Comparison of Growth and Physiological Effects of Soil Moisture Regime on Plantago maritima Plants from Geographically Isolated Sites on the Eastern Coast of the Baltic Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Seedling Establishment
2.2. Treatments
2.3. Plant Harvest and Measurements
2.4. Data Analysis
3. Results
3.1. Morphological Parameters
3.2. Accumulation of Ions and Osmotic Activity
3.3. Photosynthesis-Related Parameters
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anderson, J.T.; Willis, J.H.; Mitchell-Olds, T. Evolutionary genetics of plant adaptation. Trends Genet. 2011, 27, 258–266. [Google Scholar] [CrossRef]
- Henry, R.J.; Nevo, E. Exploring natural selection to guide breeding for agriculture. Plant Biotechnol. J. 2014, 12, 655–662. [Google Scholar] [CrossRef]
- Razzaq, A.; Wani, S.H.; Saleem, F.; Wu, M.; Zhou, M.; Shabala, S. Rewilding crops for climate resilience: Economic analysis and de novo domestication strategies. J. Exp. Bot. 2021, 72, 6123–6139. [Google Scholar] [CrossRef]
- Kouhen, M.; García-Caparrós, P.; Twyman, R.M.; Abdelly, C.; Mahmoudi, H.; Schillnerg, S. Improving environmental stress resilience in crops by genome editing: Insights from extremophile plants. Crit. Rev. Biotechnol. 2023, 43, 559–574. [Google Scholar] [CrossRef]
- Ievinsh, G. Biological basis of biological diversity: Physiological adaptations of plants to heterogeneous habitats along a sea coast. Acta Univ. Latv. 2006, 710, 53–79. [Google Scholar]
- Fenu, G.; Carboni, M.; Acosta, A.T.R.; Baccheta, G. Environmental factors influencing coastal vegetation pattern: New insights from the Mediterranean Basin. Folia Geobot. 2013, 48, 493–508. [Google Scholar] [CrossRef]
- Burden, A.; Smeaton, C.; Angus, S.; Garbutt, A.; Jones, L.; Lewis, H.D.; Rees, S.M. Impacts of climate change on coastal habitats relevant to coastal and marine environment around the UK. MCCIP Sci. Rev. 2020, 2020, 228–235. [Google Scholar]
- Druva-Lūsīte, I.; Karlsons, A.; Andersone-Ozola, U.; Ieviņa, B.; Nečajeva, J.; Samsone, I.; Ievinsh, G. Physiological performance of a coastal marsh plant Hydrocotyle vulgaris in natural conditions in relation to mineral nutrition and mycorrhizal symbiosis. Proc. Latv. Acad. Sci. B 2020, 74, 252–262. [Google Scholar] [CrossRef]
- Soekarjo, R. General morphology. In Plantago: A Multidisciplinary Study; Kuiper, D., Bos, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 6–11. [Google Scholar]
- Herben, T.; Klimešová, J. Evolution of clonal growth forms in angiosperms. New Phytol. 2020, 225, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Blom, C.W.P.M. Plasticity of life characteristics in two different populations of Plantago maritima L. Acta Oecol. Oecol. Plant. 1983, 4, 377–394. [Google Scholar]
- Ievinsh, G. Halophytic clonal plant species: Important functional aspects for existence in heterogeneous saline habitats. Plants 2023, 12, 1728. [Google Scholar] [CrossRef]
- Tichý, L.; Axmanová, I.; Dengler, J.; Guarino, R.; Jansen, F.; Midolo, G.; Nobis, M.P.; Van Meerbeek, K.; Aćić, S.; Attorre, F.; et al. Ellenberg-type indicator values for European vascular plant species. J. Veget. Sci. 2023, 34, e13168. [Google Scholar] [CrossRef]
- Blom, C.W.P.M. Phenotypic plasticity in Plantago maritima. In Plantago: A Multidisciplinary Study; Kuiper, D., Bos, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 240–249. [Google Scholar]
- Tyler, T.; Herbertsson, L.; Olofsson, J.; Olsson, P.A. Ecological indicator and traits values for Swedish vascular plants. Ecol. Indic. 2021, 120, 106923. [Google Scholar] [CrossRef]
- Hill, M.O.; Ellenberg, H.H. Ellenberg’s Indicator Values for British Plants; ECOFACT Research Report. Technical Annex; Institute of Terrestrial Ecology: Wallingford, UK, 1999; Volume 2. [Google Scholar]
- Erdei, L.; Kuiper, P.J. The effect of salinity on growth, cation content, Na+-uptake and translocation in salt-sensitive and salt-tolerant Plantago species. Physiol. Plant. 1979, 47, 95–99. [Google Scholar] [CrossRef]
- Ahmad, I.; Larher, F.; Stewart, G.R. Sorbitol, a compatible osmotic solute in Plantago maritima. New Phytol. 1979, 82, 671–678. [Google Scholar] [CrossRef]
- Sekmen, A.H.; Türkan, İ.; Takio, S. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol. Plant. 2007, 131, 399–411. [Google Scholar] [CrossRef]
- Sleimi, N.; Guerfali, S.; Bankaji, I. Biochemical indicators of salt stress in Plantago maritima: Implications for environmental stress assessment. Ecol. Indic. 2015, 48, 570–577. [Google Scholar] [CrossRef]
- Jerling, L. Population dynamics of Plantago maritima along a distributional gradient on a Baltic seashore meadow. Vegetatio 1985, 61, 155–161. [Google Scholar] [CrossRef]
- Cooper, A. The effects of salinity and waterlogging on the growth and cation uptake of salt marsh plants. New Phytol. 1982, 90, 263–275. [Google Scholar] [CrossRef]
- Groenendijk, A.M. Ecological consequences of tidal management for the salt-marsh vegetation. Vegetatio 1985, 62, 415–424. [Google Scholar] [CrossRef]
- Groenendijk, A.M. Tidal management: Consequences for the salt marsh vegetation. Water Sci. Technol. 1984, 16, 79–86. [Google Scholar] [CrossRef]
- Shabala, S.; Shabala, L. Ion transport and osmotic adjustment in plants and bacteria. BioMol. Concepts 2011, 2, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Glenn, E.; Pfister, R.; Brown, J.J.; Thompson, T.L.; O’Leary, J. Na and K accumulation and salt tolerance of Atriplex canescens (Chenopodiaceae) genotypes. Am. J. Bot. 1996, 83, 997–1005. [Google Scholar] [CrossRef]
- Leigh, R.A.; Wyn Jones, R.G. A hypothesis relating critical potassium concentrations for growth to the distribution and function of this ion in the plant cell. New Phytol. 1984, 97, 1–13. [Google Scholar] [CrossRef]
- Ashraf, M.; Akram, N.A.; Al-Qurainy, F.; Foolad, M.R. Drought tolerance: Roles of organic osmolytes, growth regulators, and mineral nutrients. Adv. Agron. 2011, 111, 249–296. [Google Scholar]
- Nonami, H. Plant water relations and control of cell elongation at low water potentials. J. Plant Res. 1998, 111, 373–382. [Google Scholar] [CrossRef]
- Tardieu, F.; Parent, B.; Caldeira, C.F.; Welcker, C. Genetic and physiological controls of growth under water deficit. Plant Physiol. 2014, 164, 1628–1635. [Google Scholar] [CrossRef]
- Ilyas, M.; Nisar, M.; Khan, N.; Hazrat, A.; Khan, A.H.; Hayat, K.; Fahad, S.; Khan, A.; Ullah, A. Drought tolerance strategies in plants: A mechanistic approach. J. Plant Growth Reg. 2021, 40, 926–944. [Google Scholar] [CrossRef]
- Pan, J.; Sharif, R.; Xu, X.; Chen, H. Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Front. Plant Sci. 2021, 11, 627331. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.-B.; Chen, M.-X.; Wang, L.-N.; Sasidharan, R.; Voesenek, L.A.C.J. Multi-stress resilience in plants recovering from submergence. Plant Biotechnol. J. 2023, 21, 466–481. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, M.H.C. Drought stress and reactive oxygen species. Plant Signal. Behav. 2008, 3, 156–165. [Google Scholar] [CrossRef]
- Fukao, T.; Barrera-Figueroa, B.E.; Juntawong, P.; Peña-Castro, J.M. Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects. Front. Plant Sci. 2019, 10, 340. [Google Scholar] [CrossRef]
- Morales, F.; Ancin, M.; Fakhet, D.; González-Torralba, J.; Gmez, A.L.; Seminario, A.; Soba, D.; Ben Mariem, S.; Garriga, M.; Aranjuelo, I. Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants 2020, 9, 88. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Vegetation stress: An introduction to the stress concept in plants. J. Plant Physiol. 1996, 148, 4–14. [Google Scholar] [CrossRef]
- Woo, N.S.; Badger, M.R.; Pogson, B.J. A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 2008, 4, 27. [Google Scholar] [CrossRef]
- Caudle, K.L.; Maricle, B.R. Effects of flooding on photosynthesis, chlorophyll fluorescence, and oxygen stress in plants of varying flooding tolerance. Transact. Kansas Acad. Sci. 2012, 115, 5–18. [Google Scholar]
- Ose, A.; Andersone-Ozola, U.; Ievinsh, G. Substrate-dependent effect of vermicompost on yield and physiological indices of container-grown Dracocephalum moldavica plants. Agriculture 2021, 11, 1231. [Google Scholar] [CrossRef]
- Banks, J.M. Continuous excitation chlorophyll fluorescence parameters: A review for practitioners. Tree Physiol. 2017, 37, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
- Tsimilli-Michael, M. Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica 2020, 58, 275–292. [Google Scholar] [CrossRef]
- Purmale, L.; Jēkabsone, A.; Andersone-Ozola, U.; Ievinsh, G. Salinity tolerance, ion accumulation potential and osmotic adjustment in vitro and in planta of different Armeria maritima accessions from a dry coastal meadow. Plants 2022, 11, 2570. [Google Scholar] [CrossRef]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Moreno, S.; Bedada, G.; Rahimi, Y.; Ingvarsson, P.K.; Westerbergh, A.; Lundquist, P.-O. Response to waterlogging stress in wild and domesticated accessions of timothy (Phleum pratense) and its relatives P. alpinum and P. nodosum. Plants 2023, 12, 4033. [Google Scholar] [CrossRef] [PubMed]
- Voesenek, L.A.C.J.; Colmer, T.D.; Pierik, R.; Millenaar, F.F.; Peeters, A.J.M. How plants cope with complete submergence. New Phytol. 2006, 170, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Andersone-Ozola, U.; Jēkabsone, A.; Purmale, L.; Romanovs, M.; Ievinsh, G. Abiotic stress tolerance of coastal accessions of a promising forage legume species, Trifolium fragiferum. Plants 2021, 10, 1552. [Google Scholar] [CrossRef] [PubMed]
- Gailite, A.; Andersone-Ozola, U.; Samsone, I.; Karlsons, A.; Ievinsh, G. Ecophysiology of endangered plant species Saussurea esthonica: Effect of mineral nutrient availability and soil moisture. Plants 2023, 12, 888. [Google Scholar] [CrossRef] [PubMed]
- Malnoë, A. Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. Environ. Exp. Bot. 2018, 154, 123–133. [Google Scholar] [CrossRef]
- Chen, H.; Zamorano, M.F.; Ivanoff, D. Effect of flooding depth on growth, biomass, photosynthesis, and chlorophyll fluorescence of Typha domingensis. Wetlands 2010, 30, 957–965. [Google Scholar] [CrossRef]
- Lacey, E.P.; Herr, D. Parental effects in Plantago lanceolata L. III. Measuring parental temperature effects in the field. Evolution 2000, 54, 1207–1217. [Google Scholar]
- Lotz, L.A.P. Variation in Life-History Characteristics between and within Populations of Plantago major L. Ph.D. Thesis, Katholieke Universiteit Nijmegen, Nijmegen, The Netherlands, 1989. [Google Scholar]
- Ievinsh, G.; Ieviņa, S.; Andersone-Ozola, U.; Samsone, I. Leaf sodium, potassium and electrolyte accumulation capacity of plant species from salt-affected coastal habitats of the Baltic Sea: Towards a definition of Na hyperaccumulation. Flora 2021, 274, 151748. [Google Scholar] [CrossRef]
- Binet, P. Action de la température et de la salinité sur la germination des graines de Plantago maritima (L.). Bull. Soc. Bot. France 1964, 111, 407–411. [Google Scholar] [CrossRef]
- Hanslin, H.M.; Eggen, T. Salinity tolerance during germination of seashore halophytes and salt-tolerant grass cultivars. Seed Sci. Res. 2005, 15, 43–50. [Google Scholar] [CrossRef]
Accession | Site | Location | Habitat | Coordinates |
---|---|---|---|---|
PM1 | Linaküla | Island of Kihnu | Dry dune grassland | 58°07′51.9″ N 23°57′35.8″ E |
PM2 | Sääre | Island of Kihnu | Wet saline grassland with high plant diversity | 58°09′16.4″ N 24°00′13.0″ E |
PM3 | Kassari | Island of Hiiumaa | Wet saline grazed grassland with low plant diversity | 58°48′36.6″ N 22°52′00.2″ E |
PM4 | Ohesaare | Island of Saaremaa | Dominant Plantago maritima stand on pebbly beach | 58°00′06.4″ N 22°01′26.3″ E |
PM5 | Matsi-Sömeri | Pärnu County | Flood-prone stony beach | 58°21′02.9″ N 23°44′30.3″ E |
Soil Moisture | Average Height of Flower Stalk (mm) | Dry Mass of Flower Stalks (g plant−1) | Dry Mass of Flowers and Fruits (g plant−1) | |||
---|---|---|---|---|---|---|
PM3 | PM4 | PM3 | PM4 | PM3 | PM4 | |
25% | 144 ± 16 c | 199 ± 18 bc | 0.55 ± 0.05 cd | 0.71 ± 0.16 bcd | 1.15 ± 0.07 c | 0.91 ± 0.19 c |
50% | 242 ± 7 ab | 226 ± 17 ab | 1.71 ± 0.13 a | 1.42 ± 0.28 ab | 2.43 ± 0.29 a | 1.62 ± 0.28 abc |
75% | 189 ± 22 bc | 221 ± 22 ab | 1.33 ± 0.16 ab | 1.33 ± 0.07 ab | 2.13 ± 0.15 ab | 1.34 ± 0.20 bc |
80% F | 273 ± 10 a | 215 ± 5 ab | 1.08 ± 0.21 abc | 0.22 ± 0.03 d | 1.14 ± 0.24 c | 0.18 ± 0.01 d |
Soil Moisture | PM1 | PM2 | PM3 | PM4 | PM5 |
---|---|---|---|---|---|
Electrical conductivity (mS m−1 kg−1 DM) | |||||
25% | 108.6 ± 3.4 a | 107.9 ± 3.3 a | 106.1 ± 3.3 ab | 95.9 ± 6.9 abcd | 88.2 ± 1.7 cde |
50% | 90.5 ± 5.2 bcde | 98.1 ± 4.1 abcd | 88.3 ± 0.9 cde | 92.7 ± 5.1 abcd | 100.6 ± 1.8 abc |
75% | 85.2 ± 4.0 cde | 93.4 ± 2.2 abcd | 85.2 ± 3.2 cde | 91.3 ± 5.5 abcde | 81.2 ± 3.8 def |
80% F | 73.9 ± 1.9 efg | 66.2 ± 2.2 fg | 73.7 ± 4.0 efg | 62.3 ± 3.4 g | 63.4 ± 2.6 g |
Na+ concentration (g kg−1 DM) | |||||
25% | 5.22 ± 0.21 a | 4.03 ± 0.20 abcd | 5.23 ± 0.23 a | 5.18 ± 0.19 a | 3.10 ± 0.33 cde |
50% | 4.24 ± 0.43 abcd | 4.05 ± 0.33 abcd | 5.08 ± 0.38 a | 4.94 ± 0.75 ab | 4.49 ± 0.13 abc |
75% | 3.90 ± −0.26 abcd | 3.16 ± 0.14 cde | 3.44 ± 0.28 bcd | 4.44 ± 0.36 abc | 2.92 ± 0.23 de |
80% F | 3.07 ± 0.13 cde | 2.37 ± 0.07 e | 3.28 ± 0.07 e | 2.90 ± 0.14 de | 2.44 ± 0.09 e |
K+ concentration (g kg−1 DM) | |||||
25% | 23.2 ± 1.4 ab | 22.1 ± 1.4 ab | 18.6 ± 1.4 abcd | 22.1 ± 4/5 ab | 21.7 ± 0.9 abc |
50% | 23.3 ± 1.2 a | 16.5 ± 0.9 bcdef | 9.8 ± 0.8 f | 20.1 ± 0.8 abc | 24.1 ± 0.8 a |
75% | 21.3 ± 1.1 abc | 15.1 ± 0.6 cdef | 12.9 ± 1.8 def | 22.8 ± 2.5 ab | 20.0 ± 1.1 abc |
80% F | 18.5 ± 0.6 abcd | 11.6 ± 0.7 ef | 12.0 ± 0.6 def | 17.4 ± 0.6 def | 12.5 ± 0.6 def |
Osmotic activity (osmol kg−1 DM) | |||||
25% | 3.25 ± 0.12 a | 2.85 ± 0.04 abcdef | 3.17 ± 0.09 abc | 3.09 ± 0.05 abc | 2.84 ± 0.08 bcdef |
50% | 3.09 ± 0.11 abc | 3.04 ± 0.08 abcd | 3.07 ± 0.07 abc | 3.13 ± 0.11 abc | 3.18 ± 0.03 aab |
75% | 2.82 ± 0.10 bcdef | 2.78 ± 0.03 cdef | 2.97 ± 0.09 abcdef | 3.12 ± 0.05 abc | 2.81 ± 0.10 bcdef |
80% F | 2.65 ± 0.08 defg | 2.27 ± 0.05 g | 2.99 ± 0.06 abcde | 2.61 ± 0.06 efg | 2.57 ± 0.07 fg |
Non-ionic osmotic activity (osmol kg−1 DM) | |||||
25% | 1.42 ± 0.06 defg | 1.18 ± 0.06 g | 1.57 ± 0.09 bcde | 1.61 ± 0.06 abcde | 1.26 ± 0.08 efg |
50% | 1.33 ± 0.05 defg | 1.63 ± 0.04 abcd | 1.90 ± 0.08 a | 1.44 ± −0.07 | 1.38 ± 0.03 defg |
75% | 1.19 ± 0.05 g | 1.52 ± 0.05 cdef | 1.78 ± −0.08 abc | 1.41 ± 0.08 defg | 1.32 ± 0.05 defg |
80% F | 1.22 ± 0.07 fg | 1.24 ± 0.06 fg | 1.86 ± 0.04 ab | 1.24 ± 0.03 fg | 1.49 ± 0.09 cdefg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozoliņa, K.A.; Jēkabsone, A.; Andersone-Ozola, U.; Ievinsh, G. Comparison of Growth and Physiological Effects of Soil Moisture Regime on Plantago maritima Plants from Geographically Isolated Sites on the Eastern Coast of the Baltic Sea. Plants 2024, 13, 633. https://doi.org/10.3390/plants13050633
Ozoliņa KA, Jēkabsone A, Andersone-Ozola U, Ievinsh G. Comparison of Growth and Physiological Effects of Soil Moisture Regime on Plantago maritima Plants from Geographically Isolated Sites on the Eastern Coast of the Baltic Sea. Plants. 2024; 13(5):633. https://doi.org/10.3390/plants13050633
Chicago/Turabian StyleOzoliņa, Katrīna Anna, Astra Jēkabsone, Una Andersone-Ozola, and Gederts Ievinsh. 2024. "Comparison of Growth and Physiological Effects of Soil Moisture Regime on Plantago maritima Plants from Geographically Isolated Sites on the Eastern Coast of the Baltic Sea" Plants 13, no. 5: 633. https://doi.org/10.3390/plants13050633
APA StyleOzoliņa, K. A., Jēkabsone, A., Andersone-Ozola, U., & Ievinsh, G. (2024). Comparison of Growth and Physiological Effects of Soil Moisture Regime on Plantago maritima Plants from Geographically Isolated Sites on the Eastern Coast of the Baltic Sea. Plants, 13(5), 633. https://doi.org/10.3390/plants13050633