Genome-Wide Identification of the Ferric Chelate Reductase (FRO) Gene Family in Peanut and Its Diploid Progenitors: Structure, Evolution, and Expression Profiles
Abstract
:1. Introduction
2. Results
2.1. Identification and Phylogenetic Analysis of FRO Genes in the Three Arachis Species
2.2. Conserved Motifs, Domain Architectures, and Exon–Intron Organization
2.3. Gene Duplication of the FRO Family
2.4. 3D Model Predictions and Multiple Sequence Alignment
2.5. The Cis-Regulatory Elements (CREs) of AhFRO Genes in Peanut
2.6. Tissue-Specific Expression of AhFRO Genes in Peanut
2.7. Transcriptional Responses of AhFROs to Fe-Deficiency and Cu Exposure
2.8. The Accumulation and Translocation of Fe and Cu in the Two Peanut Cultivars
2.9. Relationships between AhFRO Genes and Metal Accumulation in Peanut
3. Discussion
4. Materials and Methods
4.1. Identification of FRO Proteins in the Three Arachis Species
4.2. Physicochemical and Structural Characteristics of FRO Proteins
4.3. Exon–intron Organization, Duplication, and Ka/Ks of FRO Genes
4.4. Tissue-specific Expression Profiles of AhFRO Genes in Peanut
4.5. Plant Growth, Treatment, Metal Determination, and RT-qPCR Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995; pp. 6–78. [Google Scholar]
- Therby-Vale, R.; Lacombe, B.; Rhee, S.Y.; Nussaume, L.; Rouached, H. Mineral nutrient signaling controls photosynthesis: Focus on iron deficiency-induced chlorosis. Trends Plant Sci. 2022, 27, 502–509. [Google Scholar] [CrossRef]
- Vigani, G. Discovering the role of mitochondria in the iron deficiency-induced metabolic responses of plants. J. Plant Physiol. 2012, 169, 1–11. [Google Scholar] [CrossRef]
- Wu, L.; Ueda, Y.; Lai, S.-K.; Frei, M. Shoot tolerance mechanisms to iron toxicity in rice (Oryza sativa L.). Plant Cell Environ. 2017, 40, 570–584. [Google Scholar] [CrossRef]
- Li, M.; Watanabe, S.; Gao, F.; Dubos, C. Iron nutrition in plants: Towards a new paradigm? Plants 2023, 12, 384. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Barak, P. Iron Nutrition of Plants in Calcareous Soils. In Advances in Agronomy; Brady, N.C., Ed.; Academic Press: Cambridge, MA, USA, 1982; Volume 35, pp. 217–240. [Google Scholar]
- World Health Organization. Conclusions and recommendations of the WHO Consultation on prevention and control of iron deficiency in infants and young children in malaria-endemic areas. Food Nutr. Bull. 2007, 28, S621–S627. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nishizawa, N.K. Iron sensors and signals in response to iron deficiency. Plant Sci. 2014, 224, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, I.; Campbell, N.H.; Ash, J.S.; Connolly, E.L. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 2006, 223, 1178–1190. [Google Scholar] [CrossRef]
- Robinson, N.J.; Procter, C.M.; Connolly, E.L.; Guerinot, M.L. A ferric-chelate reductase for iron uptake from soils. Nature 1999, 397, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Schagerlöf, U.; Wilson, G.; Hebert, H.; Al-Karadaghi, S.; Hägerhäll, C. Transmembrane topology of FRO2, a ferric chelate reductase from Arabidopsis thaliana. Plant Mol. Biol. 2006, 62, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Jing, X.-Q.; Shalmani, A.; Ali, M.; Yi, S.; Gan, P.-F.; Li, W.-Q.; Liu, W.-T.; Chen, K.-M. Comparative in silico analysis of ferric reduction oxidase (FRO) genes expression patterns in response to abiotic stresses, metal and hormone applications. Molecules 2018, 23, 1163. [Google Scholar] [CrossRef]
- Brumbarova, T.; Bauer, P.; Ivanov, R. Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci. 2015, 20, 124–133. [Google Scholar] [CrossRef]
- Li, L.-Y.; Cai, Q.-Y.; Yu, D.-S.; Guo, C.-H. Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis. Mol. Biol. Rep. 2011, 38, 3605–3613. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Cohu, C.; Kerkeb, L.; Pilon, M.; Connolly, E.L.; Guerinot, M.L. Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc. Natl. Acad. Sci. USA 2008, 105, 10619–10624. [Google Scholar] [CrossRef]
- Jeong, J.; Connolly, E.L. Iron uptake mechanisms in plants: Functions of the FRO family of ferric reductases. Plant Sci. 2009, 176, 709–714. [Google Scholar] [CrossRef]
- Jain, A.; Wilson, G.T.; Connolly, E.L. The diverse roles of FRO family metalloreductases in iron and copper homeostasis. Front. Plant Sci. 2014, 5, 100. [Google Scholar] [CrossRef] [PubMed]
- Bertioli, D.J.; Cannon, S.B.; Froenicke, L.; Huang, G.; Farmer, A.D.; Cannon, E.K.S.; Liu, X.; Gao, D.; Clevenger, J.; Dash, S.; et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 2016, 48, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Bertioli, D.J.; Jenkins, J.; Clevenger, J.; Dudchenko, O.; Gao, D.; Seijo, G.; Leal-Bertioli, S.C.M.; Ren, L.; Farmer, A.D.; Pandey, M.K.; et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat. Genet. 2019, 51, 877–884. [Google Scholar] [CrossRef]
- Hurst, L.D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486–487. [Google Scholar] [CrossRef]
- Clevenger, J.; Chu, Y.; Scheffler, B.; Ozias-Akins, P. A developmental transcriptome map for allotetraploid Arachis hypogaea. Front. Plant Sci. 2016, 7, 1446. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Zhang, Z.; Shi, G. Genome-wide identification of metal tolerance protein genes in peanut: Differential expression in the root of two contrasting cultivars under metal stresses. Front. Plant Sci. 2022, 13, 791200. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, N.; Zhang, Z.; Shi, G. Genome-wide identification and expression profile reveal potential roles of peanut ZIP family genes in zinc/iron-deficiency tolerance. Plants 2022, 11, 786. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Li, J.; Guan, J.; Tan, Z.; Zhang, Z.; Shi, G. Genome-wide identification and transcript analysis reveal potential roles of oligopeptide transporter genes in iron deficiency induced cadmium accumulation in peanut. Front. Plant Sci. 2022, 13, 894848. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Li, J.; Guan, J.; Wang, C.; Zhang, Z.; Shi, G. Genome-wide identification and expression analysis reveals roles of the NRAMP gene family in iron/cadmium interactions in peanut. Int. J. Mol. Sci. 2023, 24, 1713. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lu, Q.; Liu, H.; Zhang, J.; Hong, Y.; Lan, H.; Li, H.; Wang, J.; Liu, H.; Li, S.; et al. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol. Plant 2019, 12, 920–934. [Google Scholar] [CrossRef]
- Panchy, N.; Lehti-Shiu, M.; Shiu, S.-H. Evolution of gene duplication in plants. Plant Physiol. 2016, 171, 2294–2316. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Liao, B.-Y.; Chang, A.Y.-F.; Zhang, J. Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends Genet. 2010, 26, 425–430. [Google Scholar] [CrossRef]
- Zhang, J. Genetic redundancies and their evolutionary maintenance. In Evolutionary Systems Biology; Soyer, O.S., Ed.; Springer: New York, NY, USA, 2012; pp. 279–300. [Google Scholar]
- Xu, G.; Guo, C.; Shan, H.; Kong, H. Divergence of duplicate genes in exon–intron structure. Proc. Nat. Acad. Sci. USA 2012, 109, 1187–1192. [Google Scholar] [CrossRef]
- Vasconcelos, M.; Eckert, H.; Arahana, V.; Graef, G.; Grusak, M.A.; Clemente, T. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Planta 2006, 224, 1116–1128. [Google Scholar] [CrossRef]
- Wu, J.-X.; Liu, R.; Song, K.; Chen, L. Structures of human dual oxidase 1 complex in low-calcium and high-calcium states. Nat. Commun. 2021, 12, 155. [Google Scholar] [CrossRef] [PubMed]
- Sun, J. Structures of mouse DUOX1–DUOXA1 provide mechanistic insights into enzyme activation and regulation. Nat. Struct. Mol. Biol. 2020, 27, 1086–1093. [Google Scholar] [CrossRef]
- Liu, R.; Song, K.; Wu, J.-X.; Geng, X.-P.; Zheng, L.; Gao, X.; Peng, H.; Chen, L. Structure of human phagocyte NADPH oxidase in the resting state. eLife 2022, 11, e83743. [Google Scholar] [CrossRef]
- Connolly, E.L.; Campbell, N.H.; Grotz, N.; Prichard, C.L.; Guerinot, M.L. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol. 2003, 133, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, D.; Santo, N.; Morandini, P.; Casagrande, F.; Braun, H.-P.; Heinemeyer, J.; Vigani, G.; Soave, C.; Murgia, I. AtFer4 ferritin is a determinant of iron homeostasis in Arabidopsis thaliana heterotrophic cells. J. Plant Physiol. 2010, 167, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Xv, C.; Jiang, Q.; Wang, L.; Shi, G. Comparative transcriptome analysis reveals key genes responsible for the homeostasis of iron and other divalent metals in peanut roots under iron deficiency. Plant Soil 2019, 445, 513–531. [Google Scholar] [CrossRef]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef]
- Tsirigos, K.D.; Peters, C.; Shu, N.; Käll, L.; Elofsson, A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 2015, 43, W401–W407. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2020, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Williams, N.; Misleh, C.; Li, W.W. MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006, 34 (Suppl. S2), W369–W373. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.; Guo, A.-Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zhang, Z.; Su, Y.; Liu, C.; Shi, G. Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation. Ecotoxicol. Environ. Saf. 2013, 91, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yu, R.; Shi, G. Effects of drought on the accumulation and redistribution of cadmium in peanuts at different developmental stages. Arch. Agron. Soil Sci. 2016, 63, 1049–1057. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Gene ID | Gene Length (bp) | CDS (bp) | MW a (kDa) | aa b | Instability | Aliphatic Index | GRAVY c | pI d | No. of TMD e | Location |
---|---|---|---|---|---|---|---|---|---|---|---|
AhFRO2.1 | 112732410 | 2550 | 2184 | 81.95 | 727 | 39.95 | 109.13 | 0.368 | 9.38 | 10 | PM f |
AhFRO2.2 | 112797510 | 2585 | 2214 | 83.53 | 737 | 40.69 | 106.85 | 0.187 | 9.47 | 10 | PM |
AhFRO2.3 | 112726301 | 2417 | 2187 | 82.15 | 728 | 39.81 | 109.52 | 0.348 | 9.25 | 10 | PM |
AhFRO2.4 | 114925155 | 1254 | 702 | 25.97 | 233 | 47.64 | 99.57 | 0.011 | 5.82 | 2 | PM |
AhFRO2.5 | 112744178 | 2659 | 2184 | 82.42 | 727 | 40.16 | 107.11 | 0.186 | 9.45 | 10 | PM |
AhFRO7.1 | 112796104 | 2999 | 2208 | 82.84 | 735 | 40.35 | 106.29 | 0.355 | 8.31 | 12 | Chlo. g |
AhFRO7.2 | 112741396 | 2842 | 2217 | 83.11 | 738 | 41.04 | 105.60 | 0.324 | 8.14 | 12 | Chlo. |
AhFRO8.1 | 112702502 | 2590 | 1893 | 70.86 | 630 | 46.08 | 109.13 | 0.333 | 9.16 | 8 | Mito. h |
AhFRO8.2 | 112765774 | 2463 | 2124 | 79.36 | 707 | 45.57 | 112.43 | 0.377 | 9.30 | 11 | Mito. |
AdFRO2.1 | 107472727 | 2407 | 2184 | 82.06 | 727 | 39.57 | 108.46 | 0.359 | 9.39 | 10 | PM |
AdFRO2.2 | 107485816 | 1056 | 711 | 26.40 | 236 | 48.31 | 111.48 | 0.244 | 8.23 | 2 | PM |
AdFRO2.3 | 110280250 | 556 | 372 | 13.52 | 123 | 35.36 | 91.87 | −0.129 | 6.82 | 0 | PM |
AdFRO7 | 107483074 | 2508 | 2217 | 83.14 | 738 | 40.63 | 105.85 | 0.347 | 8.31 | 12 | Chlo. |
AdFRO8 | 107457844 | 2413 | 2124 | 79.45 | 707 | 44.89 | 111.88 | 0.371 | 9.28 | 10 | Mito. |
AiFRO2 | 107635065 | 2710 | 2184 | 82.49 | 727 | 40.44 | 107.11 | 0.181 | 9.42 | 10 | PM |
AiFRO7 | 107638776 | 2887 | 2220 | 83.21 | 739 | 41.14 | 105.98 | 0.329 | 8.14 | 12 | Chlo. |
AiFRO8 | 107609299 | 2446 | 2124 | 79.36 | 707 | 45.57 | 112.43 | 0.377 | 9.30 | 11 | Mito. |
Gene Pairs | Duplicate Type | Ka a | Ks b | Ka/Ks c | Positive Selection | Divergence Time (Mya) |
---|---|---|---|---|---|---|
AhFRO2.1/2.3 | Whole-genome | 0.011 | 0.039 | 0.279 | No | 2.38 |
AhFRO2.2/2.4 | Whole-genome | 0.013 | 0.020 | 0.661 | No | 1.21 |
AhFRO7.1/7.2 | Whole-genome | 0.006 | 0.020 | 0.302 | No | 1.21 |
AhFRO8.1/8.2 | Whole-genome | 0.011 | 0.027 | 0.422 | No | 1.63 |
AhFRO2.1/2.2 | Segmental | 0.209 | 0.726 | 0.289 | No | 44.70 |
AhFRO2.3/2.4 | Segmental | 0.203 | 0.701 | 0.290 | No | 43.14 |
Function | cis-Acting Elements | AhFRO2.1 | AhFRO2.2 | AhFRO2.3 | AhFRO2.4 | AhFRO2.5 | AhFRO7.1 | AhFRO7.2 | AhFRO8.1 | AhFRO8.2 |
---|---|---|---|---|---|---|---|---|---|---|
Gene transcription | CAAT-box | 9 | 20 | 14 | 19 | 12 | 8 | 6 | 13 | 15 |
TATA-box | 99 | 66 | 151 | 73 | 91 | 106 | 121 | 56 | 52 | |
Light responsiveness | 3-AF1 binding site | 1 | ||||||||
ACE | 1 | |||||||||
AE-box | 1 | |||||||||
AT1-motif | 1 | 3 | 3 | 1 | ||||||
ATC-motif | 1 | 1 | ||||||||
ATCT-motif | 1 | 1 | 1 | 1 | ||||||
Box4 | 5 | 6 | 5 | 9 | 2 | 4 | 3 | 11 | ||
chs-CMA1a | 2 | |||||||||
chs-CMA2a | 1 | |||||||||
GA-motif | 1 | 1 | ||||||||
GATA-motif | 2 | 3 | 1 | |||||||
G-box | 1 | 3 | 4 | 5 | ||||||
GT1-motif | 1 | 2 | 1 | 3 | 3 | 5 | 7 | |||
I-box | 2 | 2 | 3 | |||||||
MRE | 1 | 1 | ||||||||
TCCC-motif | 1 | 1 | 1 | |||||||
TCT-motif | 1 | 1 | 1 | 2 | 1 | 2 | 3 | 1 | 2 | |
Phytohormone responsive | ABRE | 1 | 3 | 3 | 3 | |||||
CGTCA-motif | 1 | 1 | 2 | |||||||
GARE-motif | 1 | 1 | 1 | |||||||
P-box | 1 | 1 | 1 | |||||||
TCA-element | 1 | 1 | 1 | 1 | ||||||
TGACG-motif | 1 | 1 | 2 | |||||||
TGA-element | 1 | |||||||||
AuxRR-core | 1 | 1 | ||||||||
Abiotic stress responsive | ARE | 3 | 2 | 4 | 3 | 3 | 8 | |||
LTR | 1 | 1 | ||||||||
MBS | 1 | 1 | ||||||||
TC-rich repeats | 1 | 2 | 2 | 1 | 1 | |||||
Tissue expression | CAT-box | 1 | 1 | 1 | ||||||
GCN4_motif | 1 | 1 |
Cultivars/ Treatments | [Fe]root a | [Fe]shoot b | Total Fe in Plants | % of Fe in Shoots | [Cu]root c | [Cu]shoot d | Total Cu in Plants | % of Cu in Shoots |
---|---|---|---|---|---|---|---|---|
Fenghua 1 | ||||||||
+Fe (control) | 1203.2 ± 56.0 ce | 159.5 ± 5.2 a | 703.4 ± 19.2 c | 46.2 ± 2.1 a | 19.1 ± 2.0 e | 5.5 ± 0.4 f | 17.3 ± 1.5 d | 65.2 ± 2.3 a |
+Fe + Cu | 1880.4 ± 48.8 b | 109.8 ± 4.3 d | 1053.4 ± 41.8 b | 28.1 ± 1.4 c | 168.5 ± 13.5 d | 8.8 ± 0.2 d | 91.2 ± 3.5 b | 26.0 ± 1.9 c |
−Fe | 273.2 ± 8.8 f | 47.1 ± 1.5 e | 165.5 ± 6.9 f | 47.0 ± 1.1 a | 172.4 ± 6.8 d | 16.9 ± 0.4 b | 83.3 ± 1.5 bc | 33.5 ± 2.0 b |
−Fe + Cu | 424.8 ± 12.4 e | 48.2 ± 0.7 e | 238.4 ± 21.6 e | 38.1 ± 2.0 b | 1742.1 ± 27.6 a | 51.6 ± 1.6 a | 701.2 ± 58.8 a | 13.8 ± 0.6 e |
Silihong | ||||||||
+Fe (control) | 1064.4 ± 24.9 d | 121.3 ± 2.0 c | 569.9 ± 15.9 d | 45.1 ± 1.5 a | 12.7 ± 1.2 e | 3.4 ± 0.1 g | 10.8 ± 0.4 d | 65.7 ± 2.2 a |
+Fe + Cu | 2868.4 ± 43.8 a | 133.2 ± 4.1 b | 1240.5 ± 6.6 a | 23.4 ± 0.9 d | 192.8 ± 9.9 cd | 6.9 ± 0.1 e | 78.8 ± 1.8 bc | 19.1 ± 0.8 d |
−Fe | 504.2 ± 48.2 e | 44.2 ± 2.5 e | 167.1 ± 5.9 f | 34.7 ± 1.0 b | 199.9 ± 3.3 c | 13.4 ± 0.6 c | 61.7 ± 5.8 c | 28.8 ± 0.7 c |
−Fe + Cu | 473.9 ± 31.9 e | 50.2 ± 3.0 e | 275.2 ± 25.8 e | 35.7 ± 1.3 b | 1649.3 ± 24.8 b | 54.4 ± 2.4 a | 719.3 ± 19.3 a | 14.7 ± 0.4 de |
ANOVA (F value) | ||||||||
Cu | 582.2 *** | 11.1 ** | 397.4 *** | 131.3 *** | 6515.8 *** | 752.6 *** | 516.9 *** | 729.6 *** |
Fe | 2451.4 *** | 1326.4 *** | 2038.3 *** | 9.3 ** | 6602.5 *** | 1381.0 *** | 481.0 *** | 369.4 *** |
Cultivar (Cv) | 109.6 *** | 3.0 ns | 2.3 ns | 23.7 *** | 1.3 ns | 2.6 ns | 0.1 ns | 5.4 * |
Cu × Fe | 478.7 *** | 23.9 *** | 194.0 *** | 58.5 *** | 4204.2 *** | 525.8 *** | 330.7 *** | 137.8 *** |
Cu × Cv | 76.7 *** | 52.3 *** | 34.9 *** | 2.3 ns | 4.7 ∗ | 4.8 * | 0.3 ns | 0.1 ns |
Fe × Cv | 27.8 *** | 2.2 ns | 0.1 ns | 4.5 * | 4.0 ns | 1.2 ns | 0.1 ns | 0.3 ns |
Cu × Fe × Cv | 147.2 *** | 38.0 *** | 22.4 *** | 10.4 ** | 13.2 ** | 3.9 ns | 0.5 ns | 8.6 * |
Gene Expression | [Fe]root a | [Fe]shoot b | Total Fe in Plants | % of Fe in Shoots | [Cu]root c | [Cu]shoot d | Total Cu in Plants | % of Cu in Shoots |
---|---|---|---|---|---|---|---|---|
Roots | ||||||||
AhFRO2.1 | −0.345 | −0.526 ** | −0.476 * | −0.059 | −0.113 | −0.034 | −0.144 | −0.192 |
AhFRO2.2 | −0.678 ** | −0.773 ** | −0.714 ** | 0.173 | 0.794 ** | 0.843 ** | 0.772 ** | −0.550 ** |
AhFRO2.3 | −0.380 | −0.519 ** | −0.481 * | −0.038 | −0.084 | 0.003 | −0.103 | −0.161 |
AhFRO2.4 | −0.488 * | −0.567 ** | −0.500 * | 0.199 | 0.748 ** | 0.763 ** | 0.711 ** | −0.450 * |
AhFRO2.5 | −0.603 ** | −0.755 ** | −0.620 ** | 0.164 | 0.660 ** | 0.702 ** | 0.624 ** | −0.546 ** |
AhFRO7.1 | 0.451 * | 0.856 ** | 0.521 ** | 0.146 | −0.437 * | −0.497 * | −0.415 * | 0.713 ** |
AhFRO7.2 | −0.071 | 0.222 | −0.079 | 0.255 | −0.461 * | −0.477 * | −0.471 * | 0.649 ** |
AhFRO8.1 | 0.301 | 0.345 | 0.269 | −0.013 | −0.013 | −0.058 | −0.020 | 0.252 |
AhFRO8.2 | 0.511 * | 0.452 * | 0.515 ** | −0.203 | −0.247 | −0.312 | −0.253 | 0.273 |
Leaves | ||||||||
AhFRO2.1 | −0.405 * | −0.495 * | −0.488 * | −0.050 | −0.072 | 0.008 | −0.087 | −0.108 |
AhFRO2.2 | −0.754 ** | −0.865 ** | −0.800 ** | 0.256 | 0.618 ** | 0.707 ** | 0.622 ** | −0.498 * |
AhFRO2.3 | −0.017 | −0.129 | 0.114 | −0.212 | 0.115 | 0.103 | 0.140 | −0.113 |
AhFRO2.4 | −0.762 ** | −0.868 ** | −0.809 ** | 0.184 | 0.735 ** | 0.812 ** | 0.742 ** | −0.530 ** |
AhFRO2.5 | −0.734 ** | −0.889 ** | −0.806 ** | 0.193 | 0.548 ** | 0.646 ** | 0.547 ** | −0.518 ** |
AhFRO7.1 | −0.639 ** | −0.492 * | −0.647 ** | 0.257 | 0.440 * | 0.473 * | 0.440 * | −0.107 |
AhFRO7.2 | −0.585 ** | −0.486 * | −0.591 ** | 0.238 | 0.506 * | 0.536 ** | 0.525 ** | −0.130 |
AhFRO8.1 | −0.474 * | 0.053 | −0.372 | 0.595 ** | 0.350 | 0.354 | 0.365 | 0.325 |
AhFRO8.2 | −0.031 | 0.357 | 0.000 | 0.386 | 0.086 | 0.031 | 0.100 | 0.452 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, J.; Zhang, Z.; Shi, G. Genome-Wide Identification of the Ferric Chelate Reductase (FRO) Gene Family in Peanut and Its Diploid Progenitors: Structure, Evolution, and Expression Profiles. Plants 2024, 13, 418. https://doi.org/10.3390/plants13030418
Guan J, Zhang Z, Shi G. Genome-Wide Identification of the Ferric Chelate Reductase (FRO) Gene Family in Peanut and Its Diploid Progenitors: Structure, Evolution, and Expression Profiles. Plants. 2024; 13(3):418. https://doi.org/10.3390/plants13030418
Chicago/Turabian StyleGuan, Junhua, Zheng Zhang, and Gangrong Shi. 2024. "Genome-Wide Identification of the Ferric Chelate Reductase (FRO) Gene Family in Peanut and Its Diploid Progenitors: Structure, Evolution, and Expression Profiles" Plants 13, no. 3: 418. https://doi.org/10.3390/plants13030418
APA StyleGuan, J., Zhang, Z., & Shi, G. (2024). Genome-Wide Identification of the Ferric Chelate Reductase (FRO) Gene Family in Peanut and Its Diploid Progenitors: Structure, Evolution, and Expression Profiles. Plants, 13(3), 418. https://doi.org/10.3390/plants13030418