Genetic Diversity and Structure of Terminalia bellerica (Gaertn. Roxb.) Population in India as Revealed by Genetic Analysis
Abstract
:1. Introduction
2. Results
2.1. Growth Traits
2.2. Biochemical Traits
2.3. Heritability
2.4. Genotypic and Phenotypic Variation
2.5. Genetic Advance
2.6. Correlation among the Traits
2.7. Principle Component Analysis
2.8. Heatmap Clustering
3. Discussion
4. Materials and Methods
4.1. Genetic Material
4.2. Study Site
4.3. Progenies Planting
4.4. Morphological
4.5. Biochemical Parameters
4.6. Genetic Estimates
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patil, U.H.; Gaikwad, D.K. Phytochemical evaluation and bactericidal potential of Terminalia arjuna stem bark. Int. J. Pharm. Sci. Res. 2011, 2, 614. [Google Scholar]
- Hein, P.R.G.; Chaix, G. NIR spectral heritability: A promising tool for wood breeders? J. Near Infrared Spectrosc. 2014, 22, 141–147. [Google Scholar] [CrossRef]
- Gray, L.K.; Rweyongeza, D.; Hamann, A.; John, S.; Thomas, B.R. Developing management strategies for tree improvement programs under climate change: Insights gained from long-term field trials with lodgepole pine. For. Ecol. Manag. 2016, 377, 128–138. [Google Scholar] [CrossRef]
- Sæbø, A.; Borzan, Ž.; Ducatillion, C.; Hatzistathis, A.; Lagerstrom, T.; Supuka, J.; García-Valdecantos, J.L.; Rego, F.; Van Slycken, J. The selection of plant materials for street trees, park trees and urban woodland. In Urban Forests and Trees: A Reference Book; Springer: Berlin/Heidelberg, Germany, 2005; pp. 257–280. [Google Scholar]
- Zobel, B.; Talbert, J. Applied Forest Tree Improvement; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Schmidt, P.; Hartung, J.; Bennewitz, J.; Piepho, H.P. Heritability in plant breeding on a genotype-difference basis. Genetics 2019, 212, 991–1008. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.S.; Parameswari, N.; Chin, C.F.; Baharum, Z.; Olalekan, K.K.; Aini, A.N. Selection and Screening of Superior Genotypes for Quality Planting Stock Based on Vegetative Growth Performance of Some Selected 12-Year-Old Acacia Species. Open J. For. 2016, 6, 217–229. [Google Scholar] [CrossRef]
- ICES. Herring Assessment Working Group for the Area South of 62°N (HAWG). ICES Scientific Reports. 2023. Available online: https://doi.org/10.17895/ices.pub.22182034.v2 (accessed on 15 August 2023).
- Kanna, S.U.; Krishnakumar, N.; Kather, M.M.A.; Jailani, K. Growth performance of Ailanthus excelsa through progeny test. Pharma Innov. J. 2019, 8, 204–210. [Google Scholar]
- Krishnakumar, N.; Parthiban, K.T.; Jayamani, P.; Revathi, R.; Umeshkanna, S. Genetic variability of growth parameters among different progenies of Santalum album L. J. Indian Soc. Coast. Agric. Res. 2017, 35, 56–63. [Google Scholar]
- Prakash, G.M. Genetic Evaluation and Wood Characterization Studies in Neolamarckia cadamba (Roxb.) Bosser. Ph.D. Thesis, Tamil Nadu Agricultural University, Coimbatore, India, 2017. [Google Scholar]
- Mohanraj, K.; Umesh Kanna, S.; Parthiban, K.T.; Kumaran, K. Variability, Broad Sense Heritability, Genetic Advance of Toona ciliata M. Roem., Progenies. Pharma Innov. J. 2021, 10, 1247–1251. [Google Scholar]
- Jawahar Vishnu, M.V.; Parthiban, K.T.; Umadevi, M.; Sudhagar, R.J.; Fernandaz, C.C.; Javed, T.; Alotaibi, S.S. Genetic evaluation of Jatropha backcross hybrid clones (BC4F1) for yield and oil quality. Front. Genet. 2022, 13, 953486. [Google Scholar] [CrossRef]
- Migliore, J.; Lezine, A.M.; Hardy, O.J. The recent colonization history of the most widespread Podocarpus tree species in Afromontane forests. Ann. Bot. 2020, 126, 73–83. [Google Scholar] [CrossRef]
- Dhivya, S.; Ashutosh, S.; Gowtham, I.; Baskar, V.; Harini, A.B.; Mukunthakumar, S.; Sathishkumar, R. Molecular identification and evolutionary relationships between the subspecies of Musa by DNA barcodes. BMC Genom. 2020, 21, 659. [Google Scholar] [CrossRef] [PubMed]
- Donkpegan, A.S.; Doucet, J.L.; Migliore, J.; Duminil, J.; Dainou, K.; Pineiro, R.; Hardy, O.J. Evolution in African tropical trees displaying ploidy-habitat association: The genus Afzelia (Leguminosae). Mol. Phylogenet. Evol. 2017, 107, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.A.; Nawaz, M.A.; Shahid, M.Q.; Doğan, Y.; Comertpay, G.; Yıldız, M.; Baloch, F.S. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 2018, 32, 261–285. [Google Scholar] [CrossRef]
- Ye, M.; Zhu, X.; Gao, P.; Jiang, L.; Wu, R. Identification of quantitative trait loci for altitude adaptation of tree leaf shape with Populus szechuanica in the Qinghai Tibetan Plateau. Front. Plant Sci. 2020, 11, 632. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Xiao, L.; Quan, M.; Wang, Q.; El-Kassaby, Y.A.; Du, Q.; Zhang, D. Linkage-linkage disequilibrium dissection of the epigenetic quantitative trait loci (epiQTLs) underlying growth and wood properties in Populus. New Phytol. 2020, 225, 1218–1233. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Shinwari, Z.K.; Zahra, N.B.; Jan, S.A.; Shinwari, S.; Najeebullah, S. DNA barcoding and molecular systematics of selected species of family Acanthaceae. Pak. J. Bot. 2020, 52, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Soltis, P.; Doyle, J.J. Molecular Systematics of Plants II: DNA Sequencing; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Bhandari, H.R.; Bhanu, A.N.; Srivastava, K.; Singh, M.N.; Shreya, H.A. Assessment of genetic diversity in crop plants-an overview. Adv. Plants Agric. Res. 2017, 7, 279–286. [Google Scholar]
- Parthiban, K.T.; Thirunirai-Selvan, R.; Palanikumaran, B.; Krishnakumar, N. Variability and genetic diversity studies on Neolamarckia cadamba genetic resources. J. Trop. For. Sci. 2019, 31, 90–98. [Google Scholar] [CrossRef]
- Parthiban, K.T.; Kanagaraj, N.; Palanikumaran, B.; Krishnakumar, N. Development of DUS descriptor for casuarina genetic resources. Int. J. Genet. 2018, 10, 333–338. [Google Scholar] [CrossRef]
- Daneva, V.; Dhillon, R.S.; Johar, V. Plus tree selection and progeny testing of superior candidate plus trees (CPTs) of Ailanthus excelsa. J. Pharmacogn. Phytochem. 2018, 7, 543–545. [Google Scholar]
- Krishnakumar, N.; Parthiban, K.T.; Kanna, S.U. Production, management and utilization technology for sandal wood (Santalum album L.). In Forest Technol: Complete Value Chain Approach; Scientific Publishers: New Delhi, India, 2017; pp. 372–383. [Google Scholar]
- Sharma, A.; Bakshi, M. Growth and heritability estimates among clones of Dalbergia sissoo Roxb. in a clonal seed orchard. For. Sci. Pract. 2011, 13, 211. [Google Scholar] [CrossRef]
- Sharma, J.P.; Singh, N.B.; Benal, V.; Gupta, D. Cultivation of shiitake mushroom on selected clones of willow (Salix species): A Case Study Under PPP Mode. In Proceedings of the 2nd International Conference on Bio-resource and Stress Management, Hyderabad, India, 7–10 January 2015; Volume 225. [Google Scholar]
- Mohamed, M.N.; Parthiban, K.T.; Ravi, R.; Kumar, P. Provenance variation in growth and genetic potential of Aquilaria malaccens is under nursery condition. Afr. J. Biotechnol. 2015, 14, 2005–2013. [Google Scholar]
- Meena, H.; Kumar, A.; Sharma, R.; Chauhan, S.K.; Bhargava, K.M. Genetic variation for growth and yield parameters in half-sib progenies of Melia azedarach (Linn.). Turk. J. Agric. For. 2014, 38, 531–539. [Google Scholar] [CrossRef]
- Sangram, C.; Keerthika, A. Genetic variability and association studies among morphological traits of Leucaena leucocephala (Lam.) de Wit. genetic resources. Res. J. Agric. For. Sci. 2013, 1, 23–29. [Google Scholar]
- Kundal, M.; Thakur, S.; Dhillon, G. Evaluation of growth performance of half sib progenies of Toona ciliata M. Roem under field conditions. Genetika 2020, 52, 651–660. [Google Scholar] [CrossRef]
- Vijay, R.; Atul, R. Progeny performance of plus trees of Toona ciliata M. Roem. under nursery and field conditions. Indian For. 2009, 135, 92–98. [Google Scholar]
- Selvan, R.T.; Parthiban, K.T. Clonal evaluation and genetic divergence studies in Neolamarckia cadamba roxb. Electron. J. Plant Breed. 2018, 9, 692–704. [Google Scholar] [CrossRef]
- ThiruniraIselvan. Improvement and Utilization of Neolamarckia cadamba (Roxb.) Bosser Genetic Resources for Feed Quality and Utility. Ph.D. Thesis, Tamil Nadu Agricultural University, Coimbatore, India, 2017. [Google Scholar]
- Mohamed, Z.; Abdelsalam, N.; Abdel Latif, K.; Abdelhady, R. Genetic Diversity of fig (Ficus carica L.) Based on Morphological Characters and Two-Way Hierarchical Cluster Analysis. Alex. Sci. Exch. J. 2017, 38, 168–174. [Google Scholar] [CrossRef]
- Garima, G.; Handa, A.K.; Deepak, M. Variation in seed and seedling traits of Pongamia pinnata. Indian For. 2016, 142, 852–857. [Google Scholar]
- Monclus, R.; Dreyer, E.; Delmotte, F.M.; Villar, M.; Delay, D.; Boudouresque, E.; Brignolas, F. Productivity, leaf traits and carbon isotope discrimination in 29 Populus deltoids × P. nigra clones. New Phytol. 2005, 167, 53–62. [Google Scholar] [CrossRef]
- Mohit, G.; Neelu, G. Genetic variability and character association in Acacia catechu Willd. Indian For. 2006, 132, 785–794. [Google Scholar]
- Mishra, S.; Bhatt, R. Varietal differences in photosynthetic pigments and biochemical constituents in Leucaena leucocephala. Indian J. Plant Physiol. 2004, 9, 86–89. [Google Scholar]
- Zayed, M.Z.; Zaki, M.A.; Ahmad, F.B.; Ho, W.S.; Pang, S.L. Comparison of mimosine content and nutritive values of Neolamarckia cadamba and Leucaena leucocephala with medicago sativa as forage quality index. Int. J. Sci. Technol. Res. 2014, 3, 146–150. [Google Scholar]
- Radhakrishnan, S. Genetic Divergence and DNA Based Molecular Characterization in Albizia lebbeck (L.) Benth. Ph.D. Thesis, Tamil Nadu Agricultural University, Coimbatore, India, 2001. [Google Scholar]
- Ramachandra, N.G.; Nautiyal, S.; Negi, D.S.; Thapliyal, R.C. Seed source variation in chlorophyll contents of leaves of Acacia catechu Willd. under different water stress conditions. Ann. For. 1997, 5, 88–96. [Google Scholar]
- Malik, A.B.; Makbdoom, M.I.; Hag, A. Investigations on the efficiency of exogenous synthetic growth regulators on fruit drop in mango (Mangifera indica L.). Egypt. J. Hort. 1993, 20, 1–14. [Google Scholar]
- Cai, Y.C.; Ma, G.H.; Wang, Z.Q. Physiological characters of different geoprovenant populations of Siberian elm (Ulmus pumila L.). Ningxia J. Agro-For. Sci. Technol. 1990, 2, 20–23. [Google Scholar]
- Rao, G.R.; Shanker, A.K.; Srinivas, I.; Korwar, G.R.; Venkateswarlu, B. Diversity and variability in seed characters and growth of Pongamia pinnata (L.) Pierre accessions. Trees 2011, 25, 725–734. [Google Scholar] [CrossRef]
- Kadam, S.K. Evaluation of Full-Sib Progenies of Selected Clones of Poplar (Populus deltoids Bartr.). Ph.D. Thesis, Forest Research Institute, Dehradun, India, 2002. [Google Scholar]
- Choudhary, P.; Singh, N.B.; Sharma, J.P.; Verma, A. Estimation of genetic parameters among intra and interspecific progenies of tree willows. Indian For. 2016, 142, 1157–1163. [Google Scholar]
- Reddy, L.H.; Arias, J.L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818–5878. [Google Scholar] [CrossRef]
- Vashistha, R.; Dangi, A.K.; Kumar, A.; Chhabra, D.; Shukla, P. Futuristic biosensors for cardiac health care: An artificial intelligence approach. 3 Biotech 2018, 358, 1–11. [Google Scholar] [CrossRef]
- Wondimu, T.; Gizaw, A.; Tusiime, F.M.; Masao, C.A.; Abdi, A.A.; Gussarova, G.; Brochmann, C. Crossing barriers in an extremely fragmented system: Two case studies in the afro-alpine sky island flora. Plant Syst. Evol. 2014, 300, 415–430. [Google Scholar] [CrossRef]
- Vivekananda, P.; Subramaninan, S. Genetic divergence in rainfed rice. Oryza 1993, 39, 60–62. [Google Scholar]
- Singh, N.B.; Sharma, J.P.; Huse, S.A.; Thakur, I.K.; Gupta, R.K.; Sankhyan, H.P. Heritability, genetic gain, correlation and principal component analysis in introduced willow (Salix spp.) clones. Indian For. 2012, 138, 1100–1109. [Google Scholar]
- Kaushik, N.; Kumar, S.; Kumar, K.; Beniwal, R.S.; Kaushik, N.; Roy, S. Genetic variability and association studies in pod and seed traits of Pongamia pinnata (L.) Pierre in Haryana, India. Genet. Resour. Crop Evol. 2007, 54, 1827–1832. [Google Scholar] [CrossRef]
- Divakara, B.N.; Das, R. Variability and divergence in Pongamia pinnata for further use in tree improvement. J. For. Res. 2011, 22, 193–200. [Google Scholar] [CrossRef]
- Isik, F.; Toplu, F. Variation in juvenile traits of natural black poplar (Populus nigra L.) clones from Turkey. New For. 2004, 27, 175–182. [Google Scholar] [CrossRef]
- Ozel, H.B.; Ertekin, M.; Tunctaner, K. Genetic variationin growth traits and morphological characteristics ofeastern cottonwood (Populus deltoides Bartr.) hybridsat nursery stage. Sci. Res. Essays 2010, 5, 962–969. [Google Scholar]
- Kajba, D.; Ballian, D.; Idžojtić, M.; Poljak, I. Leaf morphology variation of Populus nigra L. in natural populations along the rivers in Croatia and Bosnia and Herzegovina. South-East Eur. For. Seefor 2015, 6, 39–51. [Google Scholar] [CrossRef]
- Tunctaner, K. Primary selection of willow clones for multi-purpose use in short rotation plantation. Silvae Genet. 2002, 51, 105–112. [Google Scholar]
- Singh, N.B.; Sharma, J.P.; Choudhary, P.; Gupta, R.K. Genotype x environment interaction and growth stability of exotic tree willow (Salix spp.) clones. Indian J. Genet. 2014, 74, 222–228. [Google Scholar] [CrossRef]
- Alvarez, J.A.; Villagra, P.E.; Villalba, R.; Debandi, G. Effects of the pruning intensity and tree size on multi-stemmed Prosopis flexuosa trees in the Central Monte, Argentina. For. Ecol. Manag. 2013, 310, 857–864. [Google Scholar] [CrossRef]
- Yoshida, S.; Coronel, V. Nitrogen nutrition, leaf resistance, and leaf photosynthetic rate of the rice plant. Soil Sci. Plant Nutr. 1976, 22, 207–211. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosenbough, H.I.; Fair, A.L.; Randall, R.I. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Baenziger, S.P.; Gregory, S.; McMaster, R.; Wilhelm, W.W.; Weiss, A.; Hays, C.J. Putting genes into genetic coefficients. Field Crops Res. 2004, 90, 133–143. [Google Scholar] [CrossRef]
- Pliura, A.; Zhang, S.Y.; MacKay, J.; Bousquet, J. Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. For. Ecol. Manag. 2007, 238, 92–106. [Google Scholar] [CrossRef]
- Yoshida, H.; Takeshi, H.; Katsura, K.; Tatsuhiko, S. A model explaining genotypic and environmental variation in leaf area development of rice based on biomass growth and leaf N accumulation. Field Crops Res. 2007, 102, 228–238. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longmans Green: Harlow, UK, 1996. [Google Scholar]
Accession Name | Plant Height (m) | Basal Diameter (cm) | Girth at Breast Height (m) | Volume (m3) | Leaf Length (cm) | Leaf Width (cm) | Leaf Area (cm2) |
---|---|---|---|---|---|---|---|
FCRITB01 | 6.50 ± 0.14 efgh | 44.2 ± 0.63 d | 0.09 ± 0.001 b | 0.692 ± 0.00 ef | 26.5 ± 0.10 defg | 11.6 ± 0.01 de | 208 ± 1.88 ef |
FCRITB02 | 6.67 ± 0.11 cdef | 43.6 ± 0.00 de | 0.09 ± 0.000 b | 0.690 ± 0.00 de | 25.9 ± 0.54 efg | 11.0 ± 0.17 gh | 194 ± 0.58 jk |
FCRITB03 | 6.73 ± 0.16 cde | 50.9 ± 0.81 a | 0.09 ± 0.000 b | 0.631 ± 0.00 hij | 26.6 ± 0.26 cdef | 11.2 ± 0.21 fgh | 201 ± 0.35 fgh |
FCRITB04 | 6.29 ± 0.09 gh | 41.6 ± 0.40 gh | 0.09 ± 0.001 b | 0.625 ± 0.01 ij | 27.5 ± 0.30 ab | 11.9 ± 0.09 abcd | 222 ± 1.51 bc |
FCRITB05 | 6.53 ± 0.03 defg | 43.4 ± 0.73 def | 0.09 ± 0.001 b | 0.627 ± 0.00h ij | 25.9 ± 0.38 fg | 11.1 ± 0.00 fgh | 195 ± 2.13 ij |
FCRITB06 | 6.39 ± 0.09 fgh | 41.9 ± 0.00 fg | 0.09 ± 0.001 b | 0.594 ± 0.00 k | 25.6 ± 0.01 g | 10.7 ± 0.01 i | 186 ± 0.52 k |
FCRITB07 | 6.65 ± 0.07 cdef | 44.4 ± 0.85 d | 0.10 ± 0.000 a | 0.775 ± 0.00 b | 27.1 ± 0.39 bcd | 11.8 ± 0.03 bcd | 218 ± 2.10 cd |
FCRITB08 | 6.53 ± 0.09 defg | 44.4 ± 0.06 d | 0.09 ± 0.002 b | 0.720 ± 0.00 c | 26.7 ± 0.01 bcde | 11.3 ± 0.10 efg | 205 ± 3.99 fg |
FCRITB09 | 6.80 ± 0.09 bcd | 47.6 ± 0.18 bc | 0.09 ± 0.001 b | 0.711 ± 0.02 cd | 26.8 ± 0.11 cdef | 11.4 ± 0.12 ef | 207 ± 3.73 ef |
FCRITB10 | 7.04 ± 0.14 ab | 49.5 ± 0.15 b | 0.09 ± 0.000 b | 0.663 ± 0.01 fg | 26.1 ± 0.10 fg | 11.3 ± 0.05 fgh | 199 ± 2.18 ghi |
FCRITB11 | 6.63 ± 0.15 def | 46.7 ± 0.19 c | 0.09 ± 0.002 b | 0.648 ± 0.01 gh | 25.8 ± 0.25 fg | 10.9 ± 0.03 hi | 192 ± 0.70 jk |
FCRITB12 | 6.23 ± 0.11 h | 40.3 ± 0.51 h | 0.09 ± 0.001 b | 0.613 ± 0.01 jk | 26.4 ± 0.11 cdefg | 11.2 ± 0.22 fgh | 201± 0.60 ghi |
FCRITB13 | 6.55 ± 0.06defg | 41.7 ± 0.52 fg | 0.09 ± 0.000 b | 0.691 ± 0.01 e | 27.1 ± 0.14 bc | 11.6 ± 0.22 cde | 213 ± 4.08 de |
FCRITB14 | 6.94 ± 0.03abc | 39.2 ± 0.25 i | 0.09 ± 0.001 b | 0.616 ± 0.01 ijk | 26.0 ± 0.61 efg | 11.1 ± 0.02 fgh | 196 ± 0.06 hij |
FCRITB15 | 6.73 ± 0.13 cde | 42.1 ± 0.06 fg | 0.09 ± 0.001 b | 0.639 ± 0.00 hi | 28.3 ± 0.34 a | 12.3 ± 0.04 a | 237 ± 0.75 a |
FCRITB16 | 7.17 ± 0.07 a | 42.5 ± 0.45 efg | 0.10 ± 0.002 a | 0.819 ± 0.00 a | 27.7 ± 0.11 b | 11.9 ± 0.00 abc | 220 ± 4.81 bcd |
FCRITB17 | 7.19 ± 0.01 a | 41.9 ± 0.26 fg | 0.09 ± 0.000 b | 0.708 ± 0.00 cde | 28.3 ± 0.20 a | 12.2 ± 0.23 ab | 234 ± 2.13 a |
FCRITB18 | 6.41 ± 0.02 fgh | 43.7 ± 0.48 de | 0.10 ± 0.001 a | 0.731 ± 0.02 c | 27.3 ± 0.14 b | 12.2 ± 0.04 ab | 225 ± 0.21 b |
Accession Name | Chlorophyll a (mg/g) | Chlorophyll b (mg/g) | Chlorophyll a and b | Total Chlorophyll (mg/g) | Carotenoid mg/g | Crude Protein% |
---|---|---|---|---|---|---|
FCRITB01 | 0.628 ±0.01 g | 0.435 ±0.00 i | 1.063 ±0.00 i | 0.754 ±0.00 e | 0.561 ±0.00 f | 11.59 ±0.19 f |
FCRITB02 | 0.552 ±0.01 h | 0.213 ±0.00 n | 0.765 ±0.01 l | 0.690 ±0.00 f | 0.645 ±0.00 d | 21.11 ±0.31 d |
FCRITB03 | 0.515 ±0.00 i | 0.278 ±0.00 l | 0.793 ±0.00 k | 0.654 ±0.01 g | 0.574 ±0.01 f | 27.78 ±0.08 f |
FCRITB04 | 0.771 ±0.02 f | 0.398 ±0.00 j | 1.169 ±0.01 h | 0.798 ±0.01 d | 0.513 ±0.00 g | 26.26 ±0.00 g |
FCRITB05 | 1.127 ±0.02 a | 0.979 ±0.01 a | 2.106 ±0.00 a | 1.943 ±0.04 a | 0.518 ±0.00 g | 39.88 ±0.07 g |
FCRITB06 | 0.826 ±0.00 e | 0.613 ±0.01 d | 1.439 ±0.02 e | 0.891 ±0.00 c | 0.663 ±0.00 d | 29.18 ±0.10 d |
FCRITB07 | 0.926 ±0.01 c | 0.701 ±0.01 c | 1.627 ±0.03 c | 1.012 ±0.00 b | 0.513 ±0.01 g | 12.15 ±0.14 g |
FCRITB08 | 0.519 ±0.01 i | 0.298 ±0.00 k | 0.817 ±0.02 k | 0.649 ±0.00 g | 0.604 ±0.01 e | 13.88 ±0.09 e |
FCRITB09 | 0.892 ±0.01 d | 0.594 ±0.01 e | 1.486 ±0.00 d | 0.904 ±0.01 c | 0.416 ±0.00 h | 11.73 ±0.02 h |
FCRITB10 | 0.836 ±0.00 e | 0.534 ±0.01 f | 1.370 ±0.00 f | 0.897 ±0.01 c | 0.831 ±0.01 b | 39.39 ±0.13 b |
FCRITB11 | 0.823 ±0.02 e | 0.497 ±0.00 g | 1.320 ±0.01 g | 0.919 ±0.01 c | 0.498 ±0.00 g | 31.40 ±0.05 g |
FCRITB12 | 0.562 ±0.00 h | 0.301 ±0.00 k | 0.863 ±0.00 j | 0.619 ±0.00 h | 0.364 ±0.00 i | 22.16 ±0.12 i |
FCRITB13 | 0.997 ±0.01 b | 0.923 ±0.00 b | 1.920 ±0.01 b | 1.009 ±0.00 b | 0.574 ±0.00 f | 39.88 ±0.14 f |
FCRITB14 | 0.615 ±0.01 g | 0.464 ±0.00 h | 1.079 ±0.01 i | 0.710 ±0.00 f | 0.618 ±0.01 e | 28.45 ±0.30 e |
FCRITB15 | 0.436 ±0.00 j | 0.254 ±0.00 m | 0.690 ±0.00 m | 0.593 ±0.00 h | 0.818 ±0.00 c | 13.88 ±0.23 c |
FCRITB16 | 0.513 ±0.00 i | 0.294 ±0.00 kl | 0.807 ±0.00 k | 0.604 ±0.00 h | 0.498 ±0.01 g | 13.64 ±0.02 g |
FCRITB17 | 0.612 ±0.00 g | 0.454 ±0.01 hi | 1.066 ±0.01 i | 0.784 ±0.01 d | 0.886 ±0.01 a | 29.09 ± 0.07 a |
FCRITB18 | 0.489 ±0.00 i | 0.254 ±0.00 m | 0.743 ±0.02 l | 0.501 ±0.01 i | 0.372 ±0.00 i | 21.31 ± 0.06 i |
Traits | Phenotypic Coefficient of Variation | Genotypic Coefficient of Variation | Heritability Broad Sense (%) | GA (%) of Mean | |
---|---|---|---|---|---|
Growth traits | Plant height (m) | 4.70 | 3.88 | 68.11 | 6.59 |
Basal diameter (cm) | 6.94 | 6.71 | 93.37 | 13.35 | |
Girt at breast height (m) | 4.69 | 4.16 | 78.68 | 7.61 | |
Volume (m3) | 9.01 | 8.76 | 94.54 | 17.54 | |
Physiological traits | Leaf length (cm) | 3.47 | 2.92 | 71.00 | 5.07 |
Leaf Width (cm) | 4.21 | 3.80 | 81.65 | 7.08 | |
Leaf area (cm2) | 7.34 | 7.08 | 92.98 | 14.06 | |
Biochemical traits | Chlorophyll a (mg/g) | 28.55 | 28.45 | 99.31 | 58.41 |
Chlorophyll b (mg/g) | 47.80 | 47.74 | 99.76 | 98.24 | |
Chl a/Chl b | 35.65 | 35.60 | 99.74 | 73.25 | |
Total Chlorophyll (mg/g) | 37.95 | 37.88 | 99.63 | 77.89 | |
Carotenoid (mg/g) | 25.36 | 25.28 | 99.36 | 51.91 | |
Crude Protein (%) | 41.49 | 41.48 | 99.94 | 85.42 |
PH | GBH | LA | Volume | Leaf Length | Leaf Width | Chl a | Chl b | Chl a/Chl b | Total Chlorophyll | Carotenoid | Crude Protein | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | 1 | 0.194 | 0.158 | 0.248 | 0.413 | 0.205 | 0.194 | −0.136 | −0.064 | −0.096 | −0.087 | 0.545 * | 0.025 |
BD | 1 | −0.020 | −0.188 | 0.119 | −0.284 | −0.231 | 0.088 | −0.044 | 0.026 | 0.036 | 0.007 | 0.023 | |
GBH | 1 | 0.383 | 0.747 ** | 0.317 | 0.489 * | −0.096 | −0.082 | −0.088 | −0.172 | −0.312 | −0.321 | ||
LA | 1 | 0.416 | 0.962 ** | 0.973 ** | −0.313 | −0.203 | −0.257 | −0.304 | 0.220 | −0.336 | |||
Volume | 1 | 0.366 | 0.523 * | −0.105 | −0.075 | −0.086 | −0.176 | −0.150 | −0.504 * | ||||
Leaf length | 1 | 0.932 ** | −0.386 | −0.272 | −0.331 | −0.358 | 0.215 | −0.302 | |||||
Leaf Width | 1 | −0.323 | −0.223 | −0.273 | −0.322 | 0.072 | −0.410 | ||||||
Chl a | 1 | 0.938 ** | 0.983 ** | 0.852 ** | −0.122 | 0.514 * | |||||||
Chl b | 1 | 0.985 ** | 0.850 ** | −0.034 | 0.529 * | ||||||||
Chl a/Chl b | 1 | 0.866 ** | −0.082 | 0.523 * | |||||||||
Total Chlorophyll | 1 | −0.042 | 0.513 * | ||||||||||
Carotenoid | 1 | 0.256 | |||||||||||
Crude Protein | 1 |
S.No | Sources | District | State | Latitude | Longitude | Assigned Name |
---|---|---|---|---|---|---|
1. | Bandipur Tiger Reserve and National Park | Bandipur | Karnataka | 11.664547 | 76.626421 | FCRITB1 |
2. | Bandipur Tiger Reserve and National Park | Bandipur | Karnataka | 11.664571 | 76.626418 | FCRITB2 |
3. | Mysuru Zoo | Mysuru | Karnataka | 12.30053 | 76.669647 | FCRITB3 |
4. | Kerala Agricultural University | Thrissur | Kerala | 10.3832 | 76.3296 | FCRITB4 |
5. | Kerala Agricultural University | Thrissur | Kerala | 10.3836 | 76.3299 | FCRITB5 |
6. | Vellanikkara | Thrissur | Kerala | 10.548235 | 76.278912 | FCRITB6 |
7. | Vellanikkara | Thrissur | Kerala | 10.548007 | 76.278745 | FCRITB7 |
8. | Vellanikkara | Thrissur | Kerala | 10.54824 | 76.278874 | FCRITB8 |
9. | Bentham and Hooker Garden | Thrissur | Kerala | 10.547665 | 76.278592 | FCRITB9 |
10. | Bentham and Hooker Garden | Thrissur | Kerala | 10.550524 | 76.280483 | FCRITB10 |
11. | Akola | Akola | Maharashtra | 20.703063 | 77.069286 | FCRITB11 |
12. | Akola | Akola | Maharashtra | 20.703088 | 77.069316 | FCRITB12 |
13. | Akola | Akola | Maharashtra | 20.703003 | 77.069991 | FCRITB13 |
14. | Shioni | Bhandara | Maharashtra | 20.191579 | 79.661286 | FCRITB14 |
15. | Patur | Akola | Maharashtra | 20.461537 | 76.943464 | FCRITB15 |
16. | Jagnari slopes | Coimbatore | Tamil Nadu | 11.323315 | 76.934989 | FCRITB16 |
17. | Kalarayan Hills | Kallakurichi | Tamil Nadu | 11.764162 | 76.415564 | FCRITB17 |
18. | Pasighat | Eastsiang | Arunachal Pradesh | 28.075837 | 95.325901 | FCRITB18 |
Accession Name | GBH (m) | Height (m) | Clear Bole Height (m) | Volume (m3) |
---|---|---|---|---|
FCRITB01 | 3.7 | 17.0 | 8.2 | 731.00 |
FCRITB02 | 3.2 | 17.2 | 6.1 | 553.21 |
FCRITB03 | 0.90 | 12.0 | 5.7 | 30.53 |
FCRITB04 | 1.36 | 19.0 | 11.6 | 110.38 |
FCRITB05 | 1.45 | 18.0 | 9.8 | 118.87 |
FCRITB06 | 1.39 | 18.5 | 11.2 | 112.27 |
FCRITB07 | 1.90 | 17.3 | 10.4 | 196.16 |
FCRITB08 | 1.76 | 21.0 | 9.7 | 204.32 |
FCRITB09 | 2.4 | 19.3 | 10.7 | 349.17 |
FCRITB10 | 1.8 | 17.6 | 12.4 | 179.11 |
FCRITB11 | 2.8 | 9.2 | 3.6 | 226.55 |
FCRITB12 | 1.70 | 9.0 | 4.7 | 81.69 |
FCRITB13 | 1.40 | 11.0 | 3.3 | 67.71 |
FCRITB14 | 1.80 | 10.6 | 2.8 | 107.87 |
FCRITB15 | 1.40 | 10.2 | 4.7 | 62.79 |
FCRITB16 | 2.34 | 22.0 | 10.6 | 378.37 |
FCRITB17 | 2.30 | 23.0 | 7.9 | 204.37 |
FCRITB18 | 9.7 | 9.7 | 4.2 | 121.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umesh Kanna, S.; Parthiban, K.T.; Senthilraja, K.; Venkatesan, S.; Udhaya Nandhini, D.; Mohan Kumar, S.; Dhasarathan, M.; Kumaresan, P.; Sai, M.J.; Raveendran, M.; et al. Genetic Diversity and Structure of Terminalia bellerica (Gaertn. Roxb.) Population in India as Revealed by Genetic Analysis. Plants 2024, 13, 470. https://doi.org/10.3390/plants13040470
Umesh Kanna S, Parthiban KT, Senthilraja K, Venkatesan S, Udhaya Nandhini D, Mohan Kumar S, Dhasarathan M, Kumaresan P, Sai MJ, Raveendran M, et al. Genetic Diversity and Structure of Terminalia bellerica (Gaertn. Roxb.) Population in India as Revealed by Genetic Analysis. Plants. 2024; 13(4):470. https://doi.org/10.3390/plants13040470
Chicago/Turabian StyleUmesh Kanna, Subramani, Kalappan Thangamuthu Parthiban, Kandasamy Senthilraja, Subramanian Venkatesan, Dhandayuthapani Udhaya Nandhini, Shanmugam Mohan Kumar, Manickam Dhasarathan, Palaniyappan Kumaresan, Makkena Jaswanth Sai, Muthurajan Raveendran, and et al. 2024. "Genetic Diversity and Structure of Terminalia bellerica (Gaertn. Roxb.) Population in India as Revealed by Genetic Analysis" Plants 13, no. 4: 470. https://doi.org/10.3390/plants13040470
APA StyleUmesh Kanna, S., Parthiban, K. T., Senthilraja, K., Venkatesan, S., Udhaya Nandhini, D., Mohan Kumar, S., Dhasarathan, M., Kumaresan, P., Sai, M. J., Raveendran, M., & Geethalakshmi, V. (2024). Genetic Diversity and Structure of Terminalia bellerica (Gaertn. Roxb.) Population in India as Revealed by Genetic Analysis. Plants, 13(4), 470. https://doi.org/10.3390/plants13040470