49 | 2.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kordyum, E.; Akimov, Y.; Polishchuk, O.; Panas, I.; Stepanov, S.; Kozeko, L. Psammophytes Alyssum desertorum Stapf and Secale sylvestre Host Are Sensitive to Soil Flooding. Plants 2024, 13, 413. https://doi.org/10.3390/plants13030413
Kordyum E, Akimov Y, Polishchuk O, Panas I, Stepanov S, Kozeko L. Psammophytes Alyssum desertorum Stapf and Secale sylvestre Host Are Sensitive to Soil Flooding. Plants. 2024; 13(3):413. https://doi.org/10.3390/plants13030413
Chicago/Turabian StyleKordyum, Elizabeth, Yuri Akimov, Oleksandr Polishchuk, Ihor Panas, Sergiy Stepanov, and Liudmyla Kozeko. 2024. "Psammophytes Alyssum desertorum Stapf and Secale sylvestre Host Are Sensitive to Soil Flooding" Plants 13, no. 3: 413. https://doi.org/10.3390/plants13030413
APA StyleKordyum, E., Akimov, Y., Polishchuk, O., Panas, I., Stepanov, S., & Kozeko, L. (2024). Psammophytes Alyssum desertorum Stapf and Secale sylvestre Host Are Sensitive to Soil Flooding. Plants, 13(3), 413. https://doi.org/10.3390/plants13030413