Genetic Diversity Analysis and Core Germplasm Construction of Rubus chingii Hu
Abstract
:1. Introduction
2. Results
2.1. Genome Re-Sequencing and Variant Identification
2.2. Genetic Diversity
2.3. Population Structure
2.4. Core Germplasm
3. Discussion
3.1. SNPs and InDel Markers
3.2. Genetic Diversity Analysis
3.3. Population Structure
3.4. Core Germplasm Repository Building
4. Conclusions
5. Materials and Methods
5.1. Experimental Materials
5.2. DNA Extraction and Library Construction
5.3. Identification of SNPs and InDels
5.4. Genetic Diversity
5.5. Population Structure
5.6. Core Germplasm Screening and Evaluation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, Y.; Jing, Z.; Zhang, K.; Liu, X.; Li, S.; Liu, H. Study on Ecological Suitability Regionalization of Rubus chingii. Mod. Chin. Med. 2019, 21, 1342–1347. (In Chinese) [Google Scholar] [CrossRef]
- Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China; Science Press: Beijing, China, 1990; Volume 37, p. 118. [Google Scholar]
- Jin, L.; Li, C.; Zhan, S.; Li, X.; Hua, J. Chromosome count and estimation of genome size of Rubus chingii Hu. Mol. Plant Breed. 2022, 20, 6009–6014. (In Chinese) [Google Scholar]
- Guan, Y.; Qu, B.; Wang, H.; Chen, L.; Li, H.; Guo, X.; Liu, J.; Liu, H.; Zhang, R. Research progress of Raspberry and its mature fruit. Chin. Arch. Tradit. Chin. Med. 2023, 41, 1–5. (In Chinese) [Google Scholar] [CrossRef]
- Sheng, J.Y.; Wang, S.Q.; Liu, K.H.; Zhu, B.; Zhang, Q.Y.; Qin, L.P.; Wu, J.J. Rubus chingii Hu: An overview of botany, traditional uses, phytochemistry, and pharmacology. Chin. J. Nat. Med. 2020, 18, 401–416. [Google Scholar] [CrossRef]
- He, B.; Dai, L.; Jin, L.; Liu, Y.; Li, X.; Luo, M.; Wang, Z.; Kai, G. Bioactive components, pharmacological effects, and drug development of traditional herbal medicine Rubus chingii Hu (Fu-Pen-Zi). Front. Nutr. 2022, 9, 1052504. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China. Part I; People’s Medical Publishing House: Beijing, China, 2020. [Google Scholar]
- Yu, G.; Luo, Z.; Wang, W.; Li, Y.; Zhou, Y.; Shi, Y. Rubus chingii Hu: A Review of the Phytochemistry and Pharmacology. Front. Pharmacol. 2019, 10, 799. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Lei, Y.; Xie, J.; Su, X.; Hu, Y.; Li, C. Research progress on chemical constituents and pharmacological effects of Fupenzi. J. Chin. Med. Mater. 2012, 35, 1873–1876. (In Chinese) [Google Scholar]
- Ke, H.; Bao, T.; Chen, W. Polysaccharide from Rubus chingii Hu affords protection against palmitic acid-induced lipotoxicity in human hepatocytes. Int. J. Biol. Macromol. 2019, 133, 1063–1071. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Zhang, Y.; Tong, L.; Sa, Y.; Sun, W. Rubus chingii Hu relieved the polycystic ovary syndrome with enhanced insulin sensitivity through inhibiting TXNIP/NLRP3 inflammasome signaling. Gynecol. Endocrinol. 2023, 39, 2237116. [Google Scholar] [CrossRef]
- Kong, Y.; Hu, Y.; Li, J.; Cai, J.; Qiu, Y.; Dong, C. Anti-inflammatory Effect of a Novel Pectin Polysaccharide from Rubus chingii Hu on Colitis Mice. Front. Nutr. 2022, 9, 868657. [Google Scholar] [CrossRef]
- Ping, J.; Yan, C.; Zhu, Y.; Li, J.; Hu, Y. Nutritional analysis of raspberries from different areas. Xiandai Hortic. 2022, 45, 38–39+42. (In Chinese) [Google Scholar] [CrossRef]
- Sun, J.; Shen, X. Progress in medicine research and fresh fruit industry analysis of Rubus chingii Hu. Bull. Sci. Technol. 2017, 33, 82–85. (In Chinese) [Google Scholar]
- Chen, Z.; Jiang, J.; Shu, L.; Li, X.; Huang, J.; Qian, B.; Xu, H. Combined transcriptomic and metabolic analyses reveal potential mechanism for fruit development and quality control of Chinese raspberry (Rubus chingii Hu). Plant Cell Rep. 2021, 40, 1923–1946. [Google Scholar] [CrossRef]
- Zhu, C. Cultivation technology and exploitation approach of Rubus chingii Hu. Modern Agric. Sci. Technol. 2015, 23, 94–95. (In Chinese) [Google Scholar]
- Lv, W.; Rao, J.; Bian, T. Introduction domestication and propagation of raspberry in east China. Agric. Technol. Equip. 2018, 342, 27–28+31. (In Chinese) [Google Scholar]
- Hu, L.; Hua, J.; Ji, Q. Key techniques of standardized production of palmleaf raspberry. Southeast Hortic. 2021, 9, 63–66. (In Chinese) [Google Scholar]
- Yao, X.; Zhu, W.; Huang, H.; Zeng, Y.; Yu, W. Effective medicinal ingredients and screening of excellent germplasm in Rubus chingii. China J. Chin. Meteria Medica 2021, 46, 575–581. [Google Scholar] [CrossRef]
- He, Q.; Liu, B.T.; Zhou, Z.D.; Fang, R.; Yang, S.Z. Diversity of Rubus chingii germplasm resources based on twig and leaf phenotypic traits. Acta Agriculturae Zhejiangensis 2021, 33, 1666–1667. (In Chinese) [Google Scholar]
- You, X.; Liu, H.; Yu, H.; Li, X.; Zhu, H.W.J.; Li, F. Selection of excellent individual plants of Rubus chingii Hu. South China For. Sci. 2020, 48, 34–37. (In Chinese) [Google Scholar] [CrossRef]
- Gelaw, Y.M.; Eleblu, J.S.Y.; Ofori, K.; Fenta, B.A.; Mukankusi, C.; Emam, E.A.; Offei, S. High-density DArTSeq SNP markers revealed wide genetic diversity and structured population in common bean (Phaseolus vulgaris L.) germplasm in Ethiopia. Mol. Biol. Rep. 2023, 50, 6739–6751. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Manghwar, H.; Hu, W. Study on Supergenus Rubus L.: Edible, Medicinal, and Phylogenetic Characterization. Plants 2022, 11, 1211. [Google Scholar] [CrossRef]
- Yang, J.; Yang, X.J.; Guo, F.R.; Wang, L.J.; Gu, C.Y.; Wang, Q.; Wang, Y.S. Study on the selection of suitable explants and dedifferentiation conditions for in vitro culture of Rubus chingii Hu. J. Anhui Agric. Univ. 2020, 47, 578–583. (In Chinese) [Google Scholar]
- Li, Y.; Deng, J. Study on cultivation and breeding of Rubus corchorifolius in China. Forest By-Product Speciality China 2017, 1, 56–59. (In Chinese) [Google Scholar]
- Li, L. Classification and identification of Chinese bramble (Rubus L.). J. Anhui Agric. Sci. 2006, 34, 1513–1516+1570. (In Chinese) [Google Scholar]
- Miao, L.; Gao, L.; Xi, D.; Li, X.; Zhu, Y.; Zhu, H. Genetic diversity analysis of flowering Chinese cabbage based on SNP molecular markers. Mol. Plant Breed. 2023, 1–9. (In Chinese) [Google Scholar]
- Lv, Q. Identification of traditional She medicine Gegongniugen and its confusable species of genus Rubus using ITS2 barcode. Chin. Tradit. Herbal Drugs 2018, 49, 3102–3109. (In Chinese) [Google Scholar]
- Zheng, C.; Liu, Y.; Yuan, L.; Wu, Y.; Wang, J.; Fu, Y.; Peng, X. Identification of Rubus chingii Hu and its related confounders by PCR-RFLP. Chin. J. Modern Appl. Pharm. 2022, 39, 1458–1463. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Jiang, J.; Liu, H.; Tang, Y. RAPD analysis of intraspecial and interspecific genetic diversity in Rubus chingii Hu. Hubei Agric. Sci. 2022, 61, 183–188. (In Chinese) [Google Scholar] [CrossRef]
- Sun, J.; Ren, J.; Hua, J.; Shen, X.; Wang, Z. Phenotype Characteristics and Genetic Analysis Based on ISSR Makers of Rubus chingii in East China. Mod. Chin. Med. 2021, 23, 426–431. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Lei, T.; Han, G.; Yue, J.; Zhang, X.; Yang, Q.; Ruan, H.; Gu, C.; Zhang, Q.; Qian, T.; et al. The chromosome-scale reference genome of Rubus chingii Hu provides insight into the biosynthetic pathway of hydrolyzable tannins. Plant J. 2021, 107, 1466–1477. [Google Scholar] [CrossRef]
- Jiang, J.; Jin, L.; Wang, L.; Chen, Z.; Sun, J.; Li, X. Excavation and analysis of SSR from transcriptome of Rubus chingii Hu. Mol. Plant Breed. 2023, 4, 1–11. (In Chinese) [Google Scholar]
- Liu, X.; Shang, K.; Wang, J. Status and Development Suggestion for Wild Raspberry Resources in East China. Bot. Res. 2020, 9, 8. (In Chinese) [Google Scholar]
- Guo, F. Analysis of ITS Sequence Polymorphisms in Rubus and Breeding of Superior Lines. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2020. [Google Scholar]
- Zhong, Y.; Wang, Y.; Sun, Z.; Niu, J.; Shi, Y.; Huang, K.; Chen, J.; Chen, J.; Luan, M. Genetic Diversity of a Natural Population of Akebia trifoliata (Thunb.) Koidz and Extraction of a Core Collection Using Simple Sequence Repeat Markers. Front. Genet. 2021, 12, 716498. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, C.C.; Anderson, W.F. Evaluation of a Core Collection to Identify Resistance to Late Leafspot in Peanut. Crop Sci. 1995, 35, 1700–1702. [Google Scholar] [CrossRef]
- Wang, J.; Hu, J.; Huang, X.; Xu, S. Progress in constructing data and evaluating parameters of representativeness for plant core collection. Seed 2008, 27, 52–55. (In Chinese) [Google Scholar] [CrossRef]
- Frankel, O.H.; Brown, A.H.D. Plant genetic resources today: A critical appraisal. In Proceedings of the International Conference of Genetics, New Delhi, India, 12–21 December 1984; pp. 249–257. [Google Scholar]
- Arai-Kichise, Y.; Shiwa, Y.; Nagasaki, H.; Ebana, K.; Yoshikawa, H.; Yano, M.; Wakasa, K. Discovery of genome-wide DNA polymorphisms in a landrace cultivar of Japonica rice by whole-genome sequencing. Plant Cell Physiol 2011, 52, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Bhattramakki, D.; Dolan, M.; Hanafey, M.; Wineland, R.; Vaske, D.; Register, J.C., 3rd; Tingey, S.V.; Rafalski, A. Insertion-deletion polymorphisms in 3’ regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol. Biol. 2002, 48, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Salathia, N.; Lee, H.N.; Sangster, T.A.; Morneau, K.; Landry, C.R.; Schellenberg, K.; Behere, A.S.; Gunderson, K.L.; Cavalieri, D.; Jander, G.; et al. Indel arrays: An affordable alternative for genotyping. Plant J. 2007, 51, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, Y.; Zhai, W.; Deng, J.; Wang, H.; Cui, Y.; Cheng, F.; Wang, X.; Wu, J. Development of InDel markers for Brassica rapa based on whole-genome re-sequencing. Theor. Appl. Genet. 2013, 126, 231–239. [Google Scholar] [CrossRef]
- Zou, M.; Xia, Z. Hyper-seq: A novel, effective, and flexible marker-assisted selection and genotyping approach. Innovation 2022, 3, 100254. [Google Scholar] [CrossRef]
- Wang, F.; Xia, Z.; Zou, M.; Zhao, L.; Jiang, S.; Zhou, Y.; Zhang, C.; Ma, Y.; Bao, Y.; Sun, H.; et al. The autotetraploid potato genome provides insights into highly heterozygous species. Plant Biotechnol. J. 2022, 20, 1996–2005. [Google Scholar] [CrossRef]
- Fu, Y.; Jiang, S.; Zou, M.; Xiao, J.; Yang, L.; Luo, C.; Rao, P.; Wang, W.; Ou, Z.; Liu, F.; et al. High-quality reference genome sequences of two Cannaceae species provide insights into the evolution of Cannaceae. Front. Plant Sci. 2022, 13, 955904. [Google Scholar] [CrossRef]
- Ding, H.; Zhou, G.; Zhao, L.; Li, X.; Wang, Y.; Xia, C.; Xia, Z.; Wan, Y. Genome-Wide Association Analysis of Fruit Shape-Related Traits in Areca catechu. Int. J. Mol. Sci. 2023, 24, 4686. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, J.Y.; Jeong, S.C.; Kang, S.T.; Moon, J.K.; Kim, N. GenoCore: A simple and fast algorithm for core subset selection from large genotype datasets. PLoS ONE 2017, 12, e0181420. [Google Scholar] [CrossRef]
- Huq, A.; Akter, S.; Nou, I.S.; Kim, H.T.; Jung, Y.J.; Kang, K.K. Identification of functional SNPs in genes and their effects on plant phenotypes. J. Plant Biotechnol. 2016, 43, 1–11. [Google Scholar] [CrossRef]
- Jiang, X.; Fang, Z.; Lai, J.; Wu, Q.; Wu, J.; Gong, B.; Wang, Y. Genetic Diversity and Population Structure of Chinese Chestnut (Castanea mollissima Blume) Cultivars Revealed by GBS Resequencing. Plants 2022, 11, 3524. [Google Scholar] [CrossRef]
- Palasciano, M.; Zuluaga, D.L.; Cerbino, D.; Blanco, E.; Aufiero, G.; D’Agostino, N.; Sonnante, G. Sweet Cherry Diversity and Relationships in Modern and Local Varieties Based on SNP Markers. Plants 2022, 12, 136. [Google Scholar] [CrossRef]
- Mudaki, P.; Wamalwa, L.N.; Muui, C.W.; Nzuve, F.; Muasya, R.M.; Nguluu, S.; Kimani, W. Genetic Diversity and Population Structure of Sorghum (Sorghum bicolor (L.) Moench) Landraces Using DArTseq-Derived Single-Nucleotide Polymorphism (SNP) Markers. J. Mol. Evol. 2023, 91, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Miao, H.; Li, C.; Duan, Y.; Niu, J.; Zhang, T.; Zhao, Q.; Zhang, H. Development of SNP and InDel markers via de novo transcriptome assembly in Sesamum indicum L. Mol. Breed. 2014, 34, 2205–2217. [Google Scholar] [CrossRef]
- Li, Y.; Colleoni, C.; Zhang, J.; Liang, Q.; Hu, Y.; Ruess, H.; Simon, R.; Liu, Y.; Liu, H.; Yu, G.; et al. Genomic Analyses Yield Markers for Identifying Agronomically Important Genes in Potato. Mol. Plant 2018, 11, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; McDowell, I.C.; Nodzenski, M.; Scholtens, D.M.; Allen, A.S.; Lowe, W.L.; Reddy, T.E. Transversions have larger regulatory effects than transitions. BMC Genom. 2017, 18, 394. [Google Scholar] [CrossRef]
- Li, Y.; Luo, X.; Peng, X.; Jin, Y.; Tan, H.; Wu, L.; Li, J.; Pei, Y.; Xu, X.; Zhang, W. Development of SNP and InDel markers by genome resequencing and transcriptome sequencing in radish (Raphanus sativus L.). BMC Genom. 2023, 24, 445. [Google Scholar] [CrossRef]
- Jain, A.; Roorkiwal, M.; Kale, S.; Garg, V.; Yadala, R.; Varshney, R.K. InDel markers: An extended marker resource for molecular breeding in chickpea. Public Libr. Sci. 2019, 14, e0213999. [Google Scholar] [CrossRef]
- Yang, J.; He, J.; Wang, D.; Shi, E.; Yang, W.; Geng, Q.; Wang, Z. Progress in research and application of InDel markers. Biodivers. Sci. 2016, 24, 237–243. (In Chinese) [Google Scholar] [CrossRef]
- Salem, M.; Vallejo, R.L.; Leeds, T.D.; Palti, Y.; Liu, S.; Sabbagh, A.; Rexroad, C.E., 3rd; Yao, J. RNA-Seq identifies SNP markers for growth traits in rainbow trout. Public Libr. Sci. 2012, 7, e36264. [Google Scholar] [CrossRef] [PubMed]
- Sjödin, P.; Bataillon, T.; Schierup, M.H. Insertion and deletion processes in recent human history. Public Libr. Sci. 2010, 5, e8650. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, J.S.; Shin, Y.H.; Park, Y.D. Identification and Validation of Genetic Variations in Transgenic Chinese Cabbage Plants (Brassica rapa ssp. pekinensis) by Next-Generation Sequencing. Genes 2021, 12, 621. [Google Scholar] [CrossRef] [PubMed]
- Salgotra, R.K.; Chauhan, B.S. Genetic Diversity, Conservation, and Utilization of Plant Genetic Resources. Genes 2023, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Leigh, D.M.; Hendry, A.P.; Vázquez-Domínguez, E.; Friesen, V.L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 2019, 12, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.C.; Huber, C.D. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl. Acad. Sci. USA 2021, 118, e2015096118. [Google Scholar] [CrossRef] [PubMed]
- Butchart, S.H.; Walpole, M.; Collen, B.; van Strien, A.; Scharlemann, J.P.; Almond, R.E.; Baillie, J.E.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global biodiversity: Indicators of recent declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef]
- Jiang, Q.; Xu, Q.; Pan, J.; Yao, X.; Cheng, Z. Impacts of Chronic Habitat Fragmentation on Genetic Diversity of Natural Populations of Prunus persica in China. Plants 2022, 11, 1458. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, Y.; Li, H.; Hao, J.; Meng, J.; Lu, B. Genetic diversity of wild Zanthoxylum armatum by ddRAD-seq. Mol. Plant Breed. 2023, 1–22. (In Chinese) [Google Scholar]
- Ding, T. Genetic Diversity Analysis and Molecular ID Card Construction of Ancient Chestnut Trees and Varieties (Lines) in Yanshan; Hebei Normal University of Science and Technology: Qinhuangdao, China, 2023; pp. 1–93. (In Chinese) [Google Scholar]
- Gumede, M.T.; Gerrano, A.S.; Amelework, A.B.; Modi, A.T. Analysis of Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata (L.) Walp) Genotypes Using Single Nucleotide Polymorphism Markers. Plants 2022, 11, 3480. [Google Scholar] [CrossRef]
- Hoban, S.; Campbell, C.D.; da Silva, J.M.; Ekblom, R.; Funk, W.C.; Garner, B.A.; Godoy, J.A.; Kershaw, F.; MacDonald, A.J.; Mergeay, J.; et al. Genetic diversity is considered important but interpreted narrowly in country reports to the Convention on Biological Diversity: Current actions and indicators are insufficient. Biol. Conserv. 2021, 261, 109233. [Google Scholar] [CrossRef]
- Ellstrand, N.C.; Roose, M.L. Patterns of Genotypic Diversity in Clonal Plant Species. Am. J. Bot. 1987, 74, 123–131. [Google Scholar] [CrossRef]
- Pluess, A.R.; Stöcklin, J. Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. Am. J. Bot. 2004, 91, 2013–2021. [Google Scholar] [CrossRef]
- Kamnev, A.; Antonova, O.Y.; Dunaeva, S.; Gavrilenko, T.A.; Chukhina, I.G. Molecular markers in the genetic diversity studies of representatives of the genus Rubus L. and prospects of their application in breeding. Vavilovskii Zhurnal Genet Sel. 2020, 24, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lyu, M.; Liu, J.; Wu, J.; Wang, Q.; Xie, T.; Li, H.; Chen, R.; Sun, D.; Yang, Y.; et al. Construction of an SNP fingerprinting database and population genetic analysis of 329 cauliflower cultivars. BMC Plant Biol. 2022, 22, 522. [Google Scholar] [CrossRef]
- Hamrick, J.L.; Godt, M.J.W.; Sherman-Broyles, S.L. Factors influencing levels of genetic diversity in woody plant species. New For. 1992, 95–124. [Google Scholar] [CrossRef]
- Sun, W.H.; Chen, D.Q.; Carballar-Lejarazu, R.; Yang, Y.; Xiang, S.; Qiu, M.Y.; Zou, S.Q. Genetic diversity and population structure of Euscaphis japonica, a monotypic species. PeerJ 2021, 9, e12024. [Google Scholar] [CrossRef] [PubMed]
- Yin, M. Evaluation of Genetic Diversity for Germplasm Resources of Betula Alnoides; Chinese Academy of Forestry: Beijing, China, 2022; pp. 1–124. (In Chinese) [Google Scholar]
- Geng, Y. Preliminary Construction and Genetic Diversity Analysis of Core Collection of Astragalus; Shanxi Agricultural University: Taiyuan, China, 2020; pp. 1–55. (In Chinese) [Google Scholar]
- Chen, X. Population Differentiation of Galinsoga Quadriradiata and Its Effects on Diffusion Processes; Shaanxi Normal University: Xi’an, China, 2022; pp. 1–97. (In Chinese) [Google Scholar]
- Chen, X. Genetic Diversity Analysis of Primula sikkimensis in Hengduan Mountains Revealed by RAD-seq; Yunnan Normal University: Kunming, China, 2021; pp. 1–59. (In Chinese) [Google Scholar]
- Jing, T.; Zhu, X.; Shi, C.; Ye, L.; Wen, G.; Lai, W.; Lv, Z.; Zhang, G. Genetic diversity analysis of Fraxinus mandshurica based on dd-RAD simplified genome sequencing. Mol. Plant Breed. 2023, 1–16. (In Chinese) [Google Scholar]
- Li, M.; Zhao, Z.; Miao, X.; Zhou, J. Genetic diversity and population structure of Siberian apricot (Prunus sibirica L.) in China. Int. J. Mol. Sci. 2013, 15, 377–400. [Google Scholar] [CrossRef] [PubMed]
- Roy Choudhury, D.; Singh, N.; Singh, A.K.; Kumar, S.; Srinivasan, K.; Tyagi, R.K.; Ahmad, A.; Singh, N.K.; Singh, R. Analysis of genetic diversity and population structure of rice germplasm from north-eastern region of India and development of a core germplasm set. PLoS ONE 2014, 9, e113094. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
Pop ID | 10 | 13 | 14 | 15 | 16 | 17 | 18 | 30 | 37 | 49 | 9 |
---|---|---|---|---|---|---|---|---|---|---|---|
Polymorphic Sites | 142,311 | 142,562 | 346,555 | 57,793 | 231,860 | 45,178 | 26,621 | 43,356 | 92,739 | 70,498 | 184,274 |
%Polymorphic Loci | 17.5723 | 17.6693 | 33.7596 | 10.0109 | 25.0310 | 8.4686 | 7.3391 | 8.6978 | 13.0160 | 10.7878 | 21.0269 |
Num Indv * | 4.4886 | 4.8872 | 10.8207 | 1.7818 | 7.1989 | 2.0501 | 1 | 2.3320 | 3.8976 | 2.7428 | 5.2249 |
MAF ** | 0.9541 | 0.9543 | 0.9319 | 0.9637 | 0.9425 | 0.9698 | 0.9633 | 0.9721 | 0.9643 | 0.9667 | 0.9459 |
Observed heterozygosity | 0.0413 | 0.0429 | 0.0406 | 0.0460 | 0.0407 | 0.0459 | 0.0734 | 0.0309 | 0.0326 | 0.0340 | 0.0505 |
Observed homozygosity | 0.9587 | 0.9571 | 0.9594 | 0.9540 | 0.9593 | 0.9541 | 0.9266 | 0.9691 | 0.9674 | 0.9660 | 0.9495 |
Expected heterozygosity | 0.0586 | 0.0580 | 0.0900 | 0.0424 | 0.0747 | 0.0352 | 0.0367 | 0.0340 | 0.0450 | 0.0410 | 0.0686 |
Expected homozygosity | 0.9414 | 0.9420 | 0.9100 | 0.9576 | 0.9253 | 0.9648 | 0.9633 | 0.9660 | 0.9551 | 0.9591 | 0.9314 |
Pi *** | 0.0753 | 0.0751 | 0.1078 | 0.0627 | 0.0915 | 0.0532 | 0.0734 | 0.0466 | 0.0580 | 0.0549 | 0.0897 |
Fis **** | 0.0714 | 0.0686 | 0.1742 | 0.0269 | 0.1186 | 0.0119 | 0 | 0.0276 | 0.0513 | 0.0378 | 0.0828 |
Source of Variations | Df ** | Sum of Squares | Covariance Components | Percentage of Covariance (%) | Phi (p < 0.05) |
---|---|---|---|---|---|
Between populations | 9 | 35,769.45 | 286.0839 | 37.4036 | |
Within samples | 121 | 57,931.61 | 478.7737 | 62.5965 | 0.3740 |
Total | 130 | 93,701.07 | 764.8575 | 100 |
Sample Population | Sampling Proportion | Sample Numbers | Polymorphic Loci Numbers % | Observed Heterozygosity | Observed Homozygosity | Observed Alleles Number (Na) | Effective Allele Number (Ne) | Shannon’s Information | Nei’s Gene Diversity |
---|---|---|---|---|---|---|---|---|---|
Core germplasm | 25% | 19 | 86.99 | 0.1791 | 0.8209 | 1.9489 | 1.4256 | 0.6027 | 0.6078 |
Noncore germplasm | 25% | 13 | 80.75 | 0.1874 | 0.8162 | 1.9121 | 1.4208 | 0.5908 | 0.5873 |
Core germplasm | 50% | 38 | 91.50 | 0.1833 | 0.8167 | 1.9963 | 1.4293 | 0.6192 | 0.6341 |
Noncore germplasm | 50% | 27 | 87.39 | 0.1908 | 0.8092 | 1.9816 | 1.4264 | 0.6095 | 0.6250 |
Core germplasm | 100% | 77 | 95.65 | 0.1868 | 0.8132 | 2.0000 | 1.4360 | 0.6299 | 0.6383 |
Noncore germplasm | 100% | 55 | 92.39 | 0.1892 | 0.8108 | 1.9998 | 1.4290 | 0.6199 | 0.6359 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Liu, F.; Xu, Y.; Hu, W. Genetic Diversity Analysis and Core Germplasm Construction of Rubus chingii Hu. Plants 2024, 13, 618. https://doi.org/10.3390/plants13050618
Zhou Z, Liu F, Xu Y, Hu W. Genetic Diversity Analysis and Core Germplasm Construction of Rubus chingii Hu. Plants. 2024; 13(5):618. https://doi.org/10.3390/plants13050618
Chicago/Turabian StyleZhou, Ziwei, Fen Liu, Yanqin Xu, and Weiming Hu. 2024. "Genetic Diversity Analysis and Core Germplasm Construction of Rubus chingii Hu" Plants 13, no. 5: 618. https://doi.org/10.3390/plants13050618
APA StyleZhou, Z., Liu, F., Xu, Y., & Hu, W. (2024). Genetic Diversity Analysis and Core Germplasm Construction of Rubus chingii Hu. Plants, 13(5), 618. https://doi.org/10.3390/plants13050618